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Abstract

Medical procedures have become a critical application area that makes substantial use
of image processing. Medical image processing tasks mainly deal with image enhance-
ment and segmentation, i.e., filtering, sharpening, and bringing out image details, and
quantitatively measuring medical conditions such as vessel size, tumor volume, or bone
fracture length. Over a long time, medical image processing problems were tackled by
a pool of heuristic and low level mathematical operators. Simple heuristic approaches,
e.g., histogram equalization, can provide surprisingly good results; however, one cannot
know exactly when and why they work or do not work. Recently, the use of variational
methods in image processing has emerged as an interesting research topic. Variational
methods can be based on either the optimization of a energy functional or the design of
a partial differential equation (PDE) whose steady state is the solution of the problem
at hand. The advantage of these methods is that the theory behind the concept is well
defined. However, the direct application of variational method (as it is) to medical image
processing suffers from limited performance since medical images are of very poor quality.
It means that purely image-driven methods can hardly work for medical images. In order
to find a better solution, one has search on a solution space that is constrained by prior
knowledge about the object of interest.

In this thesis, I proposed two novel variational algorithms for medical image process-
ing that incorporate knowledge about the structure of interest (vessels, tissues, or bones,
etc.) and the imaging modality which is usually known in advance. The first algorithm
involved the design of a PDE for curvilinear structure enhancement. Curvilinear struc-
tures are targeted as they resemble the image representation of an important organ: blood
vessel, which is critical in diagnosis of many injuries in heart, retina, or brain, etc. Here,
the prior knowledge is the fact that a vessel has linear elongated structure and a Gaus-
sian profile across its width (the intensity is highest at the vessel’s center and gradually
decreased towards its two sides). This is because the blood itself or the contrast agent
it carries determines the contrast of the vessel, leading to higher intensity at the vessel’s
center and lower intensity at its sides. Unlike conventional approaches that use Hessian



tensor to detect the elongated structure and suffer from the junction suppression problem,
the proposed approach utilizes directional filter bank (DFB). DFB provides more global
directional information than the Hessian tensor does. The proposed approach was shown
to be able to overcome the junction suppression problem.

The second algorithm involved the development of an active contour for inhomogeneous
structure segmentation. Here, the prior knowledge resides in the fact that distinct organs
shall generate distinct configurations (intensity) in the image. As a result, density function
of the foreground (object of interest) should be at far distance from that of the background.
Chan-Vese model expresses this “difference” characteristic by only the mean values of the
foreground and the background, which is effective for largely homogeneous structures.
However, objects in medical images, e.g., bones in CT images, are often inhomogeneous.
The proposed model therefore expresses the “difference” characteristic using the whole
density function itself and reflects it to the energy functional in the form of a Bhattacharrya
distance. Minimization of the proposed energy functional leads to a novel active contour
model that can robustly segment inhomogeneous objects.

The two proposed models have been extensively evaluated using various synthetic
images as well as real medical images such as angiography and CT in comparison with
many existing approaches. Experimental results showed that the proposed models provide
better performances most of the time.

Thesis Supervisor: Sungyoung Lee
Title: Professor



Acknowledgments

I would like to thank Prof. Sungyoung Lee and Prof. Young-Koo Lee, whose excellent

supervising and guidance have always inspired me, not only for providing me the opportu-

nity to carry out this work in the Ubiquitous Computing Laboratory but also for leaving

me a lot of freedom to do that.

I wish to express my deep gratitude to Prof. Tae-Seong Kim, who drew my interest

to variational approaches in image processing, and Prof. Md. A. U. Khan, without whose

instructions the work in Chapter 3 would certainly not be accomplished. Apart from their

invaluable advices and discussions, they taught me how to write my ideas down in a way

that gives other people a chance to understand them as well.

Special thanks I would like to address to Prof. Ok-Sam Chae whose interesting lectures

equipped me with fundamental and necessary knowledge in digital image processing.

I am also in debt of my thesis committee whose comments helped to very much improve

the presentation of the thesis.

Many thanks to my friends in the Ubiquitous Computing Lab, the Bio-imaging Lab,

and especially the Activity Recognition Team for their collaboration and encouragement

over the last four years. Also to Leslie Lamport and Donald Knuth for LATEX and TEX,

without which I would have had much less fun formatting my thesis.

Last but not least, this thesis will never be completed without the constant support

and encouragement from my family. Thank you, Mom, Dad, and Aunt 6. I also owe a lot

of thanks to my brother and little sister whose efforts of taking over my duty in taking

care of our parents have helped to keep my mind on this work. Very special thanks to my

wife, Phuong Toan, who ensured a warm home for me to come back after hard lab. days,

for her understanding and love.



Contents

List of Figures 10

List of Tables 12

1 Introduction 13

2 Variational Methods in Image Processing 20

2.1 Diffusion Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.1 Linear diffusion and scale-space properties . . . . . . . . . . . . . . . 23

2.1.2 Isotropic nonlinear diffusion . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.3 Anisotropic diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Structure Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Hessian Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Directional Filter Bank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1 First stage of DFB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.2 Second stage of DFB . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.3 Third stage of DFB . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Active Contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.2 Traditional AC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5.3 Gradient Vector Flow AC . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.4 (Original) Geometric AC . . . . . . . . . . . . . . . . . . . . . . . . 43

7



2.5.5 Geodesic AC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5.6 GVF-Geometric AC . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5.7 Chan-Vese AC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.6 Relation between Diffusion Filters and Active Contours . . . . . . . . . . . 49

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Curvilinear Structure Enhancement 54

3.1 Hessian Based Enhancement Filter . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 DDFB Based Enhancement Filter . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.1 Decimation-free directional filter bank . . . . . . . . . . . . . . . . . 58

3.2.2 A comparative analysis between DDFB and DFB . . . . . . . . . . . 63

3.2.3 Step 1: construction of directional images . . . . . . . . . . . . . . . 65

3.2.4 Step 2: directional image enhancement . . . . . . . . . . . . . . . . . 66

3.2.5 Step 3: recombination of enhanced directional images . . . . . . . . 68

3.3 Application: Vessel Enhancement . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.1 Junction suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3.2 Noise sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3.3 Real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4 Inhomogeneous Object Segmentation 87

4.1 Problems of Chan-Vese Active Contours . . . . . . . . . . . . . . . . . . . . 89

4.2 Density Distance Augmented Chan-Vese Active Contours (Aug. CV AC) . 90

4.2.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2.2 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Application: Bone Segmentation From CT Images . . . . . . . . . . . . . . 98

4.3.1 Parameter setting and tuning . . . . . . . . . . . . . . . . . . . . . . 101

4.3.2 Testing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.3 Evaluation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



4.3.4 Sensitivity to β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3.5 Topology-adaptability and initialization-insensitivity . . . . . . . . . 104

