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Abstract

XML (eXtensible Markup Language) has been widely used as a standard for sharing data between
web-based applications. In order to share XML data with another XML application system, it is
needed to integrate various XML data sources into a coherent XML data set. Moreover, to share
XML data with semantic supporting system, such as Web Ontology Language (OWL), XML data
also need to be transfomed into OWL ontology. However, since the heterogeneous of XML data,
the same information can be published in many different ways in terms of tag names and struc-
tures or the same tag names can represent different contents, the sharing of XML data is not yet
fully automatic. This heterogeneity of XML data has led to research in measuring the similarity
of elements between XML schemas or element similarity within a schema. Therefore, to perform
the integrating and transforming tasks, the similarity measure of XML schema play a crucial role
due to the heterogeneous of XML data sources.

In this thesis, we deal with the problem of data transformation and integration for XML data
sources. This data format presents a lot of challenges that need XML-specific solutions: an XML
schema is not required for an XML document, and if XML schema exists, it may be expressed in
a number of different XML schema types such as XML Schema (XSD) or Document Type Defi-
nition (DTD) ; also resolving the heterogeneity in the schema is not straightforward method due
to the hierarchical nature of XML data.

We propose a hybrid similarity measure based approach, that handles the distinct problems of
syntactic, semantic, and schematic heterogeneity of XML data. Our similarity measure addresses
both structural and semantic components and can be applied for both schema types of XML . Due
to the different targets between integration and transformation of XML data, we propose two types
of similarity measures, which are similarity of elements between two schemas for data integration
and similarity of elements within a schema for data transformation. In particular, we can divide
the thesis into two main parts, both related to enhance the sharing of XML data.

The first part focuses on the similarity measure between schemas for data integration. We
propose the novel similarity measure that concurrently considers both structural and semantic in-
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formation of two specific XML Schemas. Specifically, we introduce new metrics to compute the
data type and cardinality constraint similarities which improve the quality of the current semantic
assessments. Based on the similarity between element pairs, we put forward an algorithm to calcu-
late the similarity between two XML Schema trees. Based on the similarity measure, we propose
an integration method to merge two or more disparate XML data sources into a single coherent
data set to support the information needs of the target business or enterprise. Experimental results
lead to the conclusion that our methodology provides better similarity values than the others with
regard to the accuracy of semantics and structure similarities.

The second part of the work is related to the similarity measure of duplicate within a schema
and the transformation of XML Schema into OWL (Web Ontology Language). This part is also di-
vided into two different sub-parts. The first one is focused on the problem of duplicate elements in
XML Schema. Recent studies on transforming XML Schema into OWL have shown that the asso-
ciated duplicates problem can be solved by creating a unique identifier for each element. However,
this solution considers duplicate elements to be different nodes, whereas most duplicates repre-
sent the same information. We present a novel method to measure the semantic similarity between
duplicate elements within an XML Schema. Semantic similarity is the combination of the decla-
ration and context features, which capture all the descriptions and relationships of the duplicate
elements. Based on the similarity values, we classify the duplicates into two groups: similar and
non-similar, and then propose the suitable strategy to transform these duplicates into appropriate
OWL concepts.

In the second sub-part, we present a mechanism to ease the interpretation and automate the
semantic transformation of specific XML data into the OWL ontology (S-Trans), which allows
an easier and better semantic communication among information systems. On the basis of the
XML schemas (XSD or DTD), we extract the document structure and add more descriptions for
XML elements. Experimental results show that the proposed method reliably predicts semantic
similarity of duplicates and produces a better-quality of OWL ontology.

Thesis Supervisor: Young-Koo Lee
Title: Professor

Thesis Co-Supervisor: Sungyoung Lee
Title: Professor
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Chapter 1

Introduction

1.1 Introduction

Recently, many web-page applications and services publish their data using XML, the standard for

sharing data, since the use of XML as a common data representation format helps sharing XML

data with other applications and services. Usually, to improve the sharing of XML data with the

same XML application system, all XML data sources are integrated into a coherent data set to sup-

port the information needs of the target applications. Moreover, to enhance the sharing of XML

data with the semantic supporting system using OWL, XML data are transformed into the target

OWL ontology. However, since the heterogeneous of XML data in which the same information

can be published using XML in many different ways in terms of tag names and structures or the

same tag names can represent different contents, the exchange of XML data is not fully automatic.

To solve the heterogeneity problem of XML data, many researches have been proposed similar-

ity measure methods to compute the similarity of heterogeneous XML data before integrating or

transforming them. The algorithms that automate these similarity computations help to reduce

time and effort spent on creating and maintaining data sharing in many applications [90] such as

in e-Business [12], [100], [93], e-Goverment [70], [73], [48], [25], [33], e-Learning [18], [11],

[98], and e-Health [95], [88], [68].
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Intelligent Domain Services, Applications

Use, Intent Pragmatic Web

Trust Security/Identity

Reasoning/Proof Inference Engine

Higher Semantics OWL

Semantics RDF/RDF Schema

Structure XML Schema

Syntax: Data XML

URI                       Unicode

Figure 1.1: Semantic Web stack architecture

To illustrate the important of XML data integration, let us take one integration example in

e-Health system. In the e-Health system, there are various of XML healthcare data. These data

are the collection of healthcare data from the large number of environmental and patient sensors,

and actuators to monitor and improve patient’s physical and mental conditions [86]. Nowadays,

the XML healthcare data are increasing, so the healthcare providers need to integrate these data

in order to keep them as the electronic health record (EHR) [32]. Therefore, the integration of

XML healthcare data plays an important role in enhancing the quality of the patient care and the

information exchange among the medical systems.

In general, although heterogeneous XML sources may have similar content, they may be de-
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XML data sharing

Schema

integration

Schema matching/

mapping

Schema

transformation

Integrate

DTDs

Integrate

XSDs
XML2RDF XML2OWL

Similarity

between docs.

Similarity

within doc.

Similarity measure

Figure 1.2: Different solutions to integration and transformation XML data

scribed using different tag names and structures. Integration of similar XML documents from

different data sources benefits applications which use the same XML language, giving them ac-

cess to more complete and useful information and query systems to retrieve information from a

single integrated source instead of various sources.

On the other hand, recently, the Semantic Web has been developed and widely used by many

semantic applications. This development leads to the need for sharing the existing XML data with

semantic applications. However, XML is disadvantage when it comes to the semantic interoper-

ability because it focuses primarily on the syntactics, with no way to describe the semantics of

the data [34]. This lack of semantic description leads to the problems when semantic agents seek

to understand and reason about these XML data. Therefore, to enable the sharing of XML data

with semantic supporting systems, it is needed to map or transform XML data into a semantic
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supporting language. In this thesis, we choose OWL as the target source for the transformation,

since OWL is described as higher semantic language in the Semantic Web stack architecture [36].

Moreover, since the heterogeneous of XML data where duplicates may represent different or same

information, to improve the semantics of the transformation, we propose a pre-step to compute the

semantic similarity of XML elements, specifically the duplicate elements, before the XML trans-

forming process.

In general, this thesis tackles the problem of sharing XML data between the same XML ap-

plications and between XML application and the semantic supporting application. In particular,

we have developed an approach to the integration and transformation of heterogeneous XML data

sources. Our approach is based on the similarity measure method, meaning that the output is a

set of similarity scores of elements between XML schema documents, in an XML data integration

scenario, or a set of similarity scores of duplicate elements within XML schema, in an XML data

transformation scenario. The overview of different solutions to enhance the data sharing and our

focused research is illustrated in Figure 1.2.

The rest of this chapter is constructed as follows. Section 1.2 introduces the different scenarios

in the broad area of data sharing. Section 1.3 presents the motivation and contributions of the work

described in this thesis. Section 1.4 gives an overview of the thesis organization.

1.2 XML data sharing scenario

The sharing of XML data across applications and services may involve several scenarios, includ-

ing: XML schema integration and XML schema transformation. However, all scenarios share the

same process of similarity measure, particularly, similarity between documents for the integration

scenario and similarity within a document for the transformation scenario. We introduce below
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the major scenarios and processes in schema integration and transformation.

XML schema integration is an XML data sharing scenario in which XML data from multiple

data sources are combined in order to give users a single integrated source. This task may retain all

of the original logical structures and tag names of the XML schema sources (XSD or DTD), since

it generates a union or global XML schema which combines the data sources in more complex

ways.

XML schema transformation is an XML data sharing scenario in which one needs to defines

rules for transforming a source XML schema S1 and its associated XML instancesDS1 to a struc-

ture of the target schema S2 which is defined in a different modeling language as S1, for the

purposes of query processing or materialization of S2, using the data DS1. XML data exchange is

a stricter form of XML data transformation, which also respects the constraints defined within the

target XML schema, and not just its structure.

Element similarity between XML schemas is the automatic or semi-automatic process of deter-

mining the similarity scores between elements of an XML schema S1 and those of another XML

schema S2. The next step of this process is the classification process in which highly similarity

element pairs are combined into an integrated source. The process of choosing a classification

value is discussed in the experiment section.

Similarity of elements within an XML schema is the automatic or semi-automatic process of

determining the similarity scores between elements within a schema S1. The similarity results can

then be used to transform data from the data source of S1 into S2. In this thesis, we compute the

similarity value of duplicate elements in an XML Schema and then classify them into the similar

or non-similar group for the transformation.
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1.3 Motivation and contributions

From the above overview, a number of research questions arise regarding XML data sharing,

which form the motivation for our research:

• How to improve the data sharing between applications using the same XML system or

sharing XML system with higher semantic supporting language, OWL?

• Different XML data sources may be associated with different XML schema types, or may

not have a same schema type at all. Can we encompass all types of XML data sources with

a data transformation or an integration approach?

• How to solve the heterogeneous problem of XML data during the integration or transforma-

tion XML data?

• Which aspects of XML data transformation and integration can be automated? Are they

clearly distinguishable from the manual aspects? Can we minimize the manual aspects?

• XML data sources may be structurally incompatible, which may lead to loss of information

when transforming or integrating them. How to sole this problem automatically?

• Have existing approaches performed the integration or transformation of XML data? If so,

do they have any problem needed to resolve?

With these research questions as a starting point, this thesis proposes a similarity measure based

approach for the integration and transformation of heterogeneous XML data sources and makes

the following contributions:

1. We propose the integration method-based similarity measure to improve the data sharing

between the same XML applications. For sharing data with higher semantic application, we
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propose the transformation of XML into OWL ontology method with consider the duplicate

similarity in XML schema.

2. Our approach can be applied on any type of XML data sources, regardless of the schema

type used, XSD or DTD.

3. We propose a hybrid similarity measure to compute both semantic and structural similarities

of XML elements.

4. We automate the similarity measure process for data integration and transformation by pro-

viding the metrics to compute all similarity factors. There is no similarity value given by

users. Our propose metrics generates more precise similarity values than those by man-

ual. Moreover, we minimize the manual aspect by proposing the method to determine the

weighted values to balance the role of the similarity factors.

5. To solve the loss of information problem, in the integration process, our integrator take a

union of all elements in XML schemas instead of retaining only common elements. In the

transformation process, we follow the structural descriptions of XML schemas to transform

all elements and their relationships with other elements into appropriate OWL concepts.

6. There are several approaches proposed to integrate and transform XML data. However, our

methods are overcome the existing work because of some reasons. For the integration ap-

proaches, in most of related approaches, the data type, cardinality constraint, and weight

parameters values are manually given whereas we provide novel metrics to determine those

values. In the transformation approaches, most existing methods solve the duplicate prob-

lem of XML data by simply giving each XML element a unique identifier, which may cause

the redundancy data when duplicates represent the same information. We resolve this du-

plicate problem by proposing the duplicate similarity measuring and giving an appropriate

strategy to transform them.
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With respect to existing approaches to XML schema transformation and integration, our approach

makes a number of contributions:

1. We propose a new metric to measure the data type similarity between two attribute types

whereas data type similarity value is given manually in related work.

2. We present the novel metric to measure the similarity of the cardinality constraints which

are also manually given by user.

3. In order to avoid the case that two nodes have the same structure but difference in their

names, we compute the structural similarity of two concepts by relying on the semantic

similarity and each pair of their neighborhood elements.

4. We present an algorithm to calculate the similarity between two schema trees based on the

similarity values of the element pairs.

5. We propose a method to determine the weight parameters which are used to balance the role

of the similarity measuring factors.

6. We discovers the semantic problem during transformation of duplicate elements in an XML

schema into ontology.

7. We proposes method to measure the semantic similarity between repeated elements, which

considers not only the relationship similarity, but also the inside descriptions of each dupli-

cate node.

8. We propose a method to formally determine the duplicate classifying value.

9. It proposes the strategy to transform XML schema and their duplicates into ontology.

10. Finally, our approach addresses the problem of human intervention during the integration

and data redundancy in transformation of XML data. Experimental results reveal that our

method overcomes the related work in terms of semantics and accuracy.
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1.4 Thesis Organization

This section describes the the road map for the entire thesis. We provide the thesis organization in

Figure 1.3. A brief summary of each chapter is shown below.

• Chapter 1 Introduction. This chapter briefly introduces the population of XML data and an

example of XML in e-Health system. The challenges and disadvantages of XML’s flexibility

in creating new document and lack of semantics support of XML are clearly addressed.

After that the dissertation focuses and contributions are also made clear.

• Chapter 2 Background and Related Work. This chapter presents to sections. First, we

review background knowledge on XML data and OWL ontology. Second, we give a com-

prehensive survey of the existing work especially work that relates to two problems: mea-

suring the similarity between XML Schema documents and transforming XML into OWL

ontology. The state of the art and limitations of existing work are clearly addressed.

• Chapter 3 Semantic and Structural Similarity between XML Schemas. The proposed

solution for the semantic and structural measuring problem is described in detail in this

chapter.

• Chapter 4 Duplicate and Transforming XML schemas into OWL ontology. This chap-

ter describes all the details of the semantic similarity measuring for duplicate elements

in XML schemas and proposes solution for each similarity level and transforms all XML

schemas elements into OWL ontology.

• Chapter 5 Experimental results and discussions. Comprehensive experiments are con-

ducted, the results are analyzed to enlighten the advantages of the proposed algorithms.

• Chapter 6 Conclusion and future work. In this chapter, a conclusion is given. Besides,

some limitations of the work are also pointed out with potential solutions, which may need

further research effort to be completed.
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Chapter 2

Background and Related Work

Since XML data and ontology are two main objects in this dissertation, in this chapter we give

a brief introduction to their characteristics and technologies. After that, we discuss the related

researches to our work.

2.1 Background on XML Data and OWL Ontology

2.1.1 XML data

XML (eXtensible Markup Language) is a flexible representation language. There are two varieties

of XML data: XML documents and XML schemas. An XML schema provides the data defini-

tions and structure of the XML document [65]. While XML documents are the instances of an

XML schema which gives a snapshot of what the document may contain. A schema includes what

elements are allowed or are not allowed; what attributes for any elements may be and the number

of occurrences of XML elements; etc. A schema for a document may be included as both inter-

nally (located within the schema document) and externally (independently located outside XML

schema file).

11
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There are several XML schema languages, but only two are commonly used. They are DTD

(Document Type Definition) and XML Schema or XML Schema Definition (XSD), both of which

allow the construction of XML documents to be described and their contents to be constrained

[79]. A DTD specifies the structure of an XML element by specifying the names of its sub-

elements and attributes. Subelement structure is specified using some operators, such as * (zero or

more elements), + (one or more elements), ? (optional), and | (or), as well as with properties type

(PCDATA, ID, IDREF, ENUMERATION).

The DTD language is disadvantaged in compare with an XSD language since it only supports

a limited set of data types, has loose structure constraints, uses different language with XML, etc.

To overcome the above limitations of DTD, the XSD language provides the novel features, such

as simple and complex types, rich data type sets, occurrence constraints and especially using the

same language with XML. An XML Schema is usually comprised of a set of schema components,

such as the data type definitions and cardinality constraint declarations, etc. They can be used to

evaluate the validity of the well-formed element information items. It is believed that XSD will

soon replace DTD due to its flexibility [41]. Throughout this thesis, we use the term XML schema

to express both the DTD and XSD, while XML Schema represents the XSD.

Figure 2.1 illustrates a simple example of a XML document and its corresponding DTD. Figure

2.2 shows a respective XML Schema.

2.1.2 Ontology

In computer science, an ontology is ”an explicit specification of a conceptualization” [31], i.e.

an ontology is a model that describes the concepts of a problem domain, as well as the associa-

tion between those concepts. An ontology can be used as an interface to one or more data sources

which means that it can be used as a schema, or it can be used to reason about the problem domain.
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<?xml version=”1.0” encoding=”UTF-8”?> 

<Companies> <!DOCTYPE Companies [ 

<Company> <!ELEMENT Companies (Company+)>

<Symbol> Eagle.img </Title> <!ELEMENT Company (Symbol, Name,

<Name> EagleFarm </Name> Sector?, Industry, (Profile))> 

<Industry> Dairy </Industry> <!ELEMENT Profile (MarketCap,

<Profile> EmployeeNo, (Address), 

<MarketCap> 1000 </ MarketCap > Description)>

<EmployeeNo> 20 </ EmployeeNo > <!ELEMENT Address (State,City?)>

<Address> <!ELEMENT Symbol(#PCDATA)>

<State> QLD </State> <!ELEMENT Name (#PCDATA)>

</Address> <!ELEMENT Sector (#PCDATA)>

<Description> gdsfkls </Description> <!ELEMENT Industry (#PCDATA)>

</Profile> <!ELEMENT MarketCap (#PCDATA)>

</Company> <!ELEMENT EmployeeNo (#PCDATA)>

<!-- Some more instances --> <!ELEMENT State (#PCDATA)> 

…. <!ELEMENT City (#PCDATA)>

</Companies> ]>

Figure 2.1: Example of a XML document and its respective DTD

RDF (Resource Description Framework) [64] is a family of W3C specifications which is used

primarily for specifying the information about a problem domain. RDF has the triple form of

subject-predicate-object. Therefore, a set of RDF statements generates a labeled, directed graph.

RDF Schemais one of the W3C RDF specifications. RDF Schema allows the definition of RDF

vocabularies. Note that RDF can also be used as the data format for the exchange and integration

of data from different information systems.

OWL (Web Ontology Language) [37], like RDF Schema, is used to define ontologies. OWL

is also a Semantic Web language designed to represent more rich and complex knowledge about

things, groups of things, and relations between things than RDF. OWL is a logic-based language

so knowledge expressed in OWL can be reasoned with by computer programs either to verify the

consistency of that knowledge or to understand about the expressed knowledge. The OWL doc-
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1 <xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

2 <xsd:element name=”Companies”>

3 <xsd:complexType>

4 <xsd:sequence>

5 <xsd:element name=”Company” maxOccurs=”unbounded”>

6 <xsd:complexType>

7 <xsd:sequence>

8 <xsd:element name=”Symbol” type=”xsd:string”/>

9 <xsd:element name=”Name” type=”xsd:string”/>

10 <xsd:element name=”Sector” type=”xsd:string”/>

11 <xsd:element name=”Industry” type=”xsd:string”/>

12 <xsd:element name=”Profile”>

13 <xsd:complexType>

14 <xsd:sequence>

15 <xsd:element name=”MarketCap” type=”xsd:string”/>

16 <xsd:element name=”EmployeeNumber” type=”xsd:unsignedInt”/>

17 <xsd:element name=”Address”>

18 <xsd:complexType>

19 <xsd:sequence>

20 <xsd:element name=”State” type=”xsd:string”/>

21 <xsd:element name=”City” type=”xsd:string”/>

22 </xsd:sequence>

23 </xsd:complexType>

24 </xsd:element>

25 <xsd:element name=”Description” type=”xsd:string”/>

26 </xsd:sequence>

27 </xsd:complexType>

28 </xsd:element>

29 </xsd:sequence>

30 </xsd:complexType>

31 </xsd:element>

32 </xsd:sequence>

33 </xsd:complexType>

34 </element>

35 </xsd:schema>

Figure 2.2: Example of the respective XSD of document in Figure 2.1
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uments, known as ontologies, can be distributed in the World Wide Web and may refer to or be

referred from other OWL ontologies.

The OWL language has three increasingly expressive sublanguages as following:

OWL Lite [59], [1] supports those users primarily needing a classification hierarchy and simple

constraint features. For example, the cardinality constraints in OWL Lite only allows car-

dinality values of 0 or 1. Thus, OWL Lite provides a quick migration path for thesauri and

other taxonomies.

OWL DL [71], [60] provides those users who want the maximum expressiveness without losing

computational completeness and all computations, which will finish in finite time, of the rea-

soning systems. OWL DL includes all the OWL language constructs with restrictions such

as type separation (for instances, a class cannot also be an individual or property, a property

cannot also be an individual or class). OWL DL is so named due to its correspondence with

description logics, a field of research that has studied a particular decidable fragment of

first order logic. OWL DL was designed to support the existing Description Logic business

segment and has desirable computational properties for the reasoning systems.

OWL Full [44], [15] is meant for users who want maximum expressiveness and the syntactic

freedom of RDF with no computational guarantees. For example, in OWL Full a class can

be treated simultaneously as a collection of individuals. Another significant difference from

OWL DL is that an OWL full data type property may be inverse functional. OWL Full

allows an ontology to augment the meaning of the pre-defined (RDF or OWL) vocabulary.

It is unlikely that any reasoning software will be able to support every feature of OWL Full.

Each of these sublanguages is an extension of its simpler predecessor, both in what can be legally

expressed and in what can be validly concluded. The following set of relations hold.

• Every legal OWL Lite ontology is a legal OWL DL ontology.



CHAPTER 2. BACKGROUND AND RELATED WORK 16

1 <owl:Class rdf:ID=”RedWine”/>

2 <owl:Class rdf:ID=”Winery”/>

Figure 2.3: OWL root classes

• Every legal OWL DL ontology is a legal OWL Full ontology.

• Every valid OWL Lite conclusion is a valid OWL DL conclusion.

• Every valid OWL DL conclusion is a valid OWL Full conclusion.

2.1.3 OWL fundamental constructs

In this section, we will present the fundamental elements of OWL, which include the classes,

properties and individuals. Every OWL construct is uniquely defined by an rdf:ID. The OWL

classes describe sets of individuals that have common properties and belong to the same group.

OWL classes are the most basic concept that are the roots of various taxonomic trees. Every

individual in the OWL document is a member of the owl:Thing class. Thus, each created class is

implicitly a subclass of owl:Thing. Domain specific root classes are defined by simply declaring

a named class. OWL also defines the empty class, owl:Nothing.

Figure 2.3 shows two declarations of root classes inside an OWL ontology. OWL classes are

defined inside an element < owl : Class >. The declarations shown above describes only the

unique ID of the classes, without going deeper. A class can be defined as the union, intersec-

tion and complement of other classes by using the constructs owl:unionOf, owl:intersectionOf

and owl:complementOf respectively, or as an enumeration of its members by using the construct

owl:oneOf.

Moreover, the most specific component of the classes is rdfs:subClassOf. It connects a more
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1 <owl:Class rdf:about=”RedWine”>

2 <rdfs:subClassOf rdf:resource=”#Wine”/>

3 ...

4 </owl:Class>

Figure 2.4: OWL subclass definition

particular class with a more general one. The rdfs:subClassOf relation is derivative, if X is a

subclass of the class Y, then every instance of X is also an instance of Y. The rdfs:subClassOf

relation is also transitive, so that if X is a subclass of class Y and Y a subclass of class Z then X

is a subclass of Z. Moreover, OWL class has some more descriptions to extend the definition of a

resource. For example, see the declaration of rdf:about in Figure 2.4.

Figure 2.4 shows how the class RedWine is derived from the general class Wine. The construct

rdf:about is used because the class RedWine is already declared and at this moment we want to ex-

tend this class by relating it to a general class, through the subclass mechanism, in order to inherit

the properties and the characteristics of Wine. Furthermore, two OWL classes may be regarded as

equivalent or disjoint by using the mapping constructs owl:equivalentClass and owl:disjointWith,

respectively.

OWL individuals are the instances of classes, see example in Figure 2.5. Instances are de-

clared by using the rdf:type construct or the name of the class as the name of the element in which

the individual is defined. The individuals may have the properties and have to satisfy all the con-

straints that are predefined for the corresponding OWL class.

OWL properties provide general facts about the classes and specific facts about the class in-

dividuals. There are two categories of properties: object properties and data type properties.
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1 <RedWine rdf:ID=”Syrah”>

2

3 −OR−

4 <owl:Thing rdf:ID=”Syrah”/>

5 <owl”Thing rdf:about=”#Syrah”>

6 <rdf:type rdf:resource=”RedWine”/>

7 </owl:Thing>

Figure 2.5: OWL class individual

1 <owl:Class rdf:ID=”VintageYear”>

2 <owl:DatatypeProperty rdf:ID=”yearValue”>

3 <rdfs:domain rdf:resource=”#VintageYear”/>

4 <rdfs:range rdf:resource=”&xsd;positiveInteger”/>

5 </owl:DatatypeProperty>

Figure 2.6: OWL Datatype property definition

• Object properties are relations between the instances of two classes. An object property is

described using the owl:objectProperty construct, which connects individuals of the domain

class with individuals of the range class.

• Data type properties are relations between class instances and RDF literals or XML Schema

data types. A data type property is defined by using the owl:DatatypeProperty construct,

which relates individuals of the domain class to values of the range data type. The example

of data type property is illustrated in Figure 2.6.

Figure 2.6 describes the definition of a data type property which relates the vintage years of a

wine production to positive integers. An instance of the VintageYear class is shown in Figure 2.7.



CHAPTER 2. BACKGROUND AND RELATED WORK 19

1 <VintageYear rdf:ID=”Year1998”>

2 <yearValue rdf:datatype=”&xsd;positiveInteger”

3 >1998</yearValue>

4 </VintageYear>

Figure 2.7: OWL Class instance with datatype property

2.1.4 Term definitions

Since our thesis usually use the term structure and semantics, in this section we restate their defini-

tions again. According to the business dictionary [30], structure is the construction of identifiable

elements in which each element is functionally connected to others, and the interrelationships be-

tween elements are fixed or changing occasionally or slowly. Based on this definition, we can

infer that XML element’s structure is the relation of that element to its ancestor, sibling, and de-

scendant elements. Therefore, the structure similarity of XML element is the combination of the

similarity scores of those relation elements.

According to the Kamil [99], semantics is the scientific study of the meaning of words. This

meaning is analyzed in terms of their semantic features which are the way that a word is used in

a document. From this definition, we figure out that semantic similarity between XML elements

is the combination of the meaning similarity of element name and the similarities of their other

characteristic, such as data type, cardinality constraint.
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2.2 Related Work

As mention ed in the previous chapter, our goal are to enhance the data sharing between XML

applications by integration of XML Schemas (XSDs) and transformation of XML schema (XS-

D/DTD) into OWL ontology based on the similarity measures. To perform these two tasks, it is

require to measure the similarity of elements in XML schemas. The main difference of similarity

measure in two methods is: The first method is based on the similarity measure of elements in

two different documents, whereas the second method relies on the similarity measure of elements

within a single document. Therefore, in this section, we introduce two subsections: XML integra-

tion with element similarity between different documents and XML transformation with element

similarity within a document.

2.2.1 Similarity between documents and XML integration

Much work has addressed the similarity between XML documents. Similarity can be computed at

different layers of abstraction: at the instance layer (i.e., similarity between instance documents),

at the schema type layer (i.e., similarity between data types, also referred to as schema, models, or

structures, depending on the application domain), or between the two layers: instance and schema.

XML similarity can be categorized as either of three approaches: (1) structural similarity or (2)

semantic (content) similarity or (3) Hybrid approach: semantic (content) and structural similarity.

2.2.1.1 Structural similarity

Structural similarity focuses mainly on the relationship similarity of elements between schema

graphs. David Buttler [14] summarized three approaches to structural similarity: (1) tag similar-

ity, (2) tree edit distance (TED), and (3) Fourier transform similarity.

Tag similarity

This is the most simplest way to measure the structural similarity between XML documents. It
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measures how close element names from the two XML documents are. Documents which use

resemblance element names are likely to have similar schema. This measure evaluates the number

of intersected elements from the compared documents and it is divided by the union of elements

between two documents. However, this approach is not suitable for several reasons. One critical

problem is that some XML documents deriving from the same schema may have only a limited

number of element names, whereas some XML documents may contain a large number of a par-

ticular element name. In addition, tag similarity completely ignores the similar of the relationships

between elements, thus yielding low similarity quality.

Tree edit distance (TED)

According to Bille [9], tree edit distance between two labeled trees, T1 and T2, is the optimal

sequence edit operations that turn T1 into T2. The edit operations include of insertion, deletion,

and substitution. Previously, those edit operations are only applied on single nodes. One of the

typical approach is Chawathe’s method [17]. They performs the insertion and deletion operations

at the leaf-node level and process the substitution of node labels anywhere in the tree but, without

considering the move operation. The overall complexity of Chawathe’s algorithm is expressed as

O(N2) where N is the maximum number of nodes of the compared trees. This complexity is quite

expensive then leads to the longer run time. Therefore, Chawathe’s approach is not practical for

measuring the similarity of large XML data.

On the other hand, one of the typical approach, which uses the complex edit operations is

proposed by Shasha et al. [103]. They introduce a TED metric that permits the addition and

deletion of single leaf node anywhere in the tree, not just at the leaf level. However, the entire

subtrees cannot be inserted or deleted in one step. The complexity of this approach is expressed as

O(|T1||T2|depth(T1)depth(T2)). Here, |T1| and |T2| represent the number of nodes in label trees

T1 and T2, respectively.
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Nierman and Jagadish [69] focuss on the structural similarity of the subtrees. Their edit op-

erations are similar to Chawathes, but they add two more new operations: insert tree and delete

tree. To determine subtree similarities, they introduce containment in the relationship between

trees or subtrees. A labeled tree T1 is said to be contained in a labeled tree T2 if all nodes of T1

occur in T2 with the same parent/child edge relationship and node order. The overall complexity

of this algorithm is expressed as O(N2). This approach proved more accurate in detecting XML

structural similarities than those of either Chawathe or Shasha.

Also based on Chawathe’s method, Dalamagas et al. [23] introduce a framework for cluster-

ing XML documents on the basis of the structure similarities. They present the XML documents

as rooted ordered labeled trees, then study the usage of structural distance metrics in hierarchical

clustering algorithms to detect groups of structurally similar XML documents. Wei Li et al. [51]

extend Dalamagas’ method to cluster dynamic XML documents based on the frequently changing

in their structures.

There are other three approaches which are based on structural similarity but result in higher

accuracy than TED method. First, Lian et al. [53] represent XML document structures as directed

graphs called s-graphs, and define a distance metric that captures the number of edges common to

the graph representations of two XML documents:

Dist(G1, G2) =
1− |Edges(G1) ∩ Edges(G2)|
MaxEdges(G1), Edges(G2)

(2.1)

This equation 2.1 is more effective than others based on TED, in separating documents that are

structurally different. It can be applied not only to tree-structured documents but also to document

collections of arbitrary (graph) structure.

Second, Bertino et al. [8] proposed a matching algorithm for measuring the structural sim-
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ilarity between an XML document and a DTD. By comparing the document structure with that

required by the DTD, the matching algorithm is able to identify commonalities and differences.

Differences can be the occurrence of extra elements beyond those required by the DTD, or the

absence of required elements. The degree of similarity can be evaluated based on the elements

properties, such as level or weight. Elements at higher levels are considered more relevant than

those at lower levels. The authors state that their approach is of exponential complexity.

Third, Rafiei et al. [78] use the path expressions of XML documents to find the similarity

among these documents by measuring the similarity of paths between them. A path is defined as

a list of connected nodes starting at the root and terminating at a leaf node. Rafiei et al. [78] con-

clude that two XML documents are similar if they share a large fraction of the paths in their path

sets. The path set includes all root paths (from the root to leaf nodes) and all possible subpaths.

The time complexity in terms of the number of string comparisons is expressed as O(nl2), where

n is the number of root paths and l is the length of each path. The survey of Buttler [14] shows

that the path similarity method provides fairly accurate results compared to TED.

Fourier transform similarity

Essentially, Fourier transform similarity [78] removes all the information from a document

except for its start and end tags, leaving only its skeleton, which represents its structure. The

structure is then converted into a sequence of numbers, which is viewed as a time series, and a

Fourier transform is applied to transform the data into a set of frequencies. Finally, the distance

between two documents is computed by calculating the difference in the magnitudes of the two

signals. Buttler [14] proved that this algorithm is the least accurate of all approximation algo-

rithms, and performs poorly because Fourier transform does not differentiate sufficiently between

very similar documents.
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In general, the structural similarity approaches mainly concentrate on the distance similarity

of elements in the tree model whereas they do not consider the meaning (or the semantics) of

element names. Moreover, according to the definition of structure in the Section 2.1.4, the struc-

ture similarity is the combination of the similarity of ascendant, sibling, and descendant elements.

However, there is no approach presented in this structure similarity section obtains all those fea-

tures. Our purpose is to include all the relationships of the XML elements in computing their

similarity.

2.2.1.2 Semantic similarity

Semantic similarity plays an important role in information systems as it supports the identification

of objects that are conceptually close but not identical. Semantic assessment is particularly signif-

icant in different areas of knowledge management (such as data retrieval, information integration,

and data mining) because it facilitates the comparison of the information resources in different

types of domain knowledge. In this section, we analyze different approaches in discovering and

ranking semantic similarity between concepts in different documents.

The simplest approach to semantic similarity is a linguistic-based metric that computes sim-

ilarity between names or descriptions of two elements by using string matching [24]. There are

a variety of string matching algorithms, such as the widely used Jaccard [83] and Cosine similar-

ity [29] measures. Others have proposed methods based on a linguistic taxonomy [102] such as

WordNet [94], from which user can obtain more accurate and less ambiguous semantics for words

in the element names.

The string-based similarity metrics can be enhanced by using natural language preprocessing
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techniques, such as tokenization, lemmatization, and elimination [39]. To further enhance the

string-based metrics, common knowledge repository, such as WordNet [94] and domain-specific

corpora, can be used to determine the meaning of the words. Based on the knowledge repository,

several methods have been proposed [76], [102].

In another approach, Jeong et al. [40] propose a semantic similarity measuring method which

considers data instances as well as schema-based information. The instance-level data give im-

portant insight into the contents and meaning of schema elements. The main advantage of this

approach is that it can obtain the similarities among data, relying on their instances. To perform

this method, Jeong et al. use neural network-based partial least squares to measure the semantic

similarity of XML elements based on their instances. However, the main disadvantage of using

instance-based approach is that instance data is generally available in very vast quantity. Hence,

the computational cost is very expensive, which affects the similarity scores.

Moreover, according to the definition of semantics in Section 2.1.4, the semantic similarity

of XML elements is the combination of meaning similarity of element names and other element

features, such as data type and cardinality constraint. However, none of above presented semantic

similarity measuring methods compute other features of XML elements.

In general, presented methods above only focus on measuring one similarity factor, either

structural or semantic similarity, therefore the combination of both method, called Hybrid Simi-

larity, is necessary. Semantic similarity plays an important role in finding the similarity in mean-

ing or semantic content. Structural similarity measures have performed strongly with resources

containing large amounts of text, but they cannot appropriately cope with structural and semantic

heterogeneity and ambiguity if the semantics of the terms are not explicitly available. The hybrid

similarity measure combines both semantic and structural similarity measures to detect the simi-
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larity among documents. This approach can be incorporated using average, maximum, additive, or

weighted sum functions. The average, maximum and additive functions are simple. The weighted

sum seems to work best, but it requires that the domain experts obtain the weight values.

2.2.1.3 Hybrid: Similarity of XML structure and semantics

In the context of XML classification and clustering, structural similarity seems to be sufficient to

distinguish or classify XML documents. However, in the context of XML data integration, not

only the structure of XML documents must be considered, but also their content in order to deter-

mine whether XML documents have similar content to integrate.

A typical hybrid approach is from Kade and Heuser [43]. They propose an approach called

XSIM that uses information from both structure and content of XML documents. Three pieces

of information permit calculation of the similarity between two nodes of XML trees: the content

of the element and the names and path of the nodes. The comparison has two main steps: (1)

node matching and (2) document matching. First, the document tree is traversed to produce a set

of tuples containing the path and content. This step results a document list for subtrees. Second,

the tuples of the document lists in the first step are compared and based on the similarities of the

textual content, the node label and the node path. Finally, the similarity between two elements

of two XML documents is computed as the average of textual content, element name, and path

similarity values.

Another approach that follows a probabilistic model uses a Bayesian network [28]. This ap-

proach computes the similar probabilities of ascendants and descendants in a given pair of XML

subtrees. To compare two XML elements, a maximum overlay between the two trees is computed.

Two nonleaf nodes can be matched if they are ancestors of two matched leaves. Once a maximum
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overlay has been determined, its cost is computed by a string distance function.

Leito, Calado, and Weis [50] also use Bayesian network to compute the similarity of XML el-

ements. They prove that the model provides great flexibility in its configuration, allowing the use

of various similarity measures for the field value and various conditional probabilities to combine

the similarity probabilities of the XML elements. However, the primary disadvantage of Bayesian

techniques is their computational complexity.

Other effective approaches are proposed by Nayak et al. [66], [67], and Algergawy et al. [2].

We name those approaches are weight-based methods. They employe supplemental functions to

calculate the similarity of a particular feature of the given schema, such as the similarity of leaf

nodes or root nodes, and similarity of data type and constraints. All the partial results are then

combined into the final similarity value using a weighted sum function. Brauner et al. [13] de-

scribe a matching algorithm based on measuring the similarity between the property domains of

distinct Web databases. Madhavan et al. [55] propose the use of a set of schemas and mappings

to help the schema matching algorithms. The authors use predictor algorithms that measure the

similarity between schema elements, adopted in the PayGo [38] architecture [56].

Our similarity measuring method is more related to weight-based methods. Nevertheless, most

of them focused only on measuring the name similarity [101], [24], [102], or on the structural sim-

ilarity of the elements between two documents [89]. Some studies concentrated on both semantic

and structure, but some factors in their metrics should be assigned manually using human’s judge-

ment [47], [2]. Moreover, the XML data are very large and contain varied definitions for data

types and cardinality constraints, they need formal metrics to obtain the accurate similarity values.



CHAPTER 2. BACKGROUND AND RELATED WORK 28

2.2.2 Duplicate similarity and XML schema transformation

In this section, we first describe the related work to XML transformation together with the du-

plicate problem during the transformation process. To solve the duplicate problem we should

measure the similarity of duplicate in a schema. Therefore, we describe the related work to mea-

sure the similarity of concepts within a document in the next section.