4.3.6 Experiment 1 - Performance at Various Contrast Levels . . . . . . . 105

4.3.7 Experiment 2 - Performance at Various Noise Levels . . . . . . . . . 109

4.3.8 Experiment 3 - Performance with Real Data . . . . . . . . . . . . . 109

4.3.9 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5 Contributions and Conclusions 115

Publications 119

Bibliography 122



List of Figures

2-1 Smoothing a vessel image with Gaussian kernel of different scales. . . . . . 24

2-2 Example of coherence-enhancing diffusion. . . . . . . . . . . . . . . . . . . . 30

2-3 The directional filter bank structure. . . . . . . . . . . . . . . . . . . . . . . 32

2-4 Downsampling and rotation effects of Quincunx matrix Q. . . . . . . . . . . 33

2-5 Eight sample directional subbands of an image. . . . . . . . . . . . . . . . . 35

2-6 Natural topological change handling of the level-set method. . . . . . . . . . 39

2-7 Inability to move into boundary concavities of a traditional snake. . . . . . 42

2-8 Sample result of the gradient vector flow snake. . . . . . . . . . . . . . . . . 44

2-9 All possible relative positions of the curve with respect to the object. . . . . 48

2-10 De-noising a retinal image with self-snakes. . . . . . . . . . . . . . . . . . . 51

2-11 Taxonomy of variational methods in image processing. . . . . . . . . . . . . 53

3-1 Block diagram of the proposed enhancement framework. . . . . . . . . . . . 59

3-2 The decimation-free directional filter bank structure. . . . . . . . . . . . . . 61

3-3 Rules used to shift resampling and downsampling matrix to the right. . . . 62

3-4 Eight sample directional images obtained using DDFB. . . . . . . . . . . . . 64

3-5 Results of non-uniform illumination removal using homomorphic filter. . . . 66

3-6 Angiography images with typical hindrances for accurate vessel-tree recon-

struction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3-7 Block diagrams of conventional Hessian-based and correlation-based ap-

proaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

10



3-8 Vessel enhancement results for a synthetic image. . . . . . . . . . . . . . . . 74

3-9 Testing data with a size of 512× 512 and various amount of white noise. . . 77

3-10 Sample vessel enhancement results. . . . . . . . . . . . . . . . . . . . . . . . 78

3-11 Performance plots of various enhancement filters vs. noise levels. . . . . . . 79

3-12 Qualitative enhancement results for two cardiac angiography images. . . . . 80

3-13 Best and worst enhancement results for the Utrecht database in terms of

AUC measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3-14 Performance plots vs. sample number for the Utrecht database. . . . . . . . 82

3-15 Mean and SD bar plots of AUC vs. noise levels for 40 noise-added ground

truths of the retinal images. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3-16 The coordinates Oxy is rotated to Ox′y′ by a counterclockwise angle θ. . . 86

4-1 Failure of the Chan-Vese active contour on capturing an inhomogeneous

object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4-2 CV fitting term F (C) at every iteration of the CV AC evolution process. . 91

4-3 Results of the Aug. CV AC with various values of β. . . . . . . . . . . . . . 96

4-4 CV fitting term F (C) at every iteration of the Aug. CV AC evolution process. 97

4-5 Segmentation result for a CT image. . . . . . . . . . . . . . . . . . . . . . . 97

4-6 Typical CT bone images with challenging obstacles for accurate segmentation. 99

4-7 Real CT data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4-8 Performances of Aug. CV AC applied on the real CT data set vs. β values. 105

4-9 Topology-adaptability and initialization-sensitivity of various AC models. . 106

4-10 Performance at various contrast levels. . . . . . . . . . . . . . . . . . . . . . 107

4-11 Plots of error means vs. contrast levels. . . . . . . . . . . . . . . . . . . . . 107

4-12 Performance at various noise levels. . . . . . . . . . . . . . . . . . . . . . . . 110

4-13 Plots of error means vs. SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4-14 Two sample CT image segmentation results of five various AC models. . . . 111

4-15 Qualitative performance comparison between CV AC and Aug. CV AC

and the 3D-DOCTOR software. . . . . . . . . . . . . . . . . . . . . . . . . . 112



List of Tables

3.1 Mean and SD of the AUC of the three methods performed on the Utrecht

database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1 Level-set parameters of the classical AC models. . . . . . . . . . . . . . . . 89

4.2 Parameter settings for Experiment 1. . . . . . . . . . . . . . . . . . . . . . . 106

4.3 Mean and SD of error measures for Contrast data set. . . . . . . . . . . . . 108

4.4 Parameter settings for Experiment 2. . . . . . . . . . . . . . . . . . . . . . . 109

4.5 Mean and SD of error measures for Noisy data set. . . . . . . . . . . . . . . 111

4.6 Parameter settings for Experiment 3. . . . . . . . . . . . . . . . . . . . . . . 111

4.7 The mean and SD of error measures of AC models and the 3D-DOCTOR

software performed on sixteen CT images. . . . . . . . . . . . . . . . . . . . 113

12



Chapter 1

Introduction

Image processing is an important component of modern technologies because human de-

pends so much on the visual information. About 99% information we perceive about the

world is obtained with our eyes [111]. In other words, images are better than any other

information form for us to perceive. A digital image is an image of a continuous world

obtained by sampling and quantization. The idea is to superimpose a regular grid on

an analogue image and to assign a discrete quantity to each square of the grid. Mathe-

matically, a digital image may be defined as a two-dimensional function, I(x, y), where x

and y are spatial coordinates. Each pair of coordinates (x, y) is called a pixel, for picture

element, and its value, I, represents for a certain feature of the image. For example, it

can be the intensity, described by a single band (0 to 255) in gray-scale images, a vector

field of two components, or a color vector of three bands: red, green, and blue. Another

important characteristic of an image is its resolution (or size). It is the number of rows

and columns in the image. The higher the resolution, the closer the digital image to the

physical world.

A digital image processor can be thought of as an input-output system, where the input

I0 is an acquired image and the output F = T [I0] can be generally any combinations of

features that are visually meaningful. For example, F could be a de-noised version of the

input image, the layout of object boundaries, the disjoint regions associated with distinct

13



CHAPTER 1. INTRODUCTION 14

objects, or the relative depth of different objects in a scene. In general, given the targeted

feature F is known, it is often possible to find a forward problem that generates an image

observation I0 from F . However, most image processing problems are ill-posed inverse

problems, i.e., one has to recover or detect F from I0. This inversion is either instable

or non-unique and thus is ill-posed. That is the reason why designing and computing

T are challenging and there exist no invasive methods that work for most of the image

processing problems.

Digital image processing has impact on many technical endeavor areas. The first one

to mention is remote sensing, an application field where people need to analyze, measure,

or interpret scenes at a distance. Image acquisition used for these purposes is usually

based on the visual and infrared bands of the electromagnetic spectrum. The mission of

image processing here is to provide tools to track and quantify changes in forests, water

supplies, urbanization, pollution, etc. or to observe and forecast weather. Also using

the visual bands, video surveillance is another important area. The main task here is to

detect unusual activity of an object by analyzing its motion from a sequence of frames. In

robotics, images acquired from optical robotic sensors must be processed with accounting

for perspective geometry and photogrammetric distortions. The processed images here

are used to support autonomous navigation, target identification, and threat avoidance.

Many other applications where image processing is involved include character recognition,

fingerprint analysis, quality control, and 3-D reconstruction of scenes from images.

Medical procedures have also become a critical area that makes substantial use of image

processing. Medical images can be acquired using various modalities such as classical X-ray

imaging or modern computer aided CT, MRI, and PET imaging which are based on a wide

spectrum ranging from gamma rays, X-rays, to ultrasounds. Whereas image processing

tasks in the above-mentioned fields are performed independently by a machine, depending

on the development of artificial intelligence algorithms, medical image processing is often
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a partnership of human and machine. Medicine is clearly of human enterprise. The

detections of pathologies like stenoses or lesions often require decisions from a medical

expert and are ill-suited for execution by a computer. In contrast, computers are more

suitable for preprocessing tasks of filtering, sharpening, and bringing out image details

or for quantitative measurement of medical conditions such as vessel size, tumor volume,

or bone fracture length. These types of processes are tedious and require high accuracy

as well as maximal result reproducibility which cannot be guaranteed in human manual

processes.

Medical image processing can therefore be roughly grouped into three categories:

• Enhancement : Medical images are often noisy due to the acquisition process and the

objects of interest are not well distinguished from others. Enhancement is to bring

out obscured details in an image to improve their appearance. Enhancing vessels

in low contrasted X-ray angiography images or tumor detection from CT images is

such an example.

• Segmentation: This is the task to partition an image into disjoint regions corre-

sponding to distinct organs or objects.

• Registration: This task involves the fusion of various information from multiple

imaging modalities, leading to a more powerful diagnostic tool.

Over a long time, medical image processing problems were tackled by a pool of low level

mathematical operators. These methods are largely heuristic and originated from 1-D sig-

nal processing theory, treating the matter as a high-dimensional form. They mainly involve

in filtering (linear or not), frequency analysis, and some basic concepts of probability and

statistic. This type of processing treats images as complicated audio or radio-frequency

signals, reflecting a bias towards electrical engineering. They are, however, very common

and often covered by any image processing textbook; see e.g., [50] for more details.
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To date, more sophisticated tools have been developed, emerging in three main direc-

tions [23]: stochastic modeling, wavelets, and variational approaches. Stochastic modeling

considers an image either as a composition of an ideal (deterministic) image with some

random part or as a typical sample of a random field like Markov random field. The meth-

ods in this category include statistical pattern theory, learning theory, Bayesian inference

theory for signal and parameter estimation, and stochastic algorithms such as Monte-Carlo

simulation, simulated annealing, and the EM algorithm. These methods are suitable for

images with statistical nature. They are even more powerful when combined with filtering

techniques, dealing with transformed feature spaces rather than pixel domains.

Wavelet theory is inherited from signal processing and decomposition techniques. Un-

like Fourier transform, which mixes long-range spatial information and thus makes itself

less ideal for handling localized visual features like edges, wavelets present locality using

localized bases, which are organized according to different scales or resolutions. Apart

from spatial localization, wavelets are able to reveal important visual cues such as jumps

or edges: wavelet coefficients of a generic piecewise smooth image have significant values

along those discontinuities but are mostly negligible at others. Hence, wavelets are efficient

tools for adaptive image representation and compression.

Variational techniques primarily refer to the optimization of cost functions. All one

need to do is to define a cost functional or energy functional which characterizes the image

structure that one desires to enhance or detect. Then, the optimization of the cost func-

tion is usually implemented using the calculus of variations, leading to a partial differential

equation (PDE) whose steady state corresponds to the solution of the visual perception

task. In some cases, there exist variational methods that directly design such a PDE with-

out defining any energy functional. Traditionally applied in physics, variational methods

have gained significant attention over the past decade in addressing image restoration

and enhancement, image segmentation, tracking, and stereo reconstruction among other
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problems.

Among many techniques aforementioned, I focus on variational methods in this thesis

due to several reasons. Firstly, most of the existing methods can be recast variationally;

see [23] for a demonstration of intrinsic interconnection between various approaches. Sec-

ondly, unlike in heuristic algorithms, the theory behind the concept in variational methods

is well established. Energy functionals and PDEs are, of course, written in a continuous

setting, making the existence and the uniqueness of the solution able to be proven. It is

the theory of viscosity solutions [29] that makes this feasible because digital images are

often not smooth enough to yield derivatives in classical sense. Once those proofs are

obtained, what one needs to do next is just to discretize the PDEs using available and

extensive numerical schemes which belong to a mature research field nowadays. I think

that it is easier to understand the physical realities and then to stimulate the intuition

necessary to propose new models by reasoning in a continuous framework.

Thirdly, without a guiding variational principle, heuristic approaches become very

complex. Using an energy functional and a descent algorithm, one can easily state when

one result (e.g., segmentation) is better than another.

Finally, the use of the calculus of variations in the optimization process is an impor-

tant strength that allows one to integrate many terms and build quite complicated cost

functionals to cope with the problem at hand. So, with variational framework, it is easier

to incorporate knowledge about the structure to be analyzed. In medical image analysis,

the use of prior knowledge is particularly attractive since the structure of interest (vessel,

tissue, or bone) as well as the imaging modality are usually known in advance. Also, it

arises by necessity: medical image quality is usually so poor that a given processing task

has to search on a solution space that is constrained with prior knowledge in order to find

a sensible solution. Moreover, the use of prior knowledge, given in the form of a model,

reduces the number of degrees of freedom compared to model-free analysis.
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A common way to incorporate prior knowledge is that one first defines a set of features

(color, shape, size, texture, ...) which can be obtained from a training set or directly

given by the user and then performs model matching to detect objects that have features

matched with the pre-defined features [125, 107, 66, 92]. I consider this way as extrinsic

knowledge usage. The methods belonging to this category would require more efforts from

the user as compared to approaches that may identify, extract, and make use of intrinsic

knowledge. It is my conviction that there exists intrinsic knowledge usage in medical image

processing such that better performance can be obtained without requiring additional

efforts to select training set or define feature constraints. By intrinsic knowledge, I mean

the knowledge about the characteristics an object has by its very nature, regardless of

its environment or situation. For example, a blood vessel intrinsically has curvilinear

structure or knee bone has inhomogeneous nature.