XML schema transformation

Since great amount of data is stored in XML and one idea of the Semantic Web is to enable trans-

parent interoperability between these data sources, there are several studies of XML data to OWL

migration. These approaches differ in purpose, architecture, usability, algorithm efficiency, and so

on. In this section, we examine major contributions to this field and their main attributes.

There are several approaches which focus on the schema mapping and transformation have

been proposed. One of the typical approaches is from Ferdinand et al. [26]. They describe the

transformation of XML schema into RDF and mapping of XML schema to OWL ontology. How-

ever, the mapping rules are defined by users so that OWL results could not be used directly by

the Semantic Web applications since the confliction of OWL syntaxes. On the other hand, some

approaches employ XSLT (eXtensible Stylesheet Language Transformations) to transform XML

into OWL, such as Hannes et al. [10] and Tsinaraki et al. [92]. Although those approaches have

the same purpose in XML data transformation, their solution are different. Particularly, to solve

the duplicate problem of XML data, Hannes et al. add prefixes such as has and dtp before class

and property elements, respectively, whereas Chrisa et al. concatenate the ancestor names with the

current element name. Similarly, Bernd et al. [3] attached the key paths to each nested element,

whereas Toni et al. [82] and Cruz et al. [22] used XPath [97], [57], [7] expressions to express the

XSD elements. These techniques prevented XML duplicates from occurring in the OWL ontology,

but they altered most of the XML element names. Our previous approach [91] only changed the
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name of duplicate elements by adding their corresponding ancestor name, but we did not consider

the duplicate similarity. In another approach, Amann et al. [3] attach the key paths to each nested

element. This method gives more semantics for the source document, but it requires the user’s

intervention. Similarly, two approaches [82], [22] use XPath expressions to translate the XML

Schema elements.

In general, approaches related to transforming XML into OWL ontology assume that all XML

elements are different from each others and the researchers can assign each element a differenti-

ating ID, whereas approaches related to measuring the similarity of concepts within a single doc-

ument assume that if two elements have the same name, they are similar to each other. However,

in real-world schemas, some duplicate elements are similar but others are non-similar. There-

fore, to ensure the correct semantics of ontology, we propose method to measure the similarity of

duplicates in XML schemas before doing the transformation them into OWL ontologies. Before

describing our duplicate similarity method, we introduce some related approaches which measure

the similarity of element within a document.

Similarity within a document

Discovering similarity between nodes in a taxonomy has a long story in literature. There are

several researchers using direct relations between nodes, based on either structural similarity or

semantic similarity of node names. Their approaches can be classified into three main groups:

1. Edge-based that considers the number of edges between nodes but does not rate different

characteristics for each edges

2. Node-based that is more accurate but needs more computation for the content of each con-

cept

3. Hybrid: the combination of both edge-based and node-based methods.
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There are several approaches which are related to the element similarity measurement in a

single document. One of the most famous method is called Edge-Counting metrics [80], [87].

This edge-based approach is a simple and intuitive way of evaluating the similarity of concepts in

a taxonomy. This approach estimates the distance between nodes corresponding to the concepts

being compared. On the other hand, Rada et al. [77] and Leacok et al. [46] show that the simplest

means of determining the distance between two concept nodes, A and B, is identifying the shortest

path that links A and B, or the minimum number of edges that separate A and B.

In another approach, Jiang and Conrath [42] state that the distance between any two adjacent

nodes is not necessarily equal; therefore, this approach is not sensitive to the problem of varying

link distances. Edge weight can be considered in order to solve this problem. It is related to the

number of children, the depth of a node in the hierarchy, the type of link (such as the is-a, part-of,

or substance-of links), the network density, and the strength of an edge link.

Moreover, there is another method which measures the depth of two concepts in a taxonomy

and the depth of the least common subsume (LCS) [19], [5]. It then combines these properties

into a similarity score:

simWu(c1, c2) =
2× depth(LCS(c1, c2))
depth(c1) + depth(c2)

(2.2)

where LCS is the lowest common subsume and is the depth of node c in the hierarchy.

Some other research groups [54], [81] are based on the information-content (IC) method [45]

to measure the semantic similarity between terms within a taxonomy. These measures were de-

signed mainly for WordNet [94]. For instance, Resniks measure [81] calculates the semantic

similarity between two terms [t1, t2] in a given ontology (e.g., WordNet) as the information con-

tent (IC) of the least common ancestor (LCA) of t1 and t2. The IC of a term t can be quantified in

terms of the probability (P(t)) of its occurrence. The probability assigned to a term is defined as
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its relative frequency of occurrence:

simResnik(c) = IC(c) = −logP (c) = −logP (LCS(c1, c2)) (2.3)

where P(c) is the probability that a randomly selected word in a corpus is an instance of concept

c. This can also be written as:

P (c) =

∑
w∈words(c) count(W )

N
(2.4)

where words(c) is the set of words subsumed by concept c, and N is the total number of words in

the corpus.

Another widely known method to assess the similarity between two concepts is called String

matching [16]. It is important in the domain of text processing. It involves identifying a place

where one or several strings are found within a text. String matching algorithms generally scan

the text with the help of a window. They first align the left ends of the window and the text, then

compare the characters of the window (called patterns). After a whole match of the pattern, or

after a mismatch, they shift the window to the right. The same procedure is repeated until the right

end of the window goes beyond the right end of the text. This mechanism is called the sliding

window mechanism [35].

In general, approaches which measured the similarity of concepts within a document almost

focus on the string name of elements and the distance comparison of those elements with their

ascendant and descendant elements. Moreover, most approaches assume that duplicate concepts

have highest similarity score (1) such as Leacok and Chodorow [46], Li et al. [52], and Resnik

[81]. In contrast, in our approach, duplicate concepts may have different similarity scores depend-

ing on their inside declarations (name, data type, and cardinality constraint) and outside relation-

ships (ancestor, sibling, and children).



Chapter 3

ESim: Element Similarity measure for

XML integration

In this chapter, we introduce the general framework of the similarity measure method, and then

present the motivation example and the details of ESim method.

3.1 Similarity Measure Framework

In this section, we describe a general framework for measuring the element similarity. Note that

this framework is used for both measuring scenarios: element similarity among different docu-

ments and element similarity (specifically, duplicate similarity) within a document. This frame-

work is built based on the semantics and structure definitions in Section 2.1.4. Depending on

each scenario, the measuring metric of each factor is different. The general similarity measuring

framework is present in Figure 3.1.

The general framework of similarity measuring method includes the the input, the similarity

computation, and the output. The input is a schema file (XML Schema Definition (XSD) or Doc-

32
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Figure 3.1: General framework of similarity measure method

ument Type Definition (DTD)), which usually comes with its XML document. Sometimes, an

XML document appears alone without any schema. In this case, its schema can be extracted using

HIT software [6]. Since XSD is the extendable format of DTD, in this thesis our descriptions

concentrate on XSD, and we introduce how to apply our approach to a DTD document. The main

component of this framework is the similarity computation, which is composed of the semantic

and structural similarity measures. The output are the similarity scores of element pairs among

XSD documents or or the duplicates within a XSD document.

The semantic similarity in Figure 3.1 comprises the similarity of the element name (Name

Sim), the data type compatibility (Data type Sim), and the cardinality constraint similarity (Con-

straint Sim). Similarly, the structural similarity encompasses three individual element measures:

the ancestor similarity (Ancestor Sim), the sibling similarity (Sibling Sim), and the children sim-

ilarity (Children Sim). The final similarity measure is the combination of all the partial results

using a weighted sum function. Details of each measuring metric are presented in next section,

and next chapter.

To illustrate for our method, we first restrict ourselves to hierarchical schemas. Thus, we model
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Figure 3.2: Tree representation for Schema Patient A

the interconnected elements of an XML Schema as a schema tree. We use two XML Schema trees

illustrated in Figures 3.2 and 3.3 below for explaining our algorithm.

Figure 3.2 and Figure 3.3 show two XML Schema trees for different XML Schemas Patient A

and Patient B for representing patients, respectively. We would like to match these two XML

Schemas. Both XML Schemas have the same name, patient. The XML Schemas are encoded as

graphs, where the nodes represent schema elements. Although even a casual detector can see that

both schemas are quite similar, there is still much variation in naming and structuring that make

the matching algorithm being challenged.

In this chapter, we compute the similarity coefficients between elements of the two schemas

and then deducting an integration from those coefficients. The coefficients are calculated in two

stages. The first stage, semantic similarity measure, compares individual elements based their

names (linguistics), data type, and cardinality constraint similarities. The second stage computes

the structural similarity. To handle the abbreviation of names (linguistic similarity), we use Word-

Net [94] to determine whether these names are synonym or not. The similarity between elements

is declared as following Definition 3.1:
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Figure 3.3: Tree representation for Schema Patient B

Definition 3.1: The element similarity (ESim) between e1 and e2 is defined as the weighted

sum of the semantic similarity (SeSim) and structural similarity (StSim):

ESim(e1, e2) = α ∗ SeSim(e1, e2) + (1− α) ∗ StSim(e1, e2) (3.1)

where the coefficient α is a weight parameter, a constant between 0 and 1. The weight factor α

is used to scale the ESim results to range between 0 and 1. Higher ESim values represent greater

similarity between elements. According to experiments, ESim has close value to users perspective

at α = 0.55. Details of each similarity measurement are presented in the next sections.

3.2 Semantic Similarity Measurement (SeSim)

As introduced in the previous section, our semantic similarity composes of similarities of ele-

ment name, data type, and cardinality constraint. The reason is that according to the definition

of semantics in Section 2.1.4, semantic similarity is the similarity of element meaning and other

characteristics of the elements. Therefore, the semantic similarity of elements in one type of doc-
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ument (such as XML Schema) is different from another (such as relational database, web page,

etc.). Since our thesis focuses on similarity of elements in XML Schema, we explore the charac-

teristics of XML Schema.

The main characteristics of XML Schema include the vocabularies, the content model, the

data type, and the cardinality constraint. The vocabulary, which contains element and attribute

names, allows us to determine the name similarity between elements in the XML Schema. The

content model, which presents the relationship and structure of the elements, is used to compute

the context similarity and cardinality constraint similarity of the duplicate elements. The cardi-

nality constraint defines the number of possible occurrences for an element by the maxOccurs

and minOccurs attributes. The data type, which defines the data types for elements and attributes,

helps us to measure the similarity between their data types. Usually, XML Schema uses the stan-

dard namespace, (xs or xsd), and the URI associated with this namespace to begin the document.

Moreover, simpleType or complexType element helps us to differentiate the data type similarity

between two attribute types of the elements. For instance, the data type similarity between simple

and complex elements is zero. Figure 3.4 presents XML Schema expressions for Patient A in

Figure 3.2.

Based on the above analysis of XML Schema characteristics, we propose the metric to mea-

sure the semantic similarity of XML element by the following Definition 3.2.

Definition 3.2: The semantic similarity (SeSim) between two elements e1 and e2 is defined as

the weighted sum of the name similarity (NSim), data type similarity (DSim), and the constraint

similarity (CSim) as follows:

SeSim(e1, e2) = β ∗NSim(e1, e2) + χ ∗DSim(e1, e2) + (1− β − χ) ∗CSim(e1, e2) (3.2)

where β and χ are the weight factors, 0 ≤ β, χ ≤ 1. According to our experiment, at the values of
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1 <?xml version=”1.0” encoding=”UTF−8”?>

2 <xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

3 <xs:element name=”patient”>

4 <xs:complexType> <xs:sequence>

5 <xs:element ref=”person.name”/>

6 <xs:element ref=”id” maxOccurs=”unbounded”/>

7 <xs:element ref=”address”/>

8 </xs:sequence> </xs:complexType>

9 </xs:element>

10 <xs:element name=”person.name”>

11 <xs:complexType> <xs:choice>

12 <xs:element ref=”firstname”/>

13 <xs:element ref=”lastname”/>

14 </xs:choice> </xs:complexType>

15 </xs:element>

16 <xs:element name=”id”>

17 <xs:complexType mix=”true”>

18 <xs:attribute name=”type” type=”xs:NMTOKEN” use=”optional”/>

19 <xs:attribute name=”authority” type=”xs:NMTOKEN” use=”optional”/>

20 </xs:complexType> </xs:element>

21 ...

22 </xs:schema>

Figure 3.4: Expressions for Schema Patient A
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β = 0.4, χ =0.3, similarity score proposed by our method returns close results to users perspective.

Each similarity measure in Equation 3.2 is presented in the following subsections.

3.2.1 Name similarity (NSim)

The most important factor of the element measurement is the name similarity. The name similarity

computes the linguistic and semantic similarity between two elements within a schema. Element

names in the XML Schema are often declared as a word or a set of words. Moreover, since

XML tags are created freely, similar semantic notions can be represented by different words (e.g.,

medicine and drug), or different elements can have linguistic similarity (e.g., cure and cured).

The name similarity between elements is computed by three main steps. The first step normalizes

each element name to remove genitives, punctuation, capitalization, stop words (such as, of, and,

with, for, to, in, by, on, and the), and inflection (plurals and verb conjugations). After normalizing

the element name, the first step separates the composed element into single words. For example,

HeartOfPatient becomes heart and patient.

The second step finds the synonyms for each compared element name by looking them up in

the WordNet thesaurus [94] and then computes the name similarity between elements. We reuse

the distance based method [101] to compute the semantic similarity of elements e1 and e2 by

referring them in WordNet. The name similarity is determined by following Equation 3.3:

NSim(e1, e2) =
2 ∗ depth(LCS)

depth(e1) + depth(e2)
(3.3)

where depth(LCS) is the number of nodes from the common super-concept of e1 and e2 to the root

node; depth(e1) and depth(e2) are the numbers of nodes from e1 and e2 to the root node.

For instance, given a fragment of WordNet in Figure 3.5, the name similarity between elements

lecturer and professor is: NSim(lecturer, professor) = 2∗4
5+6 = 0.73

In the case that one of the two elements is processed by the tokenization step, then the name
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person

worker adult

assistant professional

educator

professor

academicianlecturer

Figure 3.5: A fragment of WordNet

similarity of these two elements is presented as in matrices 3.4 and 3.5:

NSim(E1, E2) =


NSim(e11 , e21) · · · NSim(e11 , e2n)

...
. . .

...

NSim(e1m , e21) · · · NSim(e1m , e2n)

 ,m ≥ n (3.4)

NSim(E2, E1) =


NSim(e21 , e11) · · · NSim(e21 , e1m)

...
. . .

...

NSim(e2n , e11) · · · NSim(e2n , e1m)

 ,m < n (3.5)

where m and n are the number of words in the token sets of the elements E1 and E2, respectively;

NSim(e1, e2) is the name similarity between elements e1 and e2, determined by equation 3.3.

The name similarities of two elements E1 and E2 in the matrices 3.4 and 3.5 are determined by

either following equation 3.6 or 3.7, respectively:

NSim(E1, E2) =

m∑
i=1

maxnj=1(NSim(e1i , e2j ))

m
,m ≥ n (3.6)
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NSim(E2, E1) =

n∑
i=1

maxmj=1(NSim(e2i , e1j ))

n
m < n (3.7)

where max is the maximum similarity value of each row in the matrices.

In some cases, the compared element names are not in WordNet, we define metric (Equation

3.8) to measure the name similarity in that case:

NSim(e1, e2) = LingSim(e1, e2) =
ne1∩e2

max(ne1 , ne2)
(3.8)

where ne1∩e2 is the number of matching characters between elements e1 and e2; max is the maxi-

mum value; ne1 and ne2 are the lengths of the elements e1 and e2, respectively.

3.2.2 Data type similarity

Although the main factor of semantic similarity calculation is the element name, the consideration

for other components also plays a very important role. For instance, the name similarity value

between two elements id in Figure 3.2 and Figure 3.3 is 1. However, this is a false matched value,

since the first id element is a complex element whereas the second id element is a simple element.

This means they are different in other attributes. Therefore, it is necessary to use other factors to

calculate their semantic relatedness to eliminate some false matches.

In the XML Schema document, every element is always either simple or complex type. If

two elements have the same name, and their data type properties are identical (both are a complex

type or simple type), their semantic similarity may be higher than other cases, such as simple

and complex. Since the complex element contains children, in order to compute the similarity

between two complex elements, we have to compare the similarity of their children. This problem

is mentioned in the structure similarity measurement section. For two leaf elements, we concern

their data type declaration. Since the data type often comes with an attribute element, the data



CHAPTER 3. ESIM: ELEMENT SIMILARITY MEASURE FOR XML INTEGRATION 41

type measurement is only applied for the case that both elements are attributes. In the case that

two elements are complex types or the first element is a complex type, the second is the simple

type, the data type similarity is 0. For example, the element id in Figure 3.2 has a complex type,

and element id in Figure 3.3 has a string data type. Therefore, the data type similarity between

two elements (complex, string) is 0.

Based on the summary about XML Schema data types [75], [41], we divide them into 12 data

types which are presented in Table 3.1. Some of them represent a set of communal data types. The

details of the 12 data types are as follows:

1. URI includes anyURI and base64Binary.

2. Lang consists of language and list.

3. Text includes text characters, such as normalizedString, string, and token.

4. Ubyte is all positive whole numbers, such as unsignedByte, nonNegativeInteger, positiveIn-

teger, unsignedInt, unsignedLong, and unsignedShort.

5. Decimal contains all decimal number data types, such as decimal, double, and float.

6. Int contains both positive and negative whole number: byte, int, integer, long, nonNega-

tiveInteger, nonPositiveInteger, positiveInteger, short, unsignedByte, unsignedInt, unsigned-

Long, and unsignedShort.

7. DTime is composed of a set of data types, such as date, dateTime, duration, gDay, gMonth,

gMonthDay, gYear, gYearMonth, and time.

8. Name comprises Name, NCName, NOTATION, and QName.

9. Entity consists of ENTITY and ENTITIES.

10. ID comprises ID, IDREF, and IDREFS.
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11. Token includes NMTOKEN and NMTOKENS.

12. Type contains anyType and anySimpleType.

We find that other approaches related to measuring the similarity of data type, such as [2], [66],

often assign the similarity value for each data type pair, and they only mention some common data

types of the XSD. In this work, we introduce a novel technique to calculate these values. Based

on the constraining facets of XML Schema [75], we define the metric for measuring the similarity

among the data types. The Data type similarity of two element e1 and e2 is the fraction of common

number constraining facets per the maximum (max) number of constraining facets of each element

:

DSim1(e1, e2) =

∑
i
|{cfi|e1[cfi] = e2[cfi], 1 ≤ i ≤ ncf}|

max(#e1.cf,#e2.cf)
(3.9)

where DSim1 is the data type similarity based on the resemblance of constraining facets; cf is

one of the constraining facets described in [75], max(#e1.cf,#e2.cf) is the maximum number

of constraining facets of the data type of the element e1 and e2.

The results of equation 3.9 are quite acceptable except for some illogical values. For instance,

the resemblance of date and float is 1.0, and the similarity between decimal and integer is also

1.0, although the number of constraining facets between date and decimal is different. Instead,

we expect that those similarities values are less than 1.0, and the similarity between decimal and

integer is higher than that of date and float.

Thus, we insert another metric to measure the data type similarity based on the number of

constraining facets of each data type over the total number of constraining facets. This technique

is names DSim2, and it is determined by the following equation:

DSim2(e1, e2) =
max(ne1.cf , ne2.cf )

ncf
(3.10)
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where max(ne1.cf , ne2.cf ) is the maximum number of constraining facets of the data type of the

element e1 and e2; ncf is the number of constraining facets, in this case ncf = 12. The constrain-

ing facets include length, minLength, maxLength, pattern, enumeration, whiteSpace, maxInclu-

sive, minInclusive, maxExclusive, minExclusive, totalDigits, and fractionDigits.