This work explores the intrinsic knowledge-incorporated variational methods in med-

ical image processing. Both technical and medical research communities have left their

imprint on the thesis: the chapters report on the development and evaluation of enhance-

ment and segmentation algorithms for medical imagery. Enhancement and segmentation

are targeted because they are very fundamental tasks in medical image processing as

introduced above and other processing like registration can efficiently performed using

their results. Specifically, Chapter 2 briefly reviews existing variational methods in the

literature. The first part of Chapter 3 introduces a novel method to enhance curvilin-

ear structures in an image. The main idea is to adapting Hessian-based filters to be

used in directional images obtained using directional filter bank (DFB), which permits

the directional estimation without Hessian eigen-analysis. Here, the intrinsic elongated

characteristic of the structure of interest makes it naturally suitable for analysis using

DFB. Then, in the latter part of the chapter, the method is applied to enhance vessels in

angiography images which is an important process in vascular disease diagnosis or surgery
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planning and performing. In a similar presentation manner, Chapter 4 describes my pro-

posed active contour (AC) model for image segmentation and evaluates its performance

as a technique for automatic bone segmentation from CT images in comparison against

that of classical AC models and a commercial software. Bones in CT images are chosen as

the regions of interest since they have several segmentation challenges such as weak edges,

gaps on edges, texture areas, and blurred inter-bone regions. Here, the intrisic knowledge,

reflected in the proposed energy functional, are the facts that bone regions in CT images

are highly inhomogeneous and their characteristics are statistically different from that of

the background. Finally, the contributions are summarized and concluded in Chapter 5

before the bibliography.



Chapter 2

Variational Methods in Image

Processing

As introduced in Chapter 1, variational methods can be based on either the optimization

of a energy functional or the design of a PDE whose steady state is the solution of the

problem at hand. The ideas of using variational methods in image processing can be traced

back at least to Jain [54] in 1977. However, the field did not attract much research interests

until the concept of scale space was introduced in two independent works [59] and [137]. In

this concept, an image is represented and analyzed at multiple scales. Multiscale analysis

is natural in vision because objects become larger if one moves close to the scene and

smaller if one moves away. Hence, suppose that one is looking for a face in an image; it

can occupy either the whole image or just a tiny part of it. This is different from other

sensing such as tactile sensing in which an object’s size obtained by tactile sensor always

remains same since one has to touch the object in order to sense it or auditory sensing in

which one specific temporal scale is given to the vibration of one’s vocal cord. In these two

seminal works, multiscale representation of an image was obtained using Gaussian filtering

at various scales, which was proven to be equivalent to deforming the image at various

20
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amount of time based on the classical heat equation, leading to an isotropic diffusion flow.

Then, in early 1990s, Perona and Malik proposed a nonlinear diffusion filter [100] which

later became one of the most influential works in the field. Unlike isotropic diffusion

in which the information is diffused equally everywhere, nonlinear diffusion limits the

diffusivity around some areas of interest like edges in order to preserve them. The work

opened up a large number of researches on PDE-based image processing community both

theoretically and practically [5, 109, 90, 104, 127, 136]. Especially, in [132, 133], Weickert

proposed to further control the diffusivity not only at preferred locations but also at certain

directions. The model is thus called anisotropic diffusion filter, which was shown to be very

effective in enhancing coherent structures. To determine the direction of the structure,

many approaches have been used, ranging from local ones like structure tensor or Hessian

tensor to more global tools like directional filter bank, which all will be described in this

chapter.

It was proven by many research groups that the famous mean curvature motion [42, 4]

(sometimes called geometric heat flow) can also define a scale space. This flow has therefore

been utilized in solving a number of image processing problems, especially segmentation.

The idea is to move a curve or surface with the velocity determined by its curvature. Such a

curve is called active contour or snake which was first introduced by Kass et al. [57]. Apart

from the direct designs of curvature-based PDEs, the Mumford-Shah energy functional for

segmentation [84] is also an influential work that has initiated many segmentation models.

Another crucial contribution to the area is the level-set method developed by Osher and

Sethian [91]. This approach not only provides an efficient means for numerical implemen-

tations of active contours but also naturally solves the hard problem of topological change

handling which took up a lot of efforts previously.

The goal of this chapter is to give an overview of the above-mentioned techniques

based on which two novel models for medical image processing were proposed and will be
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introduced in the following chapters.

2.1 Diffusion Filtering

Diffusion filtering has become a powerful and well-established tool in image enhancement.

The basic idea is to smooth an image using the diffusion equation, which is known as the

heat equation in many physical processes

∂I(x, t)
∂t

= div (D · ∇I) (2.1)

where I(x, 0) = I0 : R2 → R is the input image, x = (x, y) the spatial location, t

an artificial time variable, ∇I the gradient of the image, and D the diffusion tensor,

which is a positive definite symmetric matrix. Here, image intensity is considered as

mass concentration and accordingly the intuition of diffusion is to balance concentration

differences without creating or destroying mass. The process where a pixel gains less mass

from its larger neighbors than it looses to its smaller neighbors is called forward diffusion.

The reverse process is backward diffusion, where a pixel looses less mass to its smaller

neighbors than it obtains from its larger neighbors. If D is replaced by a positive scalar-

valued diffusivity g, one has isotropic diffusion, where the information is diffused equally

in all directions, as opposed to anisotropic in the general case, where diffusion in some

directions is more emphasized than in others. The general isotropic diffusion equation is

then written as
∂I(x, t)

∂t
= div (g∇I) (2.2)

where g is any scalar-valued function.
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2.1.1 Linear diffusion and scale-space properties

The simplest isotropic diffusion corresponds to the case where the diffusivity g is constant

over the whole image. In particular, when g = 1, one obtain

∂tI = ∆I = div(∇I) (2.3)

where ∆ denotes the Laplacian operator. The solution is given by

I(x, t) =
(
G√

2t ∗ I
)

(x) Gσ(x) =
1

2πσ2
exp

(
− x2

2σ2

)
(2.4)

meaning that stopping the evolution process after a time t ≥ 0 is equivalent to the convolu-

tion of the input image with a Gaussian kernel Gσ with standard deviation σ =
√

2t [131].

Larger values of t yield larger levels of smoothing; see Figure 2-1. This defines a scale

space for the image, which is a family of gradually smoother versions of it. Note that any

scale ti can be obtained either from a scale tj (tj < ti) or from the original image. The

scale space analysis provides a step to semantical description of an image from a pixel

basis because it introduces a hierarchy of image features. This theory is more than 20

years old [134] and detailed treatment of its various aspects can be found in [69, 119] and

the references therein.

Gaussian filtering (2.4) is regarded as a (standard) linear approach to reduce additive

noise. As can be seen in Figure 2-1, the image gets more and more simplified and noise is

removed very well. However, the method suffers from two major disadvantages. One is,

important features such as edges are smoothed as well and thus harder to be detected. The

other is, the locations of edges are dislocated when moving from finer to coarser scales.

To find the right location of structures at a coarse scale, one has to trace back to the

original image [137], which is not an easy task, especially when junctions and bifurcations

are involved.
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Input image σ = 1 σ = 3

σ = 5 σ = 7 σ = 10

Figure 2-1: Smoothing a vessel image with Gaussian kernel of different scales. Note how

small vessels are gradually removed when the scale increases.
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2.1.2 Isotropic nonlinear diffusion

A natural way to alleviate both problems of linear diffusion is to introduce a location-

dependent diffusivity that limits or stops the diffusion in important areas, leading to a

nonlinear isotropic diffusion. For example, one wishes to obtain a denoising process that

preserves the edges’ contrast and location. Then, one can use an edge-stopping function

g(|∇I|) satisfying g(s) → 0 as s → +∞. Here, |∇I| serves as an edge detector: higher

value of |∇I| corresponds to higher likelihood to be an edge. The diffusion equation then

reads

∂tI = div (g(|∇I|)∇I) . (2.5)

Since the diffusivity g is a decreasing function which approaches 0 in the vicinity of an

edge, it reduces the smoothing amount around edges. The outcome of the filter depends

considerably on choosing this function. The first formulation of this kind was introduced

by Perona and Malik [100] who proposed two different diffusivity functions:

g(|∇I|) =
1

1 + |∇I|2/λ2
(2.6)

g(|∇I|) = exp
(
−|∇I|2

2λ2

)
(2.7)

where λ > 0 is a so-called contrast parameter. To study the behavior of this parameter,

let’s consider the 1-D case for simplicity and denote Φ(∂xI) ≡ g(|∂xI|)∂xI, leading to

∂tI = ∂x (Φ(∂xI)) = Φ′(∂xI)∆I. (2.8)

Two formulations of Φ′(∂xI) corresponding to two diffusivity functions in (2.6) and (2.7)

can be derived as

Φ′(∂xI) =
λ2

(
λ2 − |∂xI|2)

(λ2 + |∂xI|2)2 (2.9)

Φ′(∂xI) =
(
1− |∂xI|2/λ2

)
exp

(
−|∂xI|2

2λ2

)
. (2.10)
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In both cases, Φ′(∂xI) > 0 (i.e., forward diffusion) if |∂xI| < λ and vice versa, Φ′(∂xI) <

0 (i.e., backward diffusion) if |∂xI| > λ. Forward diffusion smooths the contrasts and

backward diffusion enhances them. Therefore, contrast parameter λ determines how large

the gradient of an edge must be in order for the edge to be preserved.

We should note that studying the stability of the above model is not trivial. Of

course, a reasonable regularization provided by numerical schemes can stabilize the pro-

cess. However, to reduce the dependence of stabilization on numerical implementations,

one can apply spatial regularization directly on the continuous equation. Catte et al. [22]

proposed to replace the diffusivity g(|∇I|) of the Perona-Malik model by g(|∇Iσ|) where

Iσ = Gσ ∗ I, leading to

∂tI = div (g(|∇Iσ|)∇I) . (2.11)

In [135, 68], the parameters σ and λ were made time-dependent. The spatial regularization

with additional scale parameter σ helps the Perona-Malik model eliminate false edges

caused by noises.

2.1.3 Anisotropic diffusion

All diffusion schemes discussed so far (linear or not) rely on a scalar-valued diffusivity and

thus are isotropic, i.e., the diffusion amount is same in all directions. In some applications

where edges are noisy, it is desirable to reduce the diffusion across edges only while main-

taining the smoothing along edges. These requirements can be satisfied by replacing the

scalar-valued diffusivity with a matrix-valued diffusion tensor D which is constructed by

defining its orthogonal eigenvectors and eigenvalues. The main idea is to align the eigen-

vectors to the directions along which the contrast is smoothed and assign the smoothing

amount to the corresponding eigenvalues. For example, one can construct the eigenvectors

v1, v2 of D such that v1 ‖ ∇Iσ and v2 ⊥ ∇Iσ and choose the corresponding eigenvalues
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λ1 and λ2 as

λ1 = g(|∇Iσ|) (2.12)

λ2 = 1. (2.13)

The diffusion tensor is then calculated as D = Qdiag(λi)QT where Q is a matrix comprised

of the normalized v1 and v2 as its columns. The resulting filter will limit the diffusion in

v1 direction (across edges) while allow constant smoothing in v2 direction (along edges).

Another motivation for introducing direction-specific smoothing arises from cases where

coherent flow-like structures are to be enhanced [132, 133]. To this end, sophisticated struc-

ture descriptors other than ∇Iσ are needed. Such tools can be obtained using structure

tensor, Hessian tensor, or directional filter bank, which are described next.

2.2 Structure Tensor

Structure tensor (a.k.a. second-moment matrix or scatter matrix ) is a matrix field that

can be used in orientation estimation and image structure analysis. Since it was first

introduced in [45] and in [14] in an equivalent formulation, structure tensor has shown

its usefulness in many computer vision tasks such as corner detection [45, 53], diffusion

filter [132, 133], texture analysis [106, 15, 73], and optical flow calculation [15, 16].

A simple orientation-estimation at a pixel x can be obtained using the gradient infor-

mation ∇I(x). However, images are often noisy, making the estimates different from the

real orientation at the respective pixel. Also, from a practical perspective, one is more

interested in the dominant orientation in a neighborhood of a pixel rather than its very

local orientation. Therefore the gradient at a specific pixel is replaced with the structure

information of its neighbors weighted by a Gaussian kernel. This is done by convolving

the gradient with a Gaussian window, leading to ∇Iσ as an orientation approximation.

Nevertheless, Gaussian smoothing of the gradient can cause cancelation effects in some
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structures such as thin lines. The gradient is positive at one side of the line whereas

negative at the other side. Thus they are likely to cancel each other out during smoothing.

To avoid this problem, the structure tensor is given in form of a outer product of the

gradient, leading to a symmetric positive semi-definite matrix

J0 = ∇I∇IT =


 (∂xI)2 ∂xI∂yI

∂xI∂yI (∂yI)2


 . (2.14)

J0 is referred to as the unsmoothed structure tensor. For a certain neighborhood of scale

ρ, the structure tensor is computed as

Jρ = Gρ ∗ J0. (2.15)

The smoothing of the structure tensor has the same effect of that of the gradient ∇Iσ,

i.e., it increases the accuracy of the orientation estimation in real images since it makes

the structure tensor more robust to noise. Besides, smoothing allows to estimate the

dominant orientation at the neighboring pixels where the gradient is close to zero. The

dominant orientation is determined as the structure tensor’s eigenvector associated with

the largest eigenvalue. This can be proved using least square error method; see [128]. The

total square error between the estimated orientation q and the gradient calculated on a

neighborhood of scale ρ is
∫

Ω
Gρ

∣∣∇I − (∇ITq
)
q
∣∣2 dx =

∫

Ω
Gρ

[∇IT∇I − qT
(∇I∇IT

)
q
]
dx (2.16)

where Ω is the image domain and
(∇ITq

)
q the projection of ∇I on q. Minimizing the

error is equivalent to maximizing
∫

Ω
GρqT

(∇I∇IT
)
q dx. (2.17)

Because q is independent on x within the Gaussian window, this leads to maximizing

qT

(∫

Ω
Gρ

(∇I∇IT
)
dx

)
q = qT Jρq. (2.18)
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Thus, the orientation q that satisfies the least square error criterion is the eigenvector

associated with the largest eigenvalue of the structure tensor Jρ.