The combination of DSim1 and DSim2 produces the data type similarity, DtSim, of two ele-

ments e1 and e2. DtSim is measured by the following definition:

DSim(e1, e2) =
δ1 ∗DSim1(e1, e2) + δ2 ∗DSim2(e1, e2)

δ1 + δ2
(3.11)

where δ1 and δ2 are weight parameters between 0 and 1. In this paper, we assign 0.5 to δ1 and

δ2, because we assume that DSim1 and DSim2 have similar roles. With equation 3.11, we can

moderate the results of data type similarity. The final data type similarity, DSim, among some

common XSD data types are presented in Table 3.1.

Table 3.1 presents the data type similarity results of six typical attribute types in the XML

Schema. Values in this table are computed based on the equation 3.11.

In Table 3.1, if two elements have the same data type, their compatible value is 1.00. Otherwise,

this value is assigned by equation 3.11.

3.2.3 Constraint similarity

Another factor that affects the semantic similarity between two elements is the cardinality (occur-

rence) constraint. It is declared as minOccurs and maxOccurs in the XML Schema document. The

minOccurs and maxOccurs respectively define the minimum and maximum number of occurrence

times of an element in XML instances.

We use CSim(d1, d2) to specify the constraint similarity between two elements d1 and d2. Dif-

ferent to the constraint table proposed in [2], in which values are decided by human judgment,
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Table 3.1: Data type compatibility table

URI lang text Ubyte dec int Dtime Name Entity ID Token Type

URI 1.00 0.43 0.50 0.28 0.38 0.31 0.38 0.43 0.36 0.36 0.38 0.38

lang 0.43 1.00 0.43 0.28 0.31 0.27 0.31 0.39 0.33 0.33 0.35 0.32

text 0.50 0.43 1.00 0.33 0.38 0.31 0.38 0.43 0.36 0.36 0.39 0.41

Ubyte 0.28 0.28 0.33 1.00 0.33 0.53 0.49 0.28 0.22 0.22 0.24 0.23

dec 0.38 0.31 0.38 0.33 1.00 0.56 0.54 0.31 0.24 0.24 0.27 0.28

int 0.31 0.27 0.31 0.53 0.56 1.00 0.47 0.27 0.21 0.21 0.23 0.21

Dtime 0.38 0.31 0.38 0.49 0.54 0.47 1.00 0.31 0.24 0.24 0.27 0.28

Name 0.43 0.39 0.43 0.28 0.31 0.27 0.31 1.00 0.33 0.33 0.35 0.33

Entity 0.36 0.33 0.36 0.22 0.24 0.21 0.24 0.33 1.00 0.32 0.33 0.31

ID 0.36 0.33 0.36 0.22 0.24 0.21 0.24 0.33 0.32 1.00 0.33 0.31

Token 0.38 0.35 0.39 0.24 0.27 0.23 0.27 0.35 0.33 0.33 1.00 0.33

Type 0.38 0.32 0.41 0.23 0.28 0.21 0.28 0.33 0.31 0.31 0.33 1.00
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Table 3.2: Cardinality constraint similarity table

i=0, a =∞ i=1, a =∞ i=0, a=1 i=1, a=1

i=0, a =∞ 1.00 0.50 0.67 0.17

i=1, a =∞ 0.50 1.00 0.17 0.67

i=0, a=1 0.67 0.17 1.00 0.50

i=1, a=1 0.17 0.67 0.50 1.00

we define a novel metric to compute the constraint similarity values. For the definitely values of

minOccurs and maxOccurs, we use the following equation for computing their cardinality con-

straint similarity:

CSim(e1(min,max), e2(min,max)) =
(1− |e1.min−e2.min|e1.min+e2.min

) + (1− |e1.max−e2.max|e1.max+e2.max
)

2
(3.12)

In equation 3.12, min and max are short forms of minOccurs and maxOccurs, respectively. Usu-

ally, minOccurs is assigned by 0 or 1, and maxOccurs is 1 or unbound. The value of maxOccurs

is often undetermined (unbound). To measure the similarity for this value, we use the following

function:

d1[maxOccurs =∞] = 4294967296 ∗MAX(d2[maxOccurs]) (3.13)

where 4294967296 is the maximum value declared for maxOccurs property, suggested by Mi-

crosoft [63]. We decide to use this function, since we have surveyed in our dataset (XSD and

XML instances), the appearance time of an attribute with maxOccurs=unbound is about five times

greater than maximum values of definitely maxOccurs. In the case that all maxOccurs in the XSD

document are undetermined, we assign their values are 5. Taking this value, and then apply for

the equation 3.12, we harvest the similarity of the attribute’s cardinality constraint. The results are

presented in Table 3.2.
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Table 3.2 presents the cardinality constraint similarity with the value of unbound is 5. The

characters i, a, and ∞ are the short forms of the minOccurs, maxOccurs, and unbound, respec-

tively.

Sometimes, the values of the minOccurs and maxOccurs are retrieved from other indicators.

For instance, Order and Group indicators (any, all, choice, sequence, group name, and group

reference) have the default value for maxOccurs and minOccurs to be 1.

3.3 Structural Similarity Measurement (StSim)

The second stage is called structure similarity measurement. This stage measures the schema ele-

ments based on the similarity of their context (position) and their nearest elements. For instance,

housenumber in Figure 3.3 is mapped to postcode in Figure 3.2, since they have the same parent

address and the other three children (street, city, country) are also matched to each others.

The structure matching depends in part on the semantic similarity that is computed in the first

stage. For instance, given and family in Figure 3.3 should match to firstname and lastname in

Figure 3.2, rather than to the type and authority under element id, since element id in Figure 3.2

already matches to the same element in Figure 3.3. The result is a structure similarity coefficient,

StSim, for each pair of elements.

The context of an element is composed of ancestor, sibling, immediate children and leaves.

Two elements have a structural similarity if they are similar in contexts. In our algorithm, the

structure similarity is computed based on the following principles:

• Elements that are leaves of the two trees are similar if their tags are similar, and the elements

in their ancestors and siblings are similar.
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• Two non-leaf elements are similar if their tags are similar, and the sub-tree rooted at the two

elements are similar; and

• Two non-leaf elements are structurally similar if their leaf sets are highly similar, even if

their immediate children are not.

According to the definition of structure in Section 2.1.4, we infer that in order to compute the struc-

tural similarity, we should have to measure the similarity of elements having functional connected

with computed elements. Therefore, the structural similarity is drawn based on the following Def-

inition 3.3:

Definition 3.3: The structural similarity (StSim) between two elements e1 and e2 is defined

as weighted sum of ancestor similarity (AcSim), sibling similarity (SbSim), and children similarity

(ChSim):

StSim(e1, e2) =
ε1 ∗AcSim(e1, e2) + ε2 ∗ SbSim(e1, e2) + ε3 ∗ ChSim(e1, e2)

ε1 + ε2 + ε3
(3.14)

where ε1, ε2, and ε3 are weighted parameters between 0 and 1. Details of each similarity factor in

Equation 3.14 are presented in next subsections.

3.3.1 Ancestor similarity

Ancestor elements are the collection of elements from the current element to the root node. Ex-

ception for root element, each element in XML Schema has at least one ancestor. Therefore, the

ancestor comparison is turned to the similarity computation of each ancestor of the first element

with another ancestor of the second element. Assume that E1 and E2 are the collections of an-

cestor elements of e1 and e2, respectively, then the ancestor similarity of these two elements is
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presented as in matrices 3.15 and 3.16:

AcSim(E1, E2) =


SeSim(e11 , e21) · · · SeSim(e11 , e2n)

...
. . .

...

SeSim(e1m , e21) · · · SeSim(e1m , e2n)

 ,m ≥ n (3.15)

AcSim(E2, E1) =


SeSim(e21 , e11) · · · SeSim(e21 , e1m)

...
. . .

...

SeSim(e2n , e11) · · · SeSim(e2n , e1m)

 ,m < n (3.16)

where m and n are the number of ancestor elements in the setsE1 andE2, respectively; SeSim(e1, e2)

is the semantic similarity between elements e1 and e2, determined by equation 3.2. The ancestor

similarities of two set elements E1 and E2 in the matrices 3.15 and 3.16 are determined by either

following equation 3.17 or 3.18, respectively:

AcSim(E1, E2) =

m∑
i=1

maxnj=1(SeSim(e1i , e2j ))

m
,m ≥ n (3.17)

AcSim(E2, E1) =

n∑
i=1

maxmj=1(SeSim(e2i , e1j ))

n
,m < n (3.18)

where max is the maximum similarity value of each row in the matrices. If two elements e1 and

e2 do not have any ancestor element (it means they are root elements) , then AcSim(e1, e2)= 1.

3.3.2 Sibling similarity

Similar to the computation of ancestor similarity, to compute the sibling similarity of between

elements, we pick up a sibling element from the first element to compare with a sibling of the

second element. For instance, the sibling of an element e1 is Se1 = [e11, e12, , e1k], and the sibling

of an element e2 is Se2 = [e21, e22, , e2t], where k and t are the numbers of siblings of the element
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e1 and e2, respectively. If k ≥ t, we take each element in Se1 to compare with each element in

Se2. The highest value of the measurement is chosen. If k ¡ t, we compare each element in Se2

with each element in Se1. The sibling similarity of two elements is the average of the similarities

of all sibling pairs. The sibling similarity is computed based on the following Equation 3.19 or

3.20:

SbSim(e1, e2) =

k∑
i=1

maxtj=1(SeSim(e1i , e2j ))

k
, k ≥ t (3.19)

SbSim(e2, e1) =

t∑
i=1

maxkj=1(SeSim(e2i , e1j ))

t
, k < t (3.20)

where SeSim is the semantic similarity from Equation 3.2. In the case that both elements e1 and

e2 do not have any sibling, the SbSim(e2, e1) = 1.

3.3.3 Children similarity

We say that a child element of the first compared element e1 has a link to another child of the

second element e2 if their name is similarity, NSim, exceeds the maximum threshold, thresh max.

We choose the low value of thresh max in order to increase the value of children similarity mea-

surement. The children similarity is determined by following Equation 3.21.

SbSim(e1, e2) =
nlinks(e1, e2) + nlinks(e2, e1)

leaves(e1) + leaves(e2)
(3.21)

where leaves(e1) is the total number of children (leaves) of the element e1; nlinks(e1, e2) is the

total number of links from the children of element e1 to children of the element e2.

For example, let’s compute the children similarity of two elements, address and address’ in

Figure 3.2 and Figure 3.3, respectively:

leaves(address)+ leaves(address’)=4+4=8

nlink(address, address’)=3
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nlink(address’, address)=3

=⇒ SbSim(address, address’)=6
8=0.75

If one of the compared elements is a leaf node (contains no child nodes), their children similarity

is 0, otherwise, if both compared elements are leaf nodes, the SbSim(e1, e2) = 1.

3.4 Similarity between Two Schema Trees

The structure similarity measurement of two schema trees is presented in Figure 3.6. In Figure

3.6, we choose the minimum value of threshold is 0, and maximum is 0.3. Every time of compar-

ing one of two values is changed by 0.1. The maximum threshold can be altered. Because in the

first stage of computing semantic similarity, we select the maximum element depth 3, so it is same

with structural measurement.

In contrary to the semantic computation, the depth-first search order, the structural relatedness

computation visits the element from the leaf node to the root node, following post-order traversal

algorithm.

The elements in the two trees are then enumerated in post-order, which is uniquely defined for

a given tree. The first step in the loop calculates the structure similarity between two elements.

For leaves, this is just the value of StSim that is calculated in the previous step. When one of the

two elements is not a leaf, the structural similarity is calculated as a measure of the number of leaf

level matches in the sub-trees.

In order to compute the similarity between two schema trees, we have to complete the struc-

ture similarity between each pair of elements in two trees. For each pair of schema elements, the

algorithm compares the structural similarity, StSim. It is the similarity of the contexts in which the

elements occur in the two schemas.
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1 Algorithm: Tree similarity;

2 //It is based on the structural similarity, StSim

3 Input: Two schemas S and T

4 Output: The structural similarity

5 Begin

6 thresh min=0; thresh max=0.3;

7 for each s in S, t in T where s, t are leaves

8 S’=post−order(S);

9 T’=post−order(T);

10 for each s in S’

11 for each t in T’

12 if StSim(st) >= thresh max then

13 StSim(s,t) = StSim(s,t)+0.1;

14 else if StSim(s,t) <= thresh min then

15 StSim(s,t) = StSim(s,t) − 0.1;

16 Tree similarity(S,T) = StSim(s,t)

17 End;

Figure 3.6: The structure similarity algorithm

To understand our algorithm, let us compute the element similarity of some pairs of elements

given in Figure 3.2 and Figure 3.3. To distinguish between elements with the name labels in two

schemas, we put an apostrophe in the element name of the second schema.

For example, we compute the element similarity of the elements person.name and name in

Figure 3.2 and Figure 3.3, respectively. Because two elements have differences in their names,

we have to compute their linguistic similarity by using WordNet [94]. The element person.name

is tokenized as person and name. The last token is matched with an element name in Figure 3.2.
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Therefore, the linguistic similarity of person.name and name is 0.8. Because both elements are

complex types, their data type similarity is 0. Moreover, their cardinality constraint value is the

same, so the constraint similarity is 1.

When we have the element similarity of all element pairs in two schemas, we can compute the

similarity of the two schemas. The similarity between two XML Schemas trees is calculated as

the weighted sum of two components:

SSim(T1, T2) = ε ∗
k∑
i=1

SeSim(T1, T2) + (1− ε) ∗ TreeSim(T1, T2) (3.22)

where SSim is the schema tree similarity; ε is the weighted value, between 0 and 1; k is the lowest

number of elements in the tree, for example, if the schema T1 has total 230 elements, schema T2

has 220 elements, then k = 220; e1 and e2 are the elements of T1 and T2, respectively; TreeSim is

the tree similarity of two schemas.

The similarity calculation has a close relationship to each other and a recursion. Two elements

are semantic similar if their leaf sets are similar. The semantic similarity of the leaves is increases if

their ancestors are highly similar. The similarity of the structure is also influenced by the semantic

similarity. If the sub-tree of two elements are high similar, the structure similarity of their ancestor

is high, too.

3.5 XML Schema Integration

In this section we shall describe the process of XML Schema integration based on the above sim-

ilarity measure. Figure 3.7 shows our clustering framework, which consists of two main phases:

Similarity computation (ESim) and Clustering. The similarity computation phase composes of

semantic similarity and structural similarity which are described in Sections 3.2 and 3.3, respec-

tively. In this phase the similarity of all XML schema pairs are assessed to form the similarity
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Figure 3.7: XML Schema integration framework architecture

matrix, which will then be used by the clustering algorithm.

Given a set of XML Schemas S = XSD1, XSD2, ..., XSDn, we construct a n × n schema

similarity matrix ESimMat. Each entry in the matrix ESimMat[i][j] represents the similarity be-

tween schema XSDi and XSDj . For every schema pair, we sum up (weighted sum) all element

similarity values computed by the semantic similarity and structural similarity.

Clustering of XSD can be carried out once we have the XSD similarity matrix. There are
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many techniques for clustering algorithms among them are hierarchical clustering [58]. Hierar-

chical clustering solutions are in the form of trees called dendrograms, which provide a view of

the data at different levels of abstraction. XSDs from the same application domain tend to be clus-

tered together and form clusters at different cut-off values. The consistency of clustering solutions

at different levels of granularity allows flat partitions of different granularity to be extracted during

data analysis, making them ideal for interactive exploration and visualization [104].

However, quantifying the goodness of an integrated schema remains an open problem since

the integration process is often subjective. One integrator may decide to take union of all elements

in the XSD documents, while another may prefer to retain only the common XSD elements in the

integrated schema. Here, we adopt the union approach which avoids loss of information. In addi-

tion, the integrated XSD should be as compact as possible. In other words, we define the quality

of an integrated schema as inversely proportional to its size, that is, a more compact integrated

XSD is the result of a better integration process.



Chapter 4

S-Trans: Duplicate Similarity Measure

for XML2OWL

This chapter presents the general mapping modules which are necessary for transformation of

XML data into OWL ontology, the semantic similarity measurement of XML duplicates, and the

transformation of XML schema (XSD or DTD) into OWL ontology (XML2OWL).

4.1 General modules of XML2OWL Transformation

In general, in order to harvest data in the form of the ontology language, in this case OWL, the

following modules are required. The first area is extracting manager. It draws the necessary data

file from different data sources. The second thing is the mapping modules that map the data source

to ontology model. Other important modules are the query handler, which draws information

from data sources, the instance generator, which transforms the input instances into the output

individuals, and lastly the ontology schema, that provides a machine readable format (in our case

is OWL model) for improving the semantics of data sources. Figure 4.1 represents the high level

illustration of S2S (syntactic to semantic) architecture [85].

55
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Figure 4.1: General syntactic to semantic architecture

Since our approach has already chosen XML and its schema (DTD or XSD) as the data source,

we need not the extract manager. Moreover, we aim at converting all the given information (not

some desired facts) in the XML document to OWL format by traversing from the beginning to the

end of the document, so the query handler is not used. We principally concentrate on the trans-

forming from DTD or XSD into OWL ontology and instance generating from XML document to

OWL instances.

Although some approaches have been developed to transform XSD or DTD into the OWL

ontology, several problems must be resolved. One is the problem of duplicate elements in an XSD

or DTD document. Most transforming approaches provide a unique identifier for each schema

(XSD or DTD) element by adding a new key element or changing the source element’s name

[26], [4], [3], [10], [92], [3], [82]. However, this solution may lead to data redundancy because

duplicate elements may represent the same information. The perfect XML transformation should

create a correct, complete, and unique representation of every concept. To obtain this data quality,

a similarity computation of duplicate elements is used. In this computation, if two elements have

highly similar semantics, they are transformed into one representation.
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4.2 Semantic Similarity of Duplicate Elements

4.2.1 Motivating example

To illustrate the S-Trans method, we will first restrict ourselves to the hierarchical schemas. The

XML schema is displayed as a graph, where the nodes represent the schema elements. We mo-

tivate S-Trans with the real XML data set, prescription.dtd [20]. The DTD document and its

corresponding XSD are displayed in Figures 4.2 and 4.3.

Assuming that all forms of XML data, such as XSD, DTD, and XML instances, can be repre-

sented as a tree, we draw a tree of prescription.dtd as in Figure 4.4. As presented in Figure 4.4, the

element name of the physician is similar to the element name of the patient and is different from

the element name of the drug because name of the drug contains two children, and the siblings

of name of the drug are slightly different from those of name of the physician and name of the

patient elements.

In contrast, two duplicate elements, phone of the physician and phone of the patient, do not

contain any children, but they are different in their cardinality constraint. The first phone element

is declared with ’+’, whereas the second one is defined with ’*’. Furthermore, month, date, and

year of prescribed.date are repeated in the DOB (Date Of Birth) element. These elements have

the same cardinality constraint, the same siblings, and children, but they have different parents.