In general, the smoothed structure tensor is not singular and its eigenvalues µ1, µ2

reveal three different structures:

• µ1 ≈ µ2 ≈ 0: homogeneous areas, almost no principal direction

• µ1 ≈ 0, µ2 À 0: lines, one principal direction

• µ1 À 0, µ2 À 0: corners, more than one principal direction.

Since µ2 ≥ µ1, its corresponding eigenvector q2 is the orientation across edge whereas

the other eigenvector q1 gives the coherence direction. The coherence information can be

measured by, e.g., (µ2 − µ1)2.

Due to the above characteristic, structure tensor was successfully used in anisotropic

diffusion filter to enhance coherent structures [132, 133]. To this end, the diffusion tensor

D is designed to have eigenvectors same as Jρ with the corresponding eigenvalues chosen

as

λ1 =





η if µ2 = µ1,

η + (1− η) exp
(
− C

(µ2−µ1)2n

)
else,

λ2 = η (2.19)

where n ∈ N, C > 0, and η ∈ (0, 1). Figure 2-2 shows a sample result of this filter applied

to enhance a fingerprint whose coherent structure is of particular importance.

2.3 Hessian Tensor

Similar to the gradient and the structure tensor which use first-order derivative to deter-

mine the dominant orientation, the Hessian tensor considers second-order derivative. The
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Input image Filtered image

Figure 2-2: Example of coherence-enhancing diffusion (2.19). Noise is removed while

important structure is maintained and even enhanced.

Hessian matrix of a image I(x, y) is given by

 ∂xxI ∂xyI

∂xyI ∂yyI


 . (2.20)

The Hessian’s eigenvector corresponding to the largest eigenvalue (in magnitude) is con-

sidered as the orientation across the image feature (edge) and the other eigenvector (its

perpendicular orientation) the orientation along image feature.

For line-like structures, there are two main reasons to use second-order derivatives

rather than first-order derivatives [19]. One is, line-like structures are characterized by

oscillations and thus yield large second-order derivatives but do not generate large first-

order derivatives. The other is, edges yield large first-order derivatives at their centers

while generating large second-order ones at their sides. This is important because infor-

mation about the centers only is not enough to capture the whole lines of different widths.

In Hessian-based approaches, a line-like structure is declared when the ratio between the

minimum and maximum principal curvatures, which are determined by the Hessian eigen-
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values, is low. And its direction is considered to be the eigenvector corresponding to the

smallest eigenvalue in absolute value. This information was exploited in [48, 114, 62, 118]

to enhance blood vessels in medical images, which will be described more in the following

chapter.

2.4 Directional Filter Bank

All the structure descriptors mentioned so far provide the structure information limited to

a local neighborhood. For applications dealing with edges, being local can be an advantage

as edge point is a local event. In fact, as can be seen above, the nonlinear diffusion filters

and related PDE schemes enjoy such advantage and provide very impressive performances.

On the other hand, treatment of edge curve which consists of connected edge points re-

quires less local methods. Directional filter bank (DFB), introduced by Bamberger and

Smith [8], is such an method. It was shown that DFB can decompose the spectral re-

gion of an input image into n = 2k (k = 1, 2, ...) wedge-shaped like passbands which

correspond to linear features in a specific direction in spatial domain. Although there are

similar methods such as fan filters and wavelets, DFB is unique in its ability to provide

nonredundant subbands with a high angular resolution, precise reconstruction, and com-

putational efficiency. Initially, DFB was designed to provide image compression [10]. Later

on in [97, 11], it was used in collaboration with directional energy for image enhancement

purpose. Recently in [95], DFB and directional energy were tuned to provide fingerprint

recognition.

One major drawback of the original DFB proposed in [8] was that subbands become

visually distorted due to frequency aliasing. One possible solution to this was provided

by Park et al. [98], where it was pointed out that frequency aliasing was produced due to

non-diagonalization of overall downsampling matrix. Then the authors proposed a new

DFB structure in [99] as follows.
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(a)

(b)

(c)

Figure 2-3: The DFB structure in [99]. a) First stage, b) Second stage, and c) Third stage.

Subbands produced by the first stage are used as input to the second stage and so on.
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(a) (b)

Figure 2-4: Downsampling and rotation effects of Quincunx matrix Q. a) Original airplane

image and b) after Quincunx downsampling.

2.4.1 First stage of DFB

Construction of the first stage of DFB requires a pair of diamond-shaped like passband

filters, H0(ω1, ω2) and H1(ω1, ω2), a modulator, and Quincunx downsampling matrix as

shown in Figure 2-3(a), where $ = (ω1, ω2)T is a pair of 2D Fourier frequency variables.

Modulator used in this stage shifts frequency spectrum of an input image by π in any of

the two directions. In this structure, Q is a Quincunx non-separable downsampling 2× 2

matrix which not only downsamples but also rotates the image at an angle of 45◦; see

Figure 2-4. Mathematically in the spatial domain it is represented as

zd[m] = z[Qm], (2.21)

where m ∈ N2 denotes the set of all integer pairs, z[m] a 2D discrete signal, zd the

Quincunx downsampled version of z, and Q =


 1 1

−1 1


 .
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2.4.2 Second stage of DFB

Requirements for construction of the second stage of DFB are same as those for the first

one. Subbands produced by the first stage are used as input to the second stage. Figure 2-

3(b) shows the spectral geometry of subbands created by the second stage. It is evident

that these subbands have parallelogram-shaped geometry.

2.4.3 Third stage of DFB

The additional requirements for construction of the third stage (see Figure 2-3(c)) as

compare to the first and second are resampling and post-sampling matrices. Resampling

matrices Ri are used to map parallelogram-shaped passbands to diamond-shaped pass-

bands. Four different resampling matrices are applied in third stage which are

R1 =


 1 1

0 1


 R2 =


 1 −1

0 1




R3 =


 1 0

1 1


 R4 =


 1 0

−1 1


.

Post-sampling matrices Bi are used to convert the overall non-diagonal sampling ma-

trix to the diagonal one. Up till the second stage the overall downsampling matrix remains

diagonal, due to which subbands are visually correct. But in the third stage or onward,

the overall downsampling matrix becomes non-diagonal resulting in visually distorted

subbands. By applying Bi, the visual distortion created by non-diagonalization of overall

sampling matrix is removed, making the subbands visually correct. Note that due to the

presence of downsampling matrices, the subbands are smaller in size as compare to the

input image.