On the basis of the above mentioned observations, we can conclude that the similarity between

duplicate elements is affected by both internal factors (such as name, data type, and cardinality

constraint) and external factors (ancestor, sibling, and children). Therefore, our duplicate similar-

ity measure is the combination of these factors using a weighted function, similar to Equation 3.1

in previous chapter, but in this case we only measure the similarity of duplicates within an XML

schema (XSD or DTD). Our duplicate similarity is determined as following Definition 4.1:
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1

2 <!ELEMENT prescription (prescribed.date,

3 patient, drug, physician, interchange?)>

4 <!ELEMENT prescribed.date (month, day, year)>

5 <!ELEMENT patient (name, id∗, gender, DOB, address+, phone∗)>

6 <!ELEMENT drug (drug.name, strength, quantity, sig)>

7 <!ELEMENT name (#PCDATA)>

8 <!ATLIST name liquid NMTOKEN #IMPLIED>

9 <!ATLIST name tablet NMTOKEN #IMPLIED>

10 <!ELEMENT id (SSN|DEA)>

11 <!ELEMENT SSN (#PCDATA)>

12 <!ELEMENT DEA (#PCDATA)>

13 <!ELEMENT gender (#PCDATA)>

14 <!ELEMENT DOB (month, day, year)>

15 <!ELEMENT address (#PCDATA)>

16 <!ELEMENT phone (#PCDATA)>

17 <!ELEMENT physician (name, address+, phone+, id+)>

18 <!ELEMENT month (#PCDATA)>

19 <!ELEMENT day (#PCDATA)>

20 <!ELEMENT year (#PCDATA)>

21 <!ELEMENT interchange (#PCDATA)>

Figure 4.2: Example of a DTD document, prescription.dtd
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1 <?xml version=”1.0” encoding=”UTF−8”?>

2 <xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

3 <xs:element name=”prescription”>

4 <xs:complexType> <xs:sequence>

5 <xs:element ref=”prescibed.date”/>

6 <xs:element ref=”patient”/>

7 <xs:element ref=”drug”/>

8 <xs:element ref=”physician”/>

9 <xs:element ref=”interchange” minOccurrs=”0” maxOccurrs=”1”/>

10 </xs:sequence> </xs:complexType>

11 </xs:element>

12 <xs:element name=”patient”>

13 <xs:complexType> <xs:sequence>

14 <xs:element ref=”name”/>

15 <xs:element ref=”id” minOccurrs=”1” maxOccurrs=”unbounded”/>

16 <xs:element ref=”gender”/>

17 <xs:element ref=”DOB”/>

18 <xs:element ref=”address” minOccurrs=”1” maxOccurrs=”unbounded”/>

19 <xs:element ref=”phone” minOccurrs=”0” maxOccurrs=”unbounded”/>

20 </xs:sequence> </xs:complexType>

21 </xs:element>

22 <xs:element name=”name”>

23 <xs:complexType mixed=”true”>

24 <xs:attribute name=”liquid” type=”xs:NMTOKEN” use=”optional”/>

25 <xs:attribute name=”tablet” type=”xs:NMTOKEN” use=”optional”/>

26 </xs:complexType> </xs:element>

27 ...

28 </xs:schema>

Figure 4.3: Example of a DTD and a part of is corresponding XSD document



CHAPTER 4. S-TRANS: DUPLICATE SIMILARITY MEASURE FOR XML2OWL 60

 

physician 

name id (+) address  

(+) 

phone 

(+) 

prescription 

patient 

name id (+) address 

(+) 
phone 

 (*) 
gender DOB 

drug 

name quantity dosage strength instruction

SSN DEA liquid tabletday month year 

day month year 

interchange

(?) 

prescribed.date 

Figure 4.4: The corresponding tree of XML schema (XSD/DTD) in Figure 4.2

Definition 4.1. The duplicate similarity, DupSim, between duplicate elements, e1 and e2, in

XSD or DTD document is defined as the weighted sum of the semantic similarity (SeSim) and the

structural similarity (StSim):

DupSim(e1, e2) = α ∗ SeSim(e1, e2) + (1− α) ∗ StrSim(e1, e2) (4.1)

where αi is the weight parameter to balance the role of SeSim and StrSim. Similar to Equation 3.1,

αi = 0.55 according to our experiment.

Reminding that DupSim in this chapter measures the similarity of duplicates within a single

schema, whereas the ESim in the previous chapter measures the similarity of elements between

different schemas. Therefore, we can use the semantic similarity measure (SeSim) in Equation 3.2

to compute the SeSim similarity of duplicate elements. However, the structural similarity of Dup-

Sim is different from ESim. The structural similarity of DupSim is determined by the following

Definition 4.2:

Definition 4.2. The structural similarity, StrSim, between duplicate elements, e1 and e2, in
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XSD or DTD document is defined as the weighted sum of the ancestor similarity (ASim), the sib-

ling similarity SbSim, and the descendant similarity (DeSim):

StrSim(e1, e2) = η ∗ASim(e1, e2)+ θ ∗SbSim(e1, e2)+ (1− η− θ) ∗DeSim(e1, e2) (4.2)

where η and θ are the weighted parameters. Since the roles of ASim and SbSim are assumed to

be equivalent, we assign 0.33 to η and θ. Details of each measuring factor are presented in next

subsections.

4.2.2 Ancestor similarity (ASim)

In order to measure the ancestor similarity of duplicate elements, the important thing is to find their

common super concept. Starting from two duplicate elements, the algorithm traverses each of their

ancestor elements in turn until it finds their common node. Suppose that C is the least common

super concept of the duplicate elements e1 and e2, and levele1 and levele2 are the numbers of

nodes on the path from e1 and e2, respectively, to C. Then their ancestor similarity is determined

by following equation:

ASim =

 1 if levele1 = levele2 = 1

0.85max(m,n)−1 otherwise

The value of 0.85 is chosen based on our observation in Figure 4.5, which presents the influence

of five candidate values (0.9, 0.85, 0.8, 0.75, and 0.7) on the ASim. Since we expect the ancestor

similarity to be greater than 0.7 when the maximum number of ancestor nodes is 3 (level = 2), we

choose the appropriate value that satisfies this requirement. As can be seen in Figure 4.5 at level 2,

the ancestor similarities of ASim 0.85 and ASim 0.9 are 0.72 and 0.81, respectively, so we select

0.85 to be the power function for computing the ancestor similarity.

In order to compare the similarity of the ancestor nodes, the semantic similarity (SeSim) is

used. If their SeSim values are the same, then ASim = 1; otherwise, we compare their grandparent:
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Figure 4.5: The ancestor similarities at different ancestor levels with five candidate values

the first grandparent has level 1, the second grandparent has level 2, and so on. The value of ASim

is the exponent function 0.85level. Details of the parent similarity algorithm for duplicate elements

are presented in Figure 4.6.

In Figure 4.6, we assume the maximum distance of the twin elements to their common super

concepts is 11. The is because in Figure 4.5 at level=11, the ASim value of ASim 0.85 is very

small (approximately 0.17), so our ancestor algorithm does not compute for that level and higher.

4.2.3 Sibling similarity (SbSim)

Similar to the sibling measuring metrics in Section 3.3.2, the sibling similarity between duplicates

is computed in the same way with the sibling similarity between elements in different documents

in Equations 3.19 and 3.20.
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Input: Two elements with the same name but in XSD tree, e1 and e2

Output: The ancestor similarity
level== 0;max_level==11;

Function ASim(e1, e2, level) 
   if ((SeSim(e1, e2)==1)) or (SeSim(parent::e1,parent::e2)==1)

then return 1;
   else if ((SeSim(e1,parent::e2)==1) or (SeSim(parent::e1,parent::e2)==1)
         then return 0.85;
   else if (level == max_level)  return 0;
    else
       return
         power(0.85*ASim(parent::e1, parent::e2,level+1));
    end; 

End;

Figure 4.6: The ancestor similarity algorithm

4.2.4 Children similarity (ChSim)

Different from children similarity in ESim method, the children similarity of duplicate elements

computes not only the similarity of direct children but also all descendant elements of both du-

plicates. To compute the children similarity of duplicates, first of all, the algorithm collects

all descendant elements of of each duplicate. For instance, the children of the first duplicate

e1 is E1, where E1 = [e11 , e12 , ..., e1r ], and the sibling of a duplicate e2 is E2, where E2 =

[e21 , e22 , ..., e2s ], where r and s are the total number of descendant elements of duplicates e1 and

e2, respectively.

After having two sets of children elements, the algorithm continues to compute the semantic

similarity of each child in the E1 with another in E2. There are two cases for comparison: If

r ≥ s, the algorithm takes each element in E1 to compare with each element in E2; otherwise the

algorithm picks each element in E2 to compare with an element in E1. Those comparison can be

described by following matrices 4.3 and 4.4:
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ChSim(e1, e2) =


SeSim(e11 , e21) · · · SeSim(e11 , e2s)

...
. . .

...

SeSim(e1r , e21) · · · SeSim(e1r , e2s)

 , r ≥ s (4.3)

ChSim(e2, e1) =


SeSim(e21 , e11) · · · SeSim(e21 , e1r)

...
. . .

...

SeSim(e2s , e11) · · · SeSim(e2s , e1r)

 , r < s (4.4)

where SeSim(e1, e2) is the semantic similarity of elements e1 and e2, which is determined by

Equation 3.2. The children similarities of two duplicates e1 and e2 in the matrices 4.3 and 4.4 are

determined by Equations 4.5 and 4.6, respectively:

ChSim(e1, e2) =

r∑
i=1

maxsj=1(SeSim(e1i , e2j ))

r
, r ≥ s (4.5)

ChSim(e2, e1) =

s∑
i=1

maxrj=1(SeSim(e2i , e1j ))

s
, r < s (4.6)

In the case that either element e1 or e2 is a leaf node (meaning it contains no child node), the

child similarity of this twin element is 0. If both are leaf nodes, their children similarity ChSim = 1.

Depending on the expected similarity value, the duplicate elements can be classified into two

groups, similar and non-similar. The transforming strategies in Section 4.3 are then applied to

transform these duplicates into the appropriate OWL concepts. In this paper, we use the threshold

value 0.7 to classify the duplicate elements. The value of 0.7 was chosen based on our observation

of experimental results: At the threshold of 0.7, the error rate of classification is greatly smaller

than other thresholds. See Section 5.2 for details.
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4.3 Transforming DTD/XSD into the OWL Ontology

The transformation framework of XML into OWL is shown in Figure 4.7. There are four main

steps in in framework: Extracting schema from the XML instances; Measuring duplicate similarity

in XML schema; Transforming elements in XML schema into OWL concepts; and Transforming

XML instances into OWL individual. First, we extract XSD or DTD schema. This step only

works when an XML document does not go with a schema. We generate an XSD or DTD schema

corresponding to this XML document by using the available tool recommended by HIT software

[6].

Second, we compute the similarity of duplicates within an XML schema. This step is neces-

sary to eliminate the redundancy and improve the quality of OWL results. The details of duplicate

computation is presented in Section 4.2. Third, a schema transformation step will transform all of

XSD elements into OWL ontology which captures the semantics and maintains the XML struc-

ture. Once OWL concepts are created, S-Trans system moves to the fourth step. The input of

this step is an XML document together with an OWL ontology generated from the previous step.

The S-Trans traverses from the root element in the XML document and ends when it meets a

close-tag of the root element. If an element in XML data is matched with a node in an OWL

ontology, XML2OWL procedure will execute the transformation and generate an OWL individual

document.

According to the characteristics of OWL definitions and the functionality of DTD elements,

we define suitable transforming notations from DTD elements into OWL concepts. In OWL, a

class defined by owl:class identifies a class or a non-instance item of the ontology. Because DOC-

TYPE defining the root element of the document usually contains other elements and attributes,

it is converted to an owl:class. If ELEMENT includes other elements or attributes or refers to an

entity notion, it is mapped to the owl:class as well. ATTLIST, which normally defines the attributes
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XSD/DTD 

XML
instances 

OWL
ontology 

OWL
instances 

XSD2OWL/
DTD2OWL

DupSim

XML2OWL

Schema level Schema transforming Semantic level 

Source Data transforming Target

Use OWL model to 
describe XML data 

in OWL 

Generate
XSD/DTD if it 
isn’t available 

Figure 4.7: Transforming framework from XML into OWL

of the document, is transformed into owl:DatatypeProperty by default. However, if ATTLIST con-

tains other entity references, we map it to an owl:class because it has the same functionality of the

class. This notion was not mentioned in our previous work [91].

In OWL, a property is divided into two types, ObjectProperty and DatatypeProperty. Because

ObjectProperty specifies the relationship between two instances that belong to the same or dif-

ferent classes [10], we use ObjectProperty to describe the relationship among OWL classes. The

DatatypeProperty indicates the relationship between instances and RDF literals. The rdfs:domain

and rdfs:range, which restrict the anterior and posterior values of a property, respectively, are used

as a supplement for the DatatypeProperty and ObjectProperty.

Moreover, to prevent a member of one class from being a member of another class, we used

owl:disjointWith. Other OWL descriptions such as owl:unionOf, owl:DataRange, owl:oneOf,

rdf:first, rdf:rest, etc. are also utilized to improve the expressiveness of OWL attributes. De-

tails of the transformation model from DTD and XSD into OWL are presented in Figure 4.8.
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Furthermore, unlike XML, OWL does not allow identical names. Thus, when our procedure

meets an element or attribute that has the same name as the previous node, two solutions are pro-

posed:

1. If this duplicate element is highly similar to the previous element, the procedure uses

owl:unionOf to connect the parent nodes of these duplicates in the same domain.

2. Otherwise, the procedure renames the duplicated element by adding the parent element’s

name along with an underscore ’ ’ character between the parent’s name and the duplicate’s

name.

For example, because the value of DupSim between elements name of the patient and name

of the physician is 0.8, which is higher than our threshold, the two elements name are combined

to one element name and their domain consists of the parents of the two elements. The OWL

description of two elements name is as Figure 4.9 follows:

However, because DupSim value between elements name of the drug and name of the physi-

cian (or patient) is 0.48, which is lower than our threshold (0.7), the element name of the drug is

renamed by adding its parent name before its name. Its OWL result is presented in Figure 4.10
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1 <owl:DatatypeProperty rdf:about=”#name”>

2 <rdfs:domain>

3 <owl:Class>

4 <owl:unionOf rdf:parseType=”Collection”>

5 <owl:Class rdf:about=”#physician”/>

6 <owl:Class rdf:about=”#patient”/>

7 </owl:unionOf>

8 </owl:Class>

9 </rdfs:domain>

10 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

11 </owl:DatatypeProperty>

Figure 4.9: OWL results of duplicates which are highly similar

1 <owl:DatatypeProperty rdf:ID=”drug name”>

2 <rdfs:domain rdf:resource=”#drug”/>

3 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

4 </owl:DatatypeProperty>

Figure 4.10: OWL results of duplicates which are less similar



Chapter 5

Experimental Results

The experiments are conducted to qualify the XSDs similarity measure, ESim, and the duplicate

similarity measure in XML transformation into OWL, S-Trans, which are presented in Chapter

3 and Chapter 4, respectively. We evaluate ESim and S-Trans by matching two XSD documents

and matching between XSD and OWL ontology. The experiments of each technique contain three

main steps:

1. Experimental setup: This step includes the choosing of real-world XSDs, collecting the

mutual similarities of duplicates and similarities of element pairs between synthetic XSDs.

2. Parameters determination: This step produces the appropriate values for weight parame-

ters in similarity measuring metrics and for classifying value of duplicates.

3. Evaluation: This step compares the proposes methods with related work and evaluate the

role of each measuring factor.

71
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5.1 Experiments on XML Schemas Similarity Measure

The experiments of ESim have two phases: preparatory and experimental. In the first phase we

need to determine the weight values of parameters of the similarity measure so that it provides

realistic results. In the second phase, we analyze the behavior of the proposed metrics on real-

world XML Schemas.

5.1.1 Determining of parameter values

The experimental implementation enable one to set the following parameters:

• weight α and the second weight in ESim equation - equation (3.1). However, only α needs

to be set, since the second weight is the inverse value of α, (equal 1-α).

• weights β, χ, and the third weight in SeSim equation - equation (3.2). In the same way, the

third weight is determined by 1 - (β + χ).

Most of the current paper claim that the setting of similarity parameters can be determined by

user and, hence, it is not discussed. The problem is how to prepare a reasonable setting so that

the similarity measure returns reasonable results. For this purpose, we use the following strat-

egy: Firstly, we prepare a set of synthetic XSDs and we determine their mutual similarity from

user’s perspective. Then, we set the respective parameters so that the similarity measure returns

similar results. We depict the strategy using four XSDs describing patients (Patient A in Figure

3.1, Patient B in Figure 3.2, Patient C in Figure 5.1, and Patient D in Figure 5.2). Their mutual

user-specified similarity is listed in Table 5.1.

Firstly, we set the weight parameters of SeSim equation (3.2) as following: β = 0.34, two other

weight parameters share the same value 0.33 (i.e. we use generally acknowledged ”reasonable”

values) and analyze the results of similarity evaluation with changing weight α = 0.05, 0.1, 0.15,
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Table 5.1: The similarity of synthetic XSDs

Patient A Patient B Patient C Patient D

Patient A 1 0.86 0.48 0.5

Patient B 0.86 1 0.4 0.37

Patient C 0.48 0.4 1 0.8

Patient D 0.5 0.37 0.8 1

..., 1 and respective value of the second weight (1 - α). The results are presented in Figure 5.3.

In Figure 5.3, the X-axis represents the values of α and the lines represent the similarity of

respective pairs of XSDs. As we can see, the most reasonable values of α corresponding to simi-

larity results expected by a user are represented using the black dots and occur within the interval

of [0.5, 0.65] stressed using the vertical lines. The only exception is the similarity of XSDs C and

D, which demonstrates the classical situation that user-specified similarity is not precise. Based

on this observation, we choose the value for α is 0.55, and therefore the second weight in ESim

function is 0.45.

Secondly, we find the weight values of SeSim equation. We perform the same experiment

with α = 0.55. Since there are three weight parameters in SeSim equation: β, χ, and the third

weight. The weight β is associated with the name similarity which is a very important factor in

determining the similarity between elements, whereas χ is associated with data type similarity

which has a similar role as constraint similarity. Therefore, we divide three parameters into two

groups: first β group and the second (1-β) group. The values of χ and the third parameter is the

fraction of (1−β)
2 . The results are depicted in Figure 5.4.
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clinical.header

provider patient

name functionid

name idaddr

street city country postcode

Figure 5.1: Tree representation for Schema Patient C

clinical.header

patient.encounter patient

date.time locationid

person.name birth.dateaddr

country

practical.setting

id

firstname lastname

Figure 5.2: Tree representation for Schema Patient D
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Figure 5.3: Determining weights of ESim function

  

 

  

  
 

Figure 5.4: Determining weights of SeSim function
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Table 5.2: The characteristics of the tested schemas
Schema 1 vs Schema 2 #nodes Average #nodes #max depth

1 Patient A vs Patient B 12/10 11 3/3

2 Healthcaremetadata vs healthcarevocabulary 137/29 83 7/4

3 Yahoo Finance vs Standard 10/16 13 2/2

4 Cornell vs Washington 34/39 36 3/3

5 CIDX vs Excel 30/40 35 3/4

6 Google vs Looksmart 706/1081 893 11/16

7 Google vs Yahoo 561/665 613 11/11

8 Yahoo vs Looksmart 74/140 107 8/10

9 Iconclass vs Aria 999/553 776 9/3

As can we see in Figure 5.4, the interval where the expected similarity values (denoted again

using black dots) occurs in [0.3, 0.45]. Note that in this case, the similarity between Patient C

and Patient D is also diverse, even beyond the scope of the results of the algorithm. Therefore,

we choose the weight value for parameter β is 0.4, so the parameters χ and the left one share the

same value 0.3. We use those values for experimentation with the real-world data sets.

5.1.2 Results based on real-world XSDs

The element similarity including semantic and structural similarity is implemented by C# language

[62]. To examine the performance of ESim, we use healthcare XML Schemas (and corresponding

DTDs) from [61], [21] and tested schemas from xCBL [84]. The experiment for ESim is executed

on nine pairs of schemas, which are presented in Table 5.2.

In Table 5.2, the test case #1 comes from Figure 3.1 and Figure 3.2, the test case #2 is from

Mebiquitous schema [61], and other test cases are from xCBL [84]. In general, there are two
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similarity test cases on healthcare domain (#1 and #2), two test cases on business domain (#3,

#5). The first business example (#3) describes two company profiles: a Standard one and Yahoo

Finance. The second business example (#5) deals with BizTalk purchase order schemas. There is

one measuring task from an academy domain (#4). It describes courses taught at Cornell Univer-

sity and at the University of Washington. There are three measuring tasks on general topics (#6,

7, 8) are represented by the well-known web directories, such as Google, Yahoo, and Looksmart.

Finally, the last measuring task (#9) is from the cultural heritage domain. It deals with two stan-

dard thesauri used for storing masterpieces. The similarity measuring results of the first schema

pair (test schema #1) are presented in Table 5.3.

In Table 5.3, the column represents for element names of the Schema Patient B, and the rows

represents for elements of the Schema Patient A. Cells in the table represent for number of mea-

suring elements determined for a pair of schemas. This number is N1 × N2, where N1 is the

number of nodes in the first schema, N2 is the number of nodes in the second schema. In order

to find the most similar pair, we use the threshold value of 0.5 to categorize the similarity values.

Those values are higher than threshold 0.5 are considered as similar, otherwise are non-similar.

For each row of table, the algorithm will select values from 0.5 and higher, and then choose the

highest similarity value.

To evaluate our proposed measuring method for similarity between elements in different XSDs

(ESim), we compare ESim with the most related work (XClust [47]- the similarity between two

DTD trees) and the similarity between XML documents (called XMLSim) [102]. For XML docu-

ments without schema files, we draw XML Schemas and DTD from the XML instances by using

the HIT Software [6].

In order to answer the question of how much the information gets lost when matching two
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Table 5.3: Element similarity result of the two schemas (Patient A and Patient B)

patient name id address given family street city country house

number

patient 0.83 0.248 0.0 0.195 0.0 0.0 0.0 0.0 0.0 0.0

person 0.165 0.527 0.0 0.275 0.275 0.33 0.33 0.33 0.33 0.33

name

id 0.165 0.193 0.5 0.195 0.193 0.165 0.165 0.165 0.165 0.165

address 0.33 0.193 0.28 0.875 0.193 0.28 0.28 0.28 0.28 0.28

firstname 0.028 0.195 0.195 0.193 1.0 0.83 0.275 0.275 0.275 0.275

lastname 0.028 0.195 0.275 0.028 0.83 1.0 0.275 0.275 0.275 0.275

authority 0.028 0.193 0.275 0.028 0.33 0.275 0.275 0.275 0.275 0.275

type 0.028 0.193 0.275 0.028 0.33 0.275 0.275 0.275 0.275 0.275

street 0.0 0.193 0.193 0.193 0.083 0.28 0.193 1.0 0.413 0.413

city 0.0 0.193 0.193 0.083 0.28 0.193 0.413 1.0 0.413 0.413

country 0.0 0.193 0.193 0.083 0.28 0.193 0.413 0.413 1.0 0.413

postcode 0.0 0.193 0.193 0.083 0.28 0.193 0.413 0.413 0.413 0.66
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XML Schemas, we use precision and recall, which originate from information retrieval [72] and

adapt to ontology matching [24]. The evaluations use the following calculations.

Recall: Recall specifies the share of real correspondences:

recall =
found proposed correspondences

all proposed correspondences
(5.1)

Precision: Precision reflects the share of real correspondences among all found correspondences.

precision =
found proposed correspondences

all found correspondences
(5.2)

Although precision and recall are the most widely used measures, when comparing matching

systems, one may prefer to have only a single measure. Moreover, systems are not comparable

based solely on precision and recall. For this reason, two measures (F-measure and overall) are

introduced to aggregate the precision and recall. F-measure presents the harmonic mean of preci-

sion and recall.

F measure = 2 ∗ precision ∗ recall
precision+ recall

(5.3)

Finally, the metric for calculating the schema matching is known as overall. It is defined as

follows:

overall = recall ∗ (2− (
1

precision
)) (5.4)

Because of the unequal importance of Precision and Recall in Overall (see equation 5.4), we

mostly use F-measure to rank the observed match quality in our discussion. Still, when appropri-

ate, we show the values of all four measures for a comparison.

The quality measures were first determined for the single pair of schemas (to measure the sim-

ilarity and then do the matching task) and then averaged over all tasks in the experiments. When
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precision recall F-measure overall
0.0
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0.9

1.0

 ESim
 COMA
 XClust

Figure 5.5: Matching comparisons of ESim to COMA, XMLSim, and XClust

talking about measuring quality through the matching task of an experiment, we refer to the aver-

age values of the measures. i.e. average Precision, average Recall, everage F-measure, etc.

The comparison results among our methodology (ESim)and related work, such as, COMA

[24], XMLSim [102], and XClust [47] are illustrated in Figure 5.5.

Figure 5.5 shows that our matching quality is higher than those of XMLSim, XCLust, and

COMA’s methods. The main reason is that ESim considers details of data type and constraint sim-

ilarity whereas COMA focuses on linguistic name and structure; XClust concentrates on linguistic

name, some constraints, and structure; XMLSim only considers the semantic name. Moreover, the

element similarity measurement in XClust did not concern the data type similarity between two

elements, whereas some element pairs have the same name, but they are different in data types.
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Figure 5.6: Quality of name measure

The XMLSim paid too much attention to the information content similarity and did not mention

about the data type as well as the cardinality constraint similarity of two elements. Therefore, it

gets lowest values in all calculations.

In our experiments, the threshold values are chosen between 0.3 and 1. In order to evaluate the

effect of each measuring factor to the computation results, we conduct a set of experiments cal-

culating for each factor only and then compare their F measure values with the F measure’s ESim.

Figures 5.6, 5.7, 5.8, and 5.9 show the measuring quality of the name, data type, cardinality

constraint, and structure of the elements in XSD healthcare documents. These figures indicate that

there is no single measuring factor is able to determine the good correspondences.
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Figure 5.7: Quality of data type measure
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Figure 5.8: Quality of cardinality constraint measure
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Figure 5.9: Quality of structure measure
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Figure 5.10: F measure comparison
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Figure 5.10 indicates that the combination of all factors gives the highest F measure values,

especially when we increase the threshold values. Among those factors, the structure calculation

(called StSim) produces the greatest F measure values and following by the name measurement,

data type calculation and the cardinality constraint estimation.

The experimental results conducted in this study shows that although the structural resemblance

plays an important role in the measure, its combination with other semantic factors produces the

best matches.

5.2 Experiments on Duplicate Similarity in XML Transformation

5.2.1 Experimental setup

In this section, we describe our experimental setup. We first discuss the implementation language

for transformation. Then, we present performance metrics for evaluating the quality of transfor-

mation, and then describe the real-world schemas used in the experiment.

The transformation language used in this experiment is XSLT (eXtensible Stylesheet Lan-

guage Transformation) [96], [27]. XSLT is applied to an XML schema with Visual C#. We choose

XSLT because its natural purpose is to act as a transformation tool for extensible languages.

We evaluate the proposed transforming strategies by matching an XSD document with an

OWL ontology to determine the true matches, and compare our results with related methods. To

assess the quality of the matching system, we use precision, recall, F-measure, and overall, which

are presented in the previous section.

To obtain practical evidence, we applied our transformation to four healthcare XML docu-

ments: particularly, 1) drug medicament.xml [74], 2) genertic risk.xml [74], 3) healthcaremeta-
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Table 5.4: The characteristics of the tested schemas
Schema name File size # Nodes Max depth # Duplicates

1 drug medicament 180 KB 683 9 0

2 patient-admission 40 KB 240 4 7

3 healthcaremetadata 5523 KB 137 7 16

4 pathology.report 328 KB 778 5 14

data.xsd [20], 4) pathology.report.xml [20]. The corresponding schemas of the test cases num-

bered 1), 2), and 4) are generated with a schema converter [6]. The characteristics of the four

schemas are presented in Table 5.4.

Because there is no supporting tool for matching between DTD and the OWL model, in this

section, we only compare our transformation of XSD into the OWL ontology with one transform-

ing method proposed by Hannes et al. [10] and with two matching methods introduced by Toni et

al. [82] and COMA++ [49].

5.2.2 Results

This section provides evaluation results for the test cases in Section 5.2.1. First, we conducted an

experiment to determine the best threshold value for classifying duplicate elements. Second, we

carried out another set of experiments to compare our work with related approaches. Lastly, we

assessed the quality of each proposed measuring factor with S-Trans.

Figure 5.11 shows how error rates for classifying duplicate elements change as we use different

threshold values for the DupSim measure. For the three schemas including duplicate elements

in Table 5.4, we manually classified into two groups: similar and non-similar, then computed

the classification error rate at each threshold (in the range 0.1 to 1.0). The weighted average
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Figure 5.11: The error rate of classification at different thresholds

of the error rates for the three schemas is computed by using the number of duplicate pairs in

each schema as the weighted factor. Specifically, the weighted error is determined by following

Equation 5.5:

WeightedAverage =

k∑
i=1

Error(XSDi) ∗ ni

k∑
i=1

ni

(5.5)

where k is the total number of XSD document; Error(XSDi) is the error rate of the XSD docu-

ment number ith; and ni is the total number of duplicates in XSD document number ith.

Figure 5.11 shows that very small or very large threshold values result in a large number of

error rates. Particularly, at the threshold values ranging between 0.1 and 0.3, the average error rate

of the classification is nearly 38%. This number decreases to approximately 27% at the threshold
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Figure 5.12: Evaluation results, drug medicament schema

values between 0.45 and 0.55 and declines to 2% at the threshold value of 0.7. From the threshold

values of 0.75 and higher, the error rate values steadily climb up and are highest (62%) at the

threshold values of 0.95 and 1.0. Because the error rate of classification achieves the minimum

value at the threshold of 0.7, we use 0.7 as the classifying value to separate the duplicates into two

groups, similar and non-similar.

The comparisons of our transformation method with related work are shown in Figure 5.12,

Figure 5.13, Figure 5.14, and Figure 5.15.

In Figure 5.12, S-Trans performs as well as COMA++ and outperforms Hannes and Toni’s

methods in terms of quality indicators. The main reason for this improved performance is that

the drug medicament schema does not contain any duplicate; thus, S-Trans does not change or

integrate any XML element. Therefore, the COMA++ method can match 100% of XML elements
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Figure 5.13: Evaluation results, patient admission schema
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Figure 5.14: Evaluation results, healthcaremetadata schema
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Figure 5.15: Evaluation results, pathology.report schema

with OWL concepts.

Hannes’s method, however, renames all complex and simple elements by adding ”has” and

”dtp” prefixes, and Toni’s method changes the XML elements by replacing them with the XPath

expressions. Therefore, methods of Hannes and Toni result in fewer matches. However, Toni’s

method only changes the complex elements, whereas Hannes’ method alters most of elements and

properties. Therefore, Toni’s approach is slightly better than Hannes’ approach in terms of match-

ing quality between XML and OWL.

In the case of larger-sized XML schema, as well as cases with more duplicate elements, S-

Trans still outperforms other methods. Particularly, S-Trans’s overall scores are over 84% in three

test cases; see Figures 5.13,5.14, and 5.15. Hannes’ method works very poorly in test cases num-

ber 3 (Figure 5.15); its overall value is only 4% compared with 31%, 51%, and 84% of Toni,
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Figure 5.16: Quality of S-Trans, PrSim, ChSim, and CaSim

COMA++, and S-Trans, respectively.

Furthermore, to determine the most important factor that affects the similarity values, we

separated four similarity factors and compared them with their combination (S-Trans). The com-

parison results are presented in Figure 5.16. Figure 5.16 shows that CaSim has the lowest quality;

its overall quality is only 7% compared with 24% for PrSim, 50% for ChSim, and 59% for SbSim.

The reason for this difference in quality is that most duplicates have similar CaSim. However, we

can also observe that the combination of all similarity factors outperforms SbSim; therefore, it is

preferable to use multiple similarity measures instead of a single measure.
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5.3 Experimental Summarization

In this chapter, we discussed the following thing:

• For the experiments on similarity between different schemas, ESim, we determine weighted

values for equation 3.1 and equation 3.2. According to the experimental result, at the values

of α between 0.5 and 0.65, the element similarity, ESim, has higher similarity values with

user’s perspective than other α values, we choose the middle value, 0.55, for α. Therefore,

the value of the second weighted parameter is 0.45. In the same way, for equation 3.2, we

select the value 0.4 for β, value 0.3 for both weighted factors: χ and the third factor.

• We compare our proposed method, ESim, with other related work by comparing the match-

ing results of each method. The comparison is processed on nine schema pairs, the final re-

sults are weighted average of nine schema pairs. The overall values show that, our method

overcomes related approaches. Among related approaches, COMA has closest matching

results with our method, the next is XClust, and XMLSim.

• We also conduct a set of experiments to determine which factor has the most effect on the

similarity and the result is the children similarity factor, ChSim.

• For the experiments on duplicate similarity and XML transformation, S-Trans, first of all,

we process an experiment to determine the classifying value by determining the error rate

at different threshold. According to the experiment, at the threshold value of 0.7, the value

of error rate is lowest, thus we choose 0.7 as the classifying value to categorize the dupli-

cates into two groups: similar and non-similar. We also propose appropriate strategies to

transform these two groups.

• We compare S-Trans with some related approaches, such as Hannes, Toni, and COMA++’s

approaches, the results show that in case of schema without duplicate, our approach has
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good quality as COMA++’s method, otherwise our approach proves the best performance

with schema having duplicates.

• We also take another experiment to determine what similarity measuring factor has the

most influence to the duplicate similarity value. According to the experimental result, the

similarity of sibling has the most effect.



Chapter 6

Conclusion and Future Researches

In this chapter we bring summary of this thesis. Section 6.1.1 summaries what has been done

within this thesis. Section 6.1.2 summarizes contributions of this thesis. The thesis is wrapped up

with remarks about future researches in Section 6.2.

6.1 Conclusion

6.1.1 Thesis summary

As described in the introductory chapter, the main theme of this thesis is a hybrid similarity mea-

sure for XML data integration and transformation. This theme relates two topics: Measure the

similarity between different schemas for XML integration and measure the similarity of elements

(particularly, duplicate elements) within a schema for XML transformation into OWL ontology.

With regard to those two topics, this work covers the following aspects:

• Examination of different methods of measuring the similarity between schemas. Particu-

larly, description of relevant similarity measure for XML integration.

• Description of similarity measure-based method for XML integration and transformation.
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• Introduction of new methods for measuring the similarity between different schemas and

within a schema.

• Experiments and demonstrations of new methods introduced in this thesis.

First, the thesis introduces related work to those two topics in Chapter 2. Next, Chapter 3 about

similarity between different documents with the integration method and Chapter 4 about similarity

of duplicates within a schema in the data transformation and Chapter 5 dealing with experimental

evaluation.

Chapter 3 dealing with hybrid similarity measure based on assumption that semantics and

structure are both important for similarity measure. Moreover, the XML data are usually very

large and change dynamically, the measuring method should be done automatically without any

user intervention. Therefore, all the similarity values should be computed by measuring metrics,

not by manually.

Chapter 4 dealing with the duplicate problem in XML transformation. In related method of

transforming XML data into OWL ontology, most researchers give each XML element a unique

ID despite of whether this element having duplicate or not. This technique results in data redun-

dancy, since some duplicates represent the same information, they should be transformed into an

OWL concept. With the proposed measuring of duplicates similarity, we have appropriate solu-

tions to transform those duplicates.

Chapter 5 dealing with similarity measure evaluations for both data integration and transfor-

mation. We also determine the specific values for weighted parameters in measuring metrics.

Moreover, the determination of classifying value in the experiment helps the transformation of

XML data become automatically and more precisely.
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6.1.2 Contributions

Our hybrid similarity measure for XML data integration and transformation makes several contri-

butions:

• We have proposed a hybrid similarity measure framework which considers both seman-

tics and structure factors. This measure can be applied to compute the similarity between

schemas for XML data integration or duplicate similarity within a schema for XML data

transformation. This framework can operate on any type if XML data source and can exe-

cute on two types of XML schemas: XSD and DTD.

• We provide novel metrics to compute the data type similarity for attributes and the cardi-

nality constraint resemblance between two elements. We also present a new algorithm in

computing the element similarity that improves the past methods in many respects. For in-

stance, the semantic similarity between two elements is included not only their linguistic

similarity but also their data type and constraint compatibilities. The structure similarity

mentions both the distance between two elements and their linguistic meaning.

• We solve the duplicate problem during transformation of XML data into OWL ontology. In

the traditional approaches, the solution for duplicate problem is trivial by giving each XML

element a unique identifier which results in data redundancy when duplicates represent the

same information. We propose novel method to measure the similarity of duplicates in

an XML schema to produce a correct, complete, and fully semantic of the transformation

results.

• We propose a method to reasonably balance the role of similarity factors without user inter-

vention. Specifically, we determine the values of weighted parameters which are previously

given manually by users. Those values can be used in measuring the similarity of other

XML sources.
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• We propose a method to determine the classification value to categorize the duplicates into

two groups: similar and non-similar. Beside the proposed transforming model for moving

XML to OWL ontology, we propose a suitable strategy to transform each duplicate group

into appropriate OWL concepts.

• To evaluate these measures, we conduct a set of experiments to compare our method with the

related works and the important role of each measuring factor. The experimental evaluation

shows that our proposed hybrid similarity measure provides the best correct similarity values

of elements between schemas and duplicates within a schema in compared with related

approaches.

• Moreover, we also take a set of experiments to determine which similarity measuring factor

has the most influence on the final similarity result. This determination is very important in

case that a system cannot measure all the factor or it wants to have the similarity quickly,

it can produce the similarity values based only on the most influence factor.According to

our experiments, the children similarity factor is the most influence factor to the similarity

of elements between schemas, whereas the sibling similarity factor is the most effect on the

duplicate similarity of duplicates within a schema.

We hope that our research are useful for both processes, XML integration and transformation,

where the hybrid similarity measure is applied to produce the most correct similarity values for

these tasks. If this hybrid similarity measure method is popularized, a large amount of the XML

data on the Web today can become an integrated XML document or can become a meaningful

OWL ontology, both results are very helpful in improving the XML data sharing between services

and applications nowadays.
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6.2 Future Researches

Directions of future research are discussed below, separately according to individual topics:

• Measuring the similarity of different data models. As future work we plan to extend system

with a hybrid similarity measure between different documents, such as relational database

and XML, XML and OWL ontology, etc.

• Matching of different data models. Regarding matching different data models, we plan to

connect them with transformation data in terms of automatic derivation of the latter ones

from the former ones. Furthermore, matching different data could also better use the simi-

larity measure of different data models.

• Measuring the similarity of Web pages. We are also going to measure the similarity between

Web pages by extending our proposed semantic and structural similarity metrics to measure

the similarity of textual content contained within common HTML tags, the structural layout

of pages, and the query terms contained within pages.
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Appendix A: ESim - Evaluation Results

Because the evaluation result in the Section 5.1 is the average result of the single pair of schemas.