Figure 2-5 shows eight directional subbands of the airplane image in Figure 2-4 (a)

obtained using DFB. Each subband correspond to a unique angular orientation.
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Figure 2-5: Eight directional subbands of the airplane image in Figure 2-4 (a) decomposed

using DFB.
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2.5 Active Contours

Another less local method to handle edge curve as mentioned in the previous section is

active contours (ACs). First introduced by Kass et al. [57] in 1988, ACs (a.k.a. snakes or

deformable curves) has attracted much attention in image segmentation research commu-

nity. The underlying idea is that an initial contour is first specified and then pulled by

image-dependent forces towards the edges of the objects of interest. To date, there are two

main types of ACs in the literature: parametric and geometric ACs, the complete review

of which is beyond the scope of this thesis. Instead, only some representative works of each

type will be introduced in the following subsections after necessary and basic concepts are

provided.

2.5.1 Basic concepts

Curve evolution

Consider a family of closed planar curves deforming in time C(p, t) = [x(p, t), y(p, t)]

where t denotes time and p (0 ≤ p ≤ 1) parameterizes the curve. Suppose that this family

of curve moves under a general velocity field ~V




∂C(p,t)
∂t = ~V = V‖(p, t)~T (p, t) + V⊥(p, t) ~N (p, t)

C(p, 0) = C0(p)
(2.22)

where ~T and ~N are respectively the unit Euclidean tangent and the (inward) unit Eu-

clidean normal and V‖ = ~V · ~T and V⊥ = ~V · ~N the tangent and normal components of ~V,

respectively.

We are interested in the geometry of the curve, denoted by Geo[C(p, t)]. Parameteriz-

ing the curve C with another parameter q = q(p, t), ∂pq > 0, we have

Geo [C(p, t)] = Geo [C(q, t)] . (2.23)
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Epstein and Gage proved in [39] via the following lemma, that under certain conditions,

the tangential velocity does not affect the geometry of the deformation.

Lemma 2.1. If V⊥ is a geometric instrinsic of the curve, i.e., a function does not depend

on the parameterization, then the geometry of C(p, t) satisfying (2.22) is identical to that

of the family of curve C(q, t) satisfying

∂C(q, t)
∂t

= V⊥(q, t) ~N (q, t) (2.24)

In other words, the geometry of the deformation is only affected by the normal velocity.

The tangential velocity influences the parameterization only, not the geometry.

Proof. See [39].

The job of curve evolution is then to design the function V⊥ that solves the problem

at hand. One of the most studied such function is V⊥ = κ, where κ is the Euclidean

curvature defined by ∂ssC = κ ~N with s the Euclidean arc-length which is a particular

parameterization satisfying |∂sC| = 1. Then the evolution equation (2.24) reads

∂tC = κ ~N = ∂ssC. (2.25)

This equation is called the mean curvature motion (MCM) [42, 4] or the Euclidean short-

ening flow as it is obtained from the minimization of the length energy

E(C) =
∮
|∂sC|ds =

∫

C
ds. (2.26)

As a result, it shrinks the Euclidean perimeter while evolving. It is also called the geometric

heat flow due to its very similar form with the linear heat equation in (2.3). Note that

the MCM flow is however nonlinear since arc-length s is a time-dependent function. This

interesting characteristic makes the flow very well studied in the literature.
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Level-set framework

Apart from explicit representation using its parameterization, a curve can be implicitly

represented by a level set of a function φ(x, t) : R2 × [0, T ) → R such that

C =
{
x ∈ R2 : φ(x, t) = c

}
(2.27)

where c is a real constant. The curve, as above, is moving under the influence of a normal

velocity
∂C

∂t
= V⊥ ~N . (2.28)

We now have to find the evolution of φ such that its level set moves in the same manner

as C does. Differentiating (2.27) with respect to t, we obtain

∂φ

∂t
+∇φ · ∂C

∂t
= 0. (2.29)

and combining with (2.28), we get

∂φ

∂t
+∇φ · V⊥ ~N = 0. (2.30)

Recalling that the unit inward normal is given by ~N = − ∇φ
|∇φ| (φ is assumed to be positive

outside the curve and negative inside), we end up with

∂φ

∂t
= V⊥|∇φ|. (2.31)

Note that the level-set value c vanishes after the derivative is taken, meaning that all the

level sets move under the same flow, independently to c. So, without loss of generality,

the zero level set is usually chosen to represent for the curve. When a function evolves

according to (2.31), all of its level sets obey the flow in (2.28). The evolution is performed

using only geometric measures, making itself independent of the curve’s parameterizations.

The MCM (2.25) can be rewritten in the level-set framework as

∂φ

∂t
= κ|∇φ| κ = div

∇φ

|∇φ| . (2.32)
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Figure 2-6: Natural topological change handling of the level-set method.

One major advantage of the level-set method is that it can naturally handle topology

changes. The function φ moves up and down on a fixed coordinate system without chang-

ing its topology as long as V⊥ is smooth. However, the level set corresponding to the curve

may split or merge as φ evolves; see Figure 2-6. More details about this method can be

found in [91, 116, 89].

Mumford-Shah functional

One way to segment an image is to construct its simplified version that consists of ho-

mogeneous regions separated by sharp edges. In a variational framework, the idea can be

formulated as: starting from an image I(x), one looks for a pair (f,Γ) such that f is a

piecewise smooth version of I and Γ is the set of edges. This was introduced by Mumford
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and Shah [84] via the energy functional

E(f, Γ) =
∫

Ω
(f − I)2 dx + λ

∫

Ω−Γ
|∇f |2 dx + ν

∫

Γ
ds (2.33)

where Ω ∈ RN is the image plane and λ and ν are positive weighting constants. In this

functional, the first and second terms ensures f is close to I and varies slowly inside sepa-

rated regions whereas the last term makes the boundary Γ as short as possible to guarantee

its smoothness. The Mumford-Shah functional provides a very general formulation, in the

form of an optimization problem for image segmentation. However, studying this energy

is not trivial since it involves two unknowns f and Γ of different natures: f is a function

defined on an N -dimensional space whereas Γ is an (N − 1)-dimensional set.

An simplified version of the Mumford-Shah functional, which is called the cartoon limit

and obtained when λ = 0, is used to provide a piecewise constant approximation of I

E(f, Γ) =
∫

Ω
(f − I)2 dx + ν

∫

Γ
ds. (2.34)

In this case, f is equal to the mean values of I on the connected components of Ω−Γ and

thus E becomes a function of only Γ. A large amount of work has been devoted to this

special case [84, 79, 80, 75].

2.5.2 Traditional AC

The traditional snake introduced by Kass et al. [57] is a parameterized curve C(p) =

[x(p), y(p)] , p ∈ [0, 1] that moves through the image to seek a minimum state of the

energy functional

E(C) =
∫ 1

0

(
α

2
|C ′(p)|2 +

β

2
|C ′′(p)|2 + Eext(C(p))

)
dp (2.35)

where α > 0 and β > 0 are weighting parameters that respectively control the elasticity

and rigidity of the curve, C ′(p) = ∂C
∂p , C ′′(p) = ∂2C

∂p2 , and Eext an external energy. In this

functional, the first two terms define a internal energy that serves to control the smoothness
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of the curve whereas the external energy is responsible for attracting the curve towards

the image features of interest (object’s boundaries). Using the calculus of variation and

the gradient descent, one can derive the evolution flow for the above snake as

∂tC(p, t) = αC ′′(p, t)− βC ′′′′(p, t)−∇Eext. (2.36)

For example, in edge detection, Eext can be defined as

Eext(C(p)) = −λ |∇I(C(p))| λ > 0. (2.37)

Then, the snake will evolve according to (2.36) to search in a class of smooth curves for a

curve C∗(p) for which |∇I(C∗(p))| is maximal. This is also a way to regularize the edge

detection problem.