This section presents the evaluation results of each schema pair presented in Table 5.1. The el-

ement similarity in each pair of schema is measured . All element pairs having the similarity

score greater or equal the threshold 0.5 are chosen and matched together. The evaluation results

of matching tasks for nine schemas, #1 to #9, which are presented in Table 5.2, in displayed in

Figure A.1.

For example, for the test case #4 Cornell vs Washington in Figure A.1, since all the semantic

and structural similarities in the given test case were correctly encoded into propositional formu-

las, all the quality measures of ESim reach their highest values. For pairs of test cases #1, 5, and

7, the precision of ESim performs as good as COMA and outperforms other methods.

To obtain the average result from nine pairs of test cases, we use the weighted average of nine

cases. Particularly, we use the number of correct matches of each test case as the weighted factor.

The precision and recall values are calculated by the following equations, A.1 and A.2:

precision =

n∑
i=1

(Wi ∗ precisioni)
n∑
i=1

(Wi)

(A.1)
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Schema name Evaluation factor ESim COMA XClust XMLSim 

#1, patient_A, B 

precision 0.900 0.900 0.643 0.563

recall 0.750 0.643 0.450 0.429

F!measure 0.818 0.750 0.529 0.486

overall 0.667 0.571 0.200 0.095

#2, healthcare 

precision 0.923 0.889 0.857 0.774

recall 0.857 0.828 0.774 0.727

F!measure 0.889 0.857 0.814 0.750

overall 0.786 0.724 0.645 0.515

#3,
Finance_Standard 

precision 1.000 0.833 1.000 0.714

recall 0.714 0.625 0.625 0.556

F!measure 0.833 0.714 0.769 0.625

overall 0.714 0.500 0.625 0.333

#4,
Cornell_Washington 

precision 1.000 1.000 1.000 0.786

recall 1.000 0.846 0.786 0.688

F!measure 1.000 0.917 0.880 0.733

overall 0.786 0.724 0.645 0.515

#5, CIDX_Excel 

precision 0.938 0.938 0.833 0.682

recall 0.882 0.882 0.714 0.600

F!measure 0.909 0.909 0.769 0.638

overall 0.824 0.824 0.571 0.320

#6,
Google_Looksmart

precision 0.966 0.950 0.950 0.826

recall 0.934 0.905 0.877 0.792

F!measure 0.950 0.927 0.912 0.809

overall 0.902 0.857 0.831 0.625

#7, Google_Yahoo 

precision 0.942 0.942 0.860 0.790

recall 0.891 0.845 0.803 0.731

F!measure 0.916 0.891 0.831 0.760

overall 0.836 0.793 0.672 0.537

#8,
Yahoo_Looksmart

precision 0.958 0.821 0.821 0.767

recall 0.852 0.742 0.657 0.742

F!measure 0.902 0.780 0.730 0.754

overall 0.815 0.581 0.514 0.516

#9, Iconclass_Aria 

precision 0.984 0.984 0.873 0.785

recall 0.954 0.899 0.827 0.756

F!measure 0.969 0.939 0.849 0.770

overall 0.938 0.884 0.707 0.549

Figure A.1: Evaluation results of matching system for schemas in Table 5.2
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recall =

n∑
i=1

(Wi ∗ recalli)
n∑
i=1

(Wi)

(A.2)

where n is the number of test cases (in this experiment, n = 9);Wi is the number of correct matches

of the test case number i; precisioni and recalli are the precision score and recall score of the

test case number i.

The average results of precision, recall, and their corresponding F-measure and overall are

presented in Figure 5.1.



Appendix B: Sample of XML Schema

for Transformation

Following is the full document of pathology.report.xsd:

Listing B.1: XML Schema for Transformation.

1 <?xml version=”1.0” encoding=”UTF−8” ?>

2 <xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

3 <xs:element name=”clinical.header”> <xs:complexType> <xs:sequence>

4 <xs:element ref=”id” maxOccurs=”unbounded” />

5 <xs:element ref=”patient.encounter” /> <xs:element ref=”provider” />

6 <xs:element ref=”patient” /> <xs:element ref=”codes” />

7 </xs:sequence> </xs:complexType>

8 <xs:element name=”id”>

9 <xs:complexType mixed=”true”>

10 <xs:attribute name=”type” type=”xs:NMTOKEN” use=”optional” />

11 <xs:attribute name=”authority” type=”xs:NMTOKEN” use=”optional” />

12 </xs:complexType> </xs:element>

13 <xs:element name=”patient.encounter”> <xs:complexType> <xs:sequence>

14 <xs:element ref=”id” /> <xs:element ref=”practice.setting” />
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15 <xs:element ref=”date.time” /> <xs:element ref=”location” />

16 </xs:sequence> </xs:complexType>

17 </xs:element>

18 <xs:element name=”practice.setting”>

19 <xs:complexType mixed=”true” /> </xs:element>

20 <xs:element name=”date.time”>

21 <xs:complexType mixed=”true” /> </xs:element>

22 <xs:element name=”location”>

23 <xs:complexType mixed=”true” /> </xs:element>

24 <xs:element name=”provider”>

25 <xs:complexType> <xs:sequence>

26 <xs:element ref=”person.name” /> <xs:element ref=”id” />

27 <xs:element ref=”addr” /> <xs:element ref=”type.code” />

28 <xs:element ref=”function” /> </xs:sequence>

29 </xs:complexType> </xs:element>

30 <xs:element name=”person.name”>

31 <xs:complexType> <xs:choice>

32 <xs:element ref=”family” /> <xs:element ref=”given” />

33 <xs:element ref=”prefix” /> <xs:element ref=”suffix” />

34 </xs:choice> </xs:complexType> </xs:element>

35 <xs:element name=”addr”> <xs:complexType> <xs:sequence>

36 <xs:element ref=”house.number” /> <xs:element ref=”street” />

37 <xs:element ref=”city” /> <xs:element ref=”state” />

38 <xs:element ref=”zip” /> <xs:element ref=”uri” />

39 <xs:element ref=”telephone” /> </xs:sequence>

40 <xs:attribute name=”type” type=”xs:NMTOKEN” use=”required” />

41 </xs:complexType> </xs:element>

42 <xs:element name=”type.code”>
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43 <xs:complexType mixed=”true” /> </xs:element>

44 <xs:element name=”function”>

45 <xs:complexType mixed=”true” /> </xs:element>

46 <xs:element name=”patient”> <xs:complexType> <xs:sequence>

47 <xs:element ref=”person.name” /> <xs:element ref=”id” maxOccurs=”unbounded” />

48 <xs:element ref=”birth.date” /> </xs:sequence> </xs:complexType>

49 </xs:element>

50 <xs:element name=”codes”> <xs:complexType> <xs:sequence>

51 <xs:element ref=”coded.value” maxOccurs=”unbounded” />

52 </xs:sequence> </xs:complexType> </xs:element>

53 <xs:element name=”birth.date”>

54 <xs:complexType mixed=”true” /> </xs:element>

55 <xs:element name=”city”>

56 <xs:complexType mixed=”true” /> </xs:element>

57 <xs:element name=”clinical.body”>

58 <xs:complexType> <xs:sequence>

59 <xs:element ref=”clinical.history” />

60 <xs:element ref=”preoperative.diagnosis” />

61 <xs:element ref=”postoperative.diagnosis” />

62 <xs:element ref=”operative.procedure” />

63 <xs:element ref=”operative.findings” />

64 <xs:element ref=”parts” />

65 </xs:sequence> </xs:complexType>

66 </xs:element> </xs:element>

67 <xs:element name=”clinical.history”> <xs:complexType mixed=”true” /> </xs:element>

68 <xs:element name=”coded.value”> <xs:complexType mixed=”true”>

69 <xs:attribute name=”code.system” type=”xs:NMTOKEN” use=”required” />

70 </xs:complexType> </xs:element>
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71 <xs:element name=”diagnosis”> <xs:complexType mixed=”true” /> </xs:element>

72 <xs:element name=”family”>

73 <xs:complexType mixed=”true” /> </xs:element>

74 <xs:element name=”given”> <xs:complexType mixed=”true”>

75 <xs:attribute name=”type” type=”xs:NMTOKEN” use=”optional” />

76 </xs:complexType> </xs:element>

77 <xs:element name=”gross.description”> <xs:complexType mixed=”true” /> </xs:element>

78 <xs:element name=”house.number”> <xs:complexType mixed=”true” /> </xs:element>

79 <xs:element name=”operative.findings”>

80 <xs:complexType mixed=”true” /> </xs:element>

81 <xs:element name=”operative.procedure”>

82 <xs:complexType mixed=”true” /> </xs:element>

83 <xs:element name=”part”> <xs:complexType> <xs:sequence>

84 <xs:element ref=”gross.description” />

85 <xs:element ref=”tissue.source” /> <xs:element ref=”diagnosis” />

86 </xs:sequence>

87 <xs:attribute name=”name” type=”xs:NMTOKEN” use=”required” />

88 <xs:attribute name=”frozen” type=”xs:NMTOKEN” use=”optional” />

89 </xs:complexType> </xs:element>

90 <xs:element name=”parts”> <xs:complexType> <xs:sequence>

91 <xs:element ref=”part” maxOccurs=”unbounded” />

92 </xs:sequence> </xs:complexType> </xs:element>

93 <xs:element name=”pathology.report”> <xs:complexType> <xs:sequence>

94 <xs:element ref=”clinical.header” /> <xs:element ref=”clinical.body” />

95 </xs:sequence> </xs:complexType> </xs:element>

96 <xs:element name=”postoperative.diagnosis”>

97 <xs:complexType mixed=”true” /> </xs:element>

98 <xs:element name=”prefix”> <xs:complexType mixed=”true”>
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99 <xs:attribute name=”type” type=”xs:NMTOKEN” use=”required” />

100 </xs:complexType> </xs:element>

101 <xs:element name=”preoperative.diagnosis”>

102 <xs:complexType mixed=”true” /> </xs:element>

103 <xs:element name=”state”> <xs:complexType mixed=”true” /> </xs:element>

104 <xs:element name=”street”> <xs:complexType mixed=”true” /> </xs:element>

105 <xs:element name=”suffix”> <xs:complexType mixed=”true”>

106 <xs:attribute name=”type” type=”xs:NMTOKEN” use=”optional” />

107 </xs:complexType> </xs:element>

108 <xs:element name=”telephone”> <xs:complexType mixed=”true” /> </xs:element>

109 <xs:element name=”tissue.source”> <xs:complexType mixed=”true” /> </xs:element>

110 <xs:element name=”uri”> <xs:complexType mixed=”true”>

111 <xs:attribute name=”type” type=”xs:NMTOKEN” use=”required” />

112 </xs:complexType> </xs:element>

113 <xs:element name=”zip”> <xs:complexType mixed=”true” /> </xs:element>

114 </xs:schema>



Appendix C: OWL Ontology Result

Following is the OWL ontology result from the pathology.report.xsd presented in Appendix B:

Listing C.1: OWL Ontology Result.

1 <?xml version=”1.0”?>

2 <rdf:RDF

3 xmlns=”http://www.owl−ontologies.com/pathology report.owl#”

4 xmlns:rdf=”http://www.w3.org/1999/02/22−rdf−syntax−ns#”

5 xmlns:xsd=”http://www.w3.org/2001/XMLSchema#”

6 xmlns:rdfs=”http://www.w3.org/2000/01/rdf−schema#”

7 xmlns:owl=”http://www.w3.org/2002/07/owl#”

8 xml:base=”http://www.owl−ontologies.com/pathology report.owl”>

9 <owl:Class rdf:ID=”pathology.report”/>

10 <owl:Class rdf:ID=”patient”/>

11 <owl:Class rdf:ID=”provider”/>

12 <owl:Class rdf:ID=”parts”/>

13 <owl:Class rdf:ID=”addr”>

14 <rdfs:subClassOf> <owl:Restriction>

15 <owl:cardinality rdf:datatype=”http://www.w3.org/2001/XMLSchema#int”>

16 1</owl:cardinality>

17 <owl:onProperty> <owl:DatatypeProperty rdf:ID=”uri type”/>
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18 </owl:onProperty> </owl:Restriction> </rdfs:subClassOf>

19 <rdfs:subClassOf> <owl:Restriction>

20 <owl:cardinality rdf:datatype=”http://www.w3.org/2001/XMLSchema#int”>

21 1</owl:cardinality>

22 <owl:onProperty> <owl:DatatypeProperty rdf:ID=”type”/>

23 </owl:onProperty> </owl:Restriction> </rdfs:subClassOf>

24 <rdfs:subClassOf rdf:resource=”http://www.w3.org/2002/07/owl#Thing”/>

25 </owl:Class>

26 <owl:Class rdf:ID=”part”>

27 <rdfs:subClassOf> <owl:Restriction>

28 <owl:onProperty> <owl:DatatypeProperty rdf:ID=”frozen”/> </owl:onProperty>

29 <owl:maxCardinality rdf:datatype=”http://www.w3.org/2001/XMLSchema#int”>

30 1</owl:maxCardinality>

31 </owl:Restriction> </rdfs:subClassOf>

32 <rdfs:subClassOf> <owl:Restriction>

33 <owl:minCardinality rdf:datatype=”http://www.w3.org/2001/XMLSchema#int”>

34 0</owl:minCardinality>

35 <owl:onProperty> <owl:DatatypeProperty rdf:about=”#frozen”/> </owl:onProperty>

36 </owl:Restriction> </rdfs:subClassOf>

37 <rdfs:subClassOf> <owl:Restriction>

38 <owl:onProperty> <owl:DatatypeProperty rdf:ID=”name”/> </owl:onProperty>

39 <owl:cardinality rdf:datatype=”http://www.w3.org/2001/XMLSchema#int”>

40 1</owl:cardinality>

41 </owl:Restriction> </rdfs:subClassOf>

42 <rdfs:subClassOf rdf:resource=”http://www.w3.org/2002/07/owl#Thing”/>

43 </owl:Class>

44 <owl:Class rdf:ID=”patient.encounter”/>

45 <owl:Class rdf:ID=”clinical.header”>
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46 <rdfs:subClassOf> <owl:Restriction>

47 <owl:maxCardinality rdf:datatype=”http://www.w3.org/2001/

48 XMLSchema#int”>1</owl:maxCardinality>

49 <owl:onProperty> <owl:DatatypeProperty rdf:ID=”id type”/> </owl:onProperty>

50 </owl:Restriction> </rdfs:subClassOf>

51 <rdfs:subClassOf> <owl:Restriction>

52 <owl:minCardinality rdf:datatype=”http://www.w3.org/2001/

53 XMLSchema#int”>0</owl:minCardinality>

54 <owl:onProperty> <owl:DatatypeProperty rdf:about=”#id type”/> </owl:onProperty>

55 </owl:Restriction> </rdfs:subClassOf>

56 <rdfs:subClassOf> <owl:Restriction>

57 <owl:maxCardinality rdf:datatype=”http://www.w3.org/2001/

58 XMLSchema#int”>1</owl:maxCardinality>

59 <owl:onProperty> <owl:DatatypeProperty rdf:ID=”authority”/> </owl:onProperty>

60 </owl:Restriction> </rdfs:subClassOf>

61 <rdfs:subClassOf> <owl:Restriction>

62 <owl:minCardinality rdf:datatype=”http://www.w3.org/2001/

63 XMLSchema#int”>0</owl:minCardinality>

64 <owl:onProperty> <owl:DatatypeProperty rdf:about=”#authority”/> </owl:onProperty>

65 </owl:Restriction> </rdfs:subClassOf>

66 <rdfs:subClassOf> <owl:Restriction>

67 <owl:onProperty> <owl:DatatypeProperty rdf:ID=”clinical.header id”/> </owl:onProperty>

68 <owl:minCardinality rdf:datatype=”http://www.w3.org/2001/

69 XMLSchema#int”>1</owl:minCardinality>

70 </owl:Restriction> </rdfs:subClassOf>

71 <rdfs:subClassOf rdf:resource=”http://www.w3.org/2002/07/owl#Thing”/>

72 </owl:Class>

73 <owl:Class rdf:ID=”codes”> <rdfs:subClassOf> <owl:Restriction>
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74 <owl:minCardinality rdf:datatype=”http://www.w3.org/2001/

75 XMLSchema#int”>1</owl:minCardinality>

76 <owl:onProperty> <owl:DatatypeProperty rdf:ID=”coded.value”/> </owl:onProperty>

77 </owl:Restriction> </rdfs:subClassOf>

78 <rdfs:subClassOf> <owl:Restriction>

79 <owl:cardinality rdf:datatype=”http://www.w3.org/2001/

80 XMLSchema#int”>1</owl:cardinality>

81 <owl:onProperty> <owl:DatatypeProperty rdf:ID=”coded.system”/> </owl:onProperty>

82 </owl:Restriction> </rdfs:subClassOf>

83 <rdfs:subClassOf rdf:resource=”http://www.w3.org/2002/07/owl#Thing”/>

84 </owl:Class>

85 <owl:Class rdf:ID=”clinical.body”/>

86 <owl:Class rdf:ID=”person.name”>

87 <rdfs:subClassOf> <owl:Restriction>

88 <owl:maxCardinality rdf:datatype=”http://www.w3.org/2001/

89 XMLSchema#int”>1</owl:maxCardinality>

90 <owl:onProperty> <owl:DatatypeProperty rdf:ID=”suffix type”/> </owl:onProperty>

91 </owl:Restriction> </rdfs:subClassOf>

92 <rdfs:subClassOf> <owl:Restriction>

93 <owl:onProperty> <owl:DatatypeProperty rdf:about=”#suffix type”/> </owl:onProperty>

94 <owl:minCardinality rdf:datatype=”http://www.w3.org/2001/

95 XMLSchema#int”>0</owl:minCardinality>

96 </owl:Restriction> </rdfs:subClassOf>

97 <rdfs:subClassOf> <owl:Restriction>

98 <owl:cardinality rdf:datatype=”http://www.w3.org/2001/

99 XMLSchema#int”>1</owl:cardinality>

100 <owl:onProperty> <owl:DatatypeProperty rdf:ID=”prefix type”/> </owl:onProperty>

101 </owl:Restriction> </rdfs:subClassOf>
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102 <rdfs:subClassOf> <owl:Restriction>

103 <owl:onProperty> <owl:DatatypeProperty rdf:ID=”given type”/> </owl:onProperty>

104 <owl:maxCardinality rdf:datatype=”http://www.w3.org/2001/

105 XMLSchema#int”>1</owl:maxCardinality>

106 </owl:Restriction> </rdfs:subClassOf>

107 <rdfs:subClassOf> <owl:Restriction>

108 <owl:onProperty> <owl:DatatypeProperty rdf:about=”#given type”/> </owl:onProperty>

109 <owl:minCardinality rdf:datatype=”http://www.w3.org/2001/

110 XMLSchema#int”>0</owl:minCardinality>

111 </owl:Restriction> </rdfs:subClassOf>

112 <rdfs:subClassOf rdf:resource=”http://www.w3.org/2002/07/owl#Thing”/>

113 </owl:Class>

114 <owl:ObjectProperty rdf:ID=”has parts”>

115 <rdfs:domain rdf:resource=”#clinical.body”/> <rdfs:range rdf:resource=”#parts”/>

116 </owl:ObjectProperty>

117 <owl:ObjectProperty rdf:ID=”has person.name”>

118 <rdfs:range rdf:resource=”#person.name”/>

119 <rdfs:domain> <owl:Class>

120 <owl:unionOf rdf:parseType=”Collection”> <owl:Class rdf:about=”#patient”/>

121 <owl:Class rdf:about=”#provider”/> </owl:unionOf> </owl:Class>

122 </rdfs:domain> </owl:ObjectProperty>

123 <owl:ObjectProperty rdf:ID=”has addr”>

124 <rdfs:domain rdf:resource=”#provider”/> <rdfs:range rdf:resource=”#addr”/>

125 </owl:ObjectProperty>

126 <owl:ObjectProperty rdf:ID=”has codes”>

127 <rdfs:range rdf:resource=”#codes”/> <rdfs:domain rdf:resource=”#clinical.header”/>

128 </owl:ObjectProperty>

129 <owl:ObjectProperty rdf:ID=”has patient”>
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130 <rdfs:range rdf:resource=”#patient”/> <rdfs:domain rdf:resource=”#clinical.header”/>

131 </owl:ObjectProperty>

132 <owl:ObjectProperty rdf:ID=”has part”>

133 <rdfs:domain rdf:resource=”#parts”/> <rdfs:range rdf:resource=”#part”/>

134 </owl:ObjectProperty>

135 <owl:DatatypeProperty rdf:about=”#clinical.header id”>

136 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

137 <rdfs:domain rdf:resource=”#clinical.header”/> </owl:DatatypeProperty>

138 <owl:DatatypeProperty rdf:ID=”patient.encounter id”>

139 <rdfs:domain rdf:resource=”#patient.encounter”/>

140 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

141 </owl:DatatypeProperty>

142 <owl:DatatypeProperty rdf:ID=”city”>

143 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

144 <rdfs:domain rdf:resource=”#addr”/> </owl:DatatypeProperty>

145 <owl:DatatypeProperty rdf:ID=”operative.findings”>

146 <rdfs:domain rdf:resource=”#clinical.body”/>

147 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

148 </owl:DatatypeProperty>

149 <owl:DatatypeProperty rdf:about=”#coded.value”> <rdfs:domain rdf:resource=”#codes”/>

150 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

151 </owl:DatatypeProperty>

152 <owl:DatatypeProperty rdf:about=”#uri type”>

153 <rdfs:subPropertyOf> <owl:DatatypeProperty rdf:ID=”uri”/> </rdfs:subPropertyOf>

154 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#NMTOKEN”/>

155 </owl:DatatypeProperty>

156 <owl:DatatypeProperty rdf:about=”#given type”>

157 <rdfs:subPropertyOf> <owl:DatatypeProperty rdf:ID=”given”/> </rdfs:subPropertyOf>
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158 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#NMTOKEN”/>

159 </owl:DatatypeProperty>

160 <owl:DatatypeProperty rdf:about=”#authority”>

161 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#NMTOKEN”/>

162 <rdfs:subPropertyOf> <owl:DatatypeProperty rdf:ID=”id”/> </rdfs:subPropertyOf>

163 </owl:DatatypeProperty>

164 <owl:DatatypeProperty rdf:ID=”street”>

165 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

166 <rdfs:domain rdf:resource=”#addr”/> </owl:DatatypeProperty>

167 <owl:DatatypeProperty rdf:ID=”prefix”> <rdfs:domain rdf:resource=”#person.name”/>

168 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

169 </owl:DatatypeProperty>

170 <owl:DatatypeProperty rdf:ID=”tissue.source”>

171 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

172 <rdfs:domain rdf:resource=”#part”/> </owl:DatatypeProperty>

173 <owl:DatatypeProperty rdf:about=”#given”>

174 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

175 <rdfs:domain rdf:resource=”#person.name”/> </owl:DatatypeProperty>

176 <owl:DatatypeProperty rdf:ID=”birth.date”>

177 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#date”/>

178 <rdfs:domain rdf:resource=”#patient”/> </owl:DatatypeProperty>

179 <owl:DatatypeProperty rdf:ID=”zip”>

180 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

181 <rdfs:domain rdf:resource=”#addr”/> </owl:DatatypeProperty>

182 <owl:DatatypeProperty rdf:ID=”suffix”> <rdfs:domain rdf:resource=”#person.name”/>

183 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

184 </owl:DatatypeProperty>

185 <owl:DatatypeProperty rdf:ID=”family”> <rdfs:domain rdf:resource=”#person.name”/>
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186 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

187 </owl:DatatypeProperty>

188 <owl:DatatypeProperty rdf:ID=”location”>

189 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

190 <rdfs:domain rdf:resource=”#patient.encounter”/> </owl:DatatypeProperty>

191 <owl:DatatypeProperty rdf:about=”#coded.system”>

192 <rdfs:subPropertyOf rdf:resource=”#coded.value”/>

193 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#NMTOKEN”/>

194 </owl:DatatypeProperty>

195 <owl:DatatypeProperty rdf:ID=”practical.setting”>

196 <rdfs:domain rdf:resource=”#patient.encounter”/>

197 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

198 </owl:DatatypeProperty>

199 <owl:DatatypeProperty rdf:about=”#suffix type”>

200 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#NMTOKEN”/>

201 <rdfs:domain rdf:resource=”#person.name”/>

202 <rdfs:subPropertyOf rdf:resource=”#suffix”/> </owl:DatatypeProperty>

203 <owl:DatatypeProperty rdf:about=”#frozen”>

204 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#NMTOKEN”/>

205 </owl:DatatypeProperty>

206 <owl:DatatypeProperty rdf:ID=”type.code”>

207 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

208 <rdfs:domain rdf:resource=”#provider”/> </owl:DatatypeProperty>

209 <owl:DatatypeProperty rdf:about=”#type”> <rdfs:domain rdf:resource=”#addr”/>

210 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#NMTOKEN”/>

211 </owl:DatatypeProperty>

212 <owl:DatatypeProperty rdf:about=”#id”>

213 <rdfs:domain> <owl:Class> <owl:unionOf rdf:parseType=”Collection”>
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214 <owl:Class rdf:about=”#patient”/> <owl:Class rdf:about=”#provider”/>

215 </owl:unionOf> </owl:Class> </rdfs:domain>

216 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

217 </owl:DatatypeProperty>

218 <owl:DatatypeProperty rdf:about=”#id type”>

219 <rdfs:subPropertyOf rdf:resource=”#id”/>

220 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#NMTOKEN”/>

221 </owl:DatatypeProperty>

222 <owl:DatatypeProperty rdf:ID=”clinical.history”>

223 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

224 <rdfs:domain rdf:resource=”#clinical.body”/> </owl:DatatypeProperty>

225 <owl:DatatypeProperty rdf:ID=”function”> <rdfs:domain rdf:resource=”#provider”/>

226 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

227 </owl:DatatypeProperty>

228 <owl:DatatypeProperty rdf:ID=”preoperative.diagnosis”>

229 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

230 <rdfs:domain rdf:resource=”#clinical.body”/> </owl:DatatypeProperty>

231 <owl:DatatypeProperty rdf:about=”#uri”> <rdfs:domain rdf:resource=”#addr”/>

232 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

233 </owl:DatatypeProperty>

234 <owl:DatatypeProperty rdf:ID=”gross.description”>

235 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

236 <rdfs:domain rdf:resource=”#part”/> </owl:DatatypeProperty>

237 <owl:DatatypeProperty rdf:ID=”telephone”>

238 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

239 <rdfs:domain rdf:resource=”#addr”/> </owl:DatatypeProperty>

240 <owl:DatatypeProperty rdf:ID=”date.time”>

241 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#dateTime”/>
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242 <rdfs:domain rdf:resource=”#patient.encounter”/> </owl:DatatypeProperty>

243 <owl:DatatypeProperty rdf:about=”#prefix type”>

244 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#NMTOKEN”/>

245 <rdfs:subPropertyOf rdf:resource=”#prefix”/> </owl:DatatypeProperty>

246 <owl:DatatypeProperty rdf:ID=”clinical.header id type”>

247 <rdfs:subPropertyOf rdf:resource=”#clinical.header id”/>

248 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#NMTOKEN”/>

249 </owl:DatatypeProperty>

250 <owl:DatatypeProperty rdf:ID=”operative.procedure”>

251 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

252 <rdfs:domain rdf:resource=”#clinical.body”/> </owl:DatatypeProperty>

253 <owl:DatatypeProperty rdf:ID=”state”>

254 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

255 <rdfs:domain rdf:resource=”#addr”/> </owl:DatatypeProperty>

256 <owl:DatatypeProperty rdf:ID=”postoperative.diagnosis”>

257 <rdfs:domain rdf:resource=”#clinical.body”/>

258 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

259 </owl:DatatypeProperty>

260 <owl:DatatypeProperty rdf:ID=”diagnosis”>

261 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

262 <rdfs:domain rdf:resource=”#part”/> </owl:DatatypeProperty>

263 <owl:DatatypeProperty rdf:ID=”house.number”> <rdfs:domain rdf:resource=”#addr”/>

264 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

265 </owl:DatatypeProperty>

266 <owl:DatatypeProperty rdf:about=”#name”> <rdfs:domain rdf:resource=”#part”/>

267 <rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#NMTOKEN”/>

268 </owl:DatatypeProperty>

269 </rdf:RDF>



References

[1] Ritesh Agrawal. Difference between OWL Lite, DL, and Full,

http://ragrawal.wordpress.com/2007/02/20/difference-between-owl-lite-dl-and-full/, 2007.

[2] A. Algergawy, R. Nayak, and G. Saake. Element similarity measures in XML schema matching.

Information Sciences, 180:4975–4998, 2010.

[3] B. Amann, C. Beeri, I. Fundulaki, and M. Scholl. Ontology-based integration of XML Web re-

sources. In Ian Horrocks and James A. Hendler, editors, Proceedings of 1st International Semantic

Web Conference, pages 117–131, Sardinia, Italy, June 2002. Springer.

[4] Yuan An, Alex Borgida, and John Mylopoulos. Discovering and maintaining semantic mappings

between XML Schemas and Ontologies. Journal of Computing Science and Engineering, 2 No.

1:44–73, 2008.

[5] Franz Baader, Baris Sertkaya, and Anni-Yasmin Turhan. Computing the leastcommon subsumer

w.r.t. a background terminology. Journal of Applied Logic, 5 (3):392420, 2007.

[6] BackOffice. HIT Software - Database XML Mapping, http://www.hitsw.com/xml utilites/, 2012.

[7] Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernndez, Michael Kay,

Jonathan Robie, and Jrme Simon. XML Path Language (XPath) 2.0 (Second Edition),

https://developer.mozilla.org/en/XPath, 2011.

118



REFERENCES 119

[8] E. Bertinoa, G. Guerrinib, and M. Mesitia. A matching algorithm for measuring the structural sim-

ilarity between an XML document and a DTD and its applications. Information Systems Journal,

29(1):23–46, 2004.

[9] Philip Bille. A survey on tree edit distance and related problems. Theor. Comput. Sci, 337:217–239,

2005.

[10] Hannes Bohring and S”oren Auer. Mapping XML to OWL Ontologies. In Klaus P. Jantke, Klaus-

Peter Fähnrich, and Wolfgang S. Wittig, editors, Marktplatz Internet: Von e-Learning bis e-Payment,

pages 147–156, Leipzig, September 2005. GI.

[11] Mr. Bool. E-learning xml on sql server, http://mrbool.com/course/e-learning-xml-on-sql-server/260,

2012.

[12] Jon Bosak. The Role of XML in eBusiness. In ebXML Iformation Day, Vienna, pages 1–24, 2001.

[13] Daniela F. Brauner, Alexandre Gazola, Marco A. Casanova, and Karin K. Breitman. Adaptative

matching of database Web services export schemas. In 10th Int’l Conf. on Enterprise Information

Systems, 2008.

[14] David Buttler. A short survey of document structure similarity algorithms. In Hamid R. Arab-

nia and Olaf Droegehorn, editors, International Conference on Internet Computing, pages 3–9,

Nevada,USA, June 2004. Morgan Kaufmann.

[15] Jeremy J. Carroll and Dave Turner. The Consistency of OWL Full. In The 7th International Semantic

Web Conference, pages 1–17, 2008.

[16] Christian Charras and Thierry Lecroq. Exact String Matching Algorithms, http://www-igm.univ-

mlv.fr/ lecroq/string/, 1997.

[17] Sudarshan Chawathe. Comparing Hierarchical Data in External Memory. In Malcolm P. Atkinson,

Maria E. Orlowska, Patrick Valduriez, Stanley B. Zdonik, and Michael L. Brodie, editors, Proceed-

ings of the Twenty-fifth International Conference on Very Large Data, pages 90–101, Scotland, UK,

September 1999. Morgan Kaufmann.

[18] Claudiu Chiru, Raluca Pacuraru, and Eliza Isbasoiu. XML in E-Learning. In The 5th International

Scientific Conference eLSE ”eLearning and Software for Education”, pages 1–8, 2009.



REFERENCES 120

[19] William W. Cohen, Alex Borgida, and Haym Hirsh. Computing Least Common Subsumers in De-

scription Logics. In William R. Swartout, editor, Proceedings of the 10th International Conference

of Artificial Intelligence, pages 96–103, San Jose, CA, July 1992. AAAI Press / The MIT Press.

[20] Robin Cover. The Cover Pages: Schema for Patient Medical Record,

http://xml.coverpages.org/BordenASTM20010314.html, 2001.

[21] Robin Cover. Health Level Seven XML Patient Record Architecture,

http://xml.coverpages.org/hl7pra.html, 2012.

[22] C. Cruz and C. Nicolle. Ontology enrichment and automatic population from XML data. In 4th

Int’l VLDB Workshop on Ontology-based Techniques for Databases in Information Systems and

Knowledge Systems, pages 17–20, Auckland, New Zealand, August 2008. IEEE Computer Society.

[23] T. Dalamagas, T. Chang, K.-J. Winkel, and T. Sellis. A methodology for clustering XML documents

by structure. Inform. Syst., 31(3):187228, 2006.

[24] Hong-Hai Do and Erhard Rahm. COMA - a System for Flexible Combination of Schema Matching

Approaches. In VLDB, pages 610–621, Hong Kong, China, August 2002. Morgan Kaufmann.

[25] EGOV. XML Archive, eGoverment Resource Center , http://www.egov.vic.gov.au/website-

practice/mark-up-languages/xml/xml-archive.html, 2012.

[26] M. Ferdinand, C. Zirpins, and D. Trastour. Lifting XML Schema to OWL. In Nora Koch, Piero Fra-

ternali, and Martin Wirsing, editors, Proceedings of 4th ICWE, pages 354–358, Munich, Germany,

July 2004. Munich, Germany.

[27] D. Foetsch and E. Pulvermeller. A concept and implementation of higher-level XML transformation

languages. Knowledge-Based Systems, 22(3):186–194, 2009.

[28] Nir Friedman, Michal Linial, Iftach Nachman, and Dana Pe’er. Using Bayesian Networks to Analyze

Expression Data. In Proceedings of the Fourth Annual International Conference on Computational

Molecular Biology, page 601620, 2000.

[29] E. Garcia. Cosine Similarity, http://www.miislita.com/information-retrieval-tutorial/cosine-

similarity-tutorial.html, 2006.

[30] E. Garcia. Business dictionary, http://www.businessdictionary.com/definition/, 2012.



REFERENCES 121

[31] Thomas R. Gruber. A translation approach to portable ontology specifications. Knowledge Acquisi-

tion, 5:199221, 1993.

[32] T. D. Gunter and N. P. Terry. The Emergence of National Electronic Health Record Architectures in

the United States and Australia: Models, costs, and questions. Journal of Medical Internet Research,

February 2005.

[33] Anna Harvey. XML Forms in an E-Government Architecture. In Down to Business: Getting serious

about XML, pages 8–16, 2002.

[34] Sandro Hawke. XML with Relational Semantics: Bridging the Gap to RDF and the Semantic Web,

http://www.w3.org/2001/05/xmlrs/, 2001.

[35] Longtao He, Binxing Fan, and Jie Sui. The wide window string matching algorithm. Journal of

Theoretical Computer Science, 332:391–404, 2005.

[36] Ian Horrocks, Bijan Parsia, Peter Patel-Schneider, and James Hendler. Semantic Web Architecture:

Stack or Two Towers? In François Fages and Sylvain Soliman, editors, Proceedings of Principles

and Practice of Semantic Web Reasoning, pages 37–41, Dagstuhl Castle, Germany, September 2005.

Springer.

[37] Ian Horrocks, Alan Ruttenberg, Sandro Hawke, and Ivan Herman. Owl working group,

http://www.w3.org/2007/owl/wiki/owl working group, 2011.

[38] Urban Institute and Brookings Institution. The Budget Process: What is PAYGO?,

http://www.taxpolicycenter.org/briefing-book/background/budget-process/paygo.cfm, 2008.

[39] B. Jeong. Machine learning-based semantic similarity measures to assist discovery and reuse of

data exchange XML schemas. PhD thesis, Department of Industrial and Management Engineering,

Pohang University of Science and Technology, 2006.

[40] Buhwan Jeong, Daewon Lee, Hyunbo Cho, and Jaewook Lee. A novel method for measuring se-

mantic similarity for XML schema matching. Expert Syst. Appl., 34(3):1651–1658, 2008.

[41] Micheal Jervis. XML DTD vs XML Schema, http://www.sitepoint.com/xml-dtds-xml-schema/,

November 2002.



REFERENCES 122

[42] J. Jiang and D. Conrath. Semantic similarity based on corpus statistics and lexical taxonomy. In

Proceedings of International Conference Research on Computer Linguistics X, Taiwan, page 15

pages, 1997.

[43] Adrovane M. Kade and Carlos A. Heuser. Matching XML documents in highly dynamic applica-

tions. In Maria da Graça Campos Pimentel, Dick C. A. Bulterman, and Luiz Fernando Gomes Soares,

editors, Proceedings of the eighth ACM symposium on Document engineering, pages 191–198, Sao

Paulo, Brazil, September 2008. ACM.

[44] Seiji Koide and Hideaki Takeda. OWL-Full reasoning from an object oriented perspective. In

Riichiro Mizoguchi, Zhongzhi Shi, and Fausto Giunchiglia, editors, ASWC’06 Proceedings of the

First Asian conference on The Semantic Web, pages 263–277, Beijing, China, September 2006.

Springer.

[45] Gert Korthof. Information Content, Compressibility and Meaning, http://home.wxs.nl/ gkorthof/ko-

rtho44a.htm, 2011.

[46] C. Leacock and M. Chodorow. Combining local context and WordNet similarity for word sense

identification. In In WordNet: An Electronic Lexical Database, pages 265–283, 1998.

[47] Mong Li Lee, L. H. Yang, W. Hsu, and X. Yang. XClust: Clustering XML Schemas for Effective

Integration. In ACM Press, pages 292–299, VA, USA, November 2002. ACM.

[48] Thomas Lee, C.T. Hon, and David Cheung. XML Schema Design and Management for e-

Government Data Interoperability. Electronic Journal of e-Government, 7, Issue 4:381–390, 2009.

[49] Leipzig. Database group, COMA++, http://dbs.uni-leipzig.de/research/coma.html.

[50] Lus Leito, Pvel Calado, and Melanie Weis. Structure-based inference of XML similarity for fuzzy

duplicate detection. In Mário J. Silva, Alberto H. F. Laender, Ricardo A. Baeza-Yates, Deborah L.

McGuinness, Bjørn Olstad, Øystein Haug Olsen, and André O. Falcão, editors, Proceedings of the
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