2.5.3 Gradient Vector Flow AC

Since the traditional snake is driven by the gradient of the image, it suffers from two

main problems. The first one is limited capture range, i.e., the initial contour should be

close to the true boundary to guarantee correct convergence. This is due to the fact that

gradient has significant magnitude only within a vicinity of an edge and is zero outside.

The second problem is the inability to move into boundary concavities [34, 1]; see Figure 2-

7. Cohen and Cohen [28] proposed a balloon force to increase the capture range but it

still could not solve the latter issue. On the other hand, pressure forces [27] can solve

the boundary concavity problem but create two new difficulties: in choosing appropriate

value and direction of the forces.

In [139], Xu and Prince proposed a new AC model that satisfactorily solved both

problems and thus became a state-of-the-art model of this kind. The authors replaced the

potential force −∇Eext in (2.36) with a novel external force field called gradient vector

flow (GVF). In order to build up this field, an appropriate edge map function f(x, y)
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(a) (b) (c)

Figure 2-7: (a) Evolution of a traditional snake, (b) gradient of the image, and (c) its

zoomed-in area. The initial curve must be within the capture range of the potential force

(the gradient, in this case). The curve cannot evolve into the boundary concavity because

the forces point horizontally in opposite directions.
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having larger values near the image edges is first chosen. To this end, an image gradient

function is usually considered for its simplicity:

f(x, y) = |∇Iσ(x, y)|2. (2.38)

The GVF is then defined as a two-dimensional vector field [u(x, y), v(x, y)] that mini-

mizes the following energy functional

ε(u, v) =
∫

Ω
µ(|∇u|2 + |∇v|2) + |∇f |2 |[u, v]−∇f |2 dxdy (2.39)

where Ω ⊂ R2 is the image plane and µ a noise-control parameter. This functional keeps

the GVF field nearly same as the gradient of the edge map, ∇f , in the neighborhood of

the boundaries, where |∇f | is large. At the same time, the field still has significant values

in the homogeneous regions, where |∇f | gets close to 0, via a diffusion process. One can

optimize [u(x, y), v(x, y)] using the gradient descent method and the calculus of variations

∂tu = µ∆u− (u− ∂xf)|∇f |2 ∂tv = µ∆v − (v − ∂yf)|∇f |2. (2.40)

The GVF AC was proposed for boundary extraction in the following way:

∂tC(p) = αC ′′(p)− βC ′′′′(p) + [û, v̂] (2.41)

where
[
û = u/

√
u2 + v2, v̂ = v/

√
u2 + v2

]
is the normalized GVF (NGVF) served as the

external force fulling the curve towards object boundaries. This model has an increased

capture range and can deal with concave regions; see Figure 2-8.

2.5.4 (Original) Geometric AC

The AC models discussed so far are of parametric type since the energy depends on

the parameterizations of the curve yet not on the objects’ geometry, i.e., they are non-

intrinsic. Also, they cannot handle topological changes to simultaneously detect multiple

objects. Many special (usually heuristic) procedures have been proposed in detecting
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(a) (b) (c)

Figure 2-8: (a) Evolution of the GVF AC, (b) the external GVF force, and (c) its zoomed-

in area. The GVF force has a much larger the capture range compared to the traditional

force and it points upward into the concavity region, which helps the snake correctly

converge.

possible splitting and merging [65, 123, 77] but prior knowledge about the number of

objects needs to be given.

A novel model called the Geometric AC, proposed independently by Caselles et al. [20]

and by Malladi et al. [74], can handle topology changes without any additional task. The

model is based on the MCM and the level-set framework where the curve C is represented

by the zero level set of a Lipschitz function φ : Ω → R which is usually defined as a signed

distance function such that




C = {x ∈ Ω : φ(x) = 0},
inside(C) = {x ∈ Ω : φ(x) < 0},
outside(C) = {x ∈ Ω : φ(x) > 0}.

(2.42)

The Geometric AC evolution flow is given by

∂tφ = g. (κ + V0) .|∇φ| (2.43)
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where V0 is a real constant and g = g(x) an edge-based function which approaches 0 on

the edges and 1 in other regions, e.g., g(x) = e
− 1

σ2
e
|∇Iσ(x)|2

with σe a scaling factor. In

this flow, the curvature κ-based flow has the properties of smoothing the curve, while V0

shrinks or expands the contour along its normal direction at a constant velocity. The

product g.(κ + V0) determines the overall evolution speed of level sets of φ(x, t). At the

same time, the main use of g has the effect of stopping the curve when it reaches to the

object boundaries.

2.5.5 Geodesic AC

The Geometric AC overcomes the limitation of the traditional snakes in capturing multiple

objects without prior knowledge of their exact number and without using special topolog-

ical change detecting procedures. This model is motivated by not an energy minimization

but a curve evolution method where the convergence of the curve depends on an edge

function g(x). This works well in general for objects that have good contrast. However, if

there are weak edges and/or gaps along edges, the evolving curve tends to pass through

these areas because gradient values are not large enough for g(x) to approach 0.

Another geometric-type snake was introduced in [21, 142] using an energy to search for

a curve of minimal weighted length (geodesic curve). The so-called Geodesic AC model

was proven to be a special case of the traditional snake. Considering the traditional snake

energy (2.35) with β = 0, one have

E(C) =
∫ 1

0

(α

2
|C ′(p)|2 − λ|∇I(C(p))|

)
dp. (2.44)

This can be generalized by replacing the edge detector −|∇I| with a strictly decreasing

function g(|∇I|2), leading to

E(C) =
∫ 1

0

(α

2
|C ′(p)|2 + λg

(|∇I(C(p))|2)
)

dp. (2.45)
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Using Maupertuis’ principle of least action, minimizing E(C) in (2.45) is equivalent to

minimizing the weighted length [21]

LR =
∫ 1

0
g (|∇I(C(p))|) |C ′(p)|dp =

∫

C
g (|∇I(C(s))|) ds. (2.46)

We observe that this length is obtained by weighting the Euclidean length element ds

in classical length definition (2.26) with g (|∇I(C(s))|), which characterizes the object’s

boundary. This means that in order to detect the object, one can search for the path

of minimal edge-weighted length LR, leading to the Geodesic AC flow (via the gradient

descent method)

∂tC = gκ ~N −
(
∇g · ~N

)
~N . (2.47)

The level-set implementation of this flow is given by

∂tφ = gκ|∇φ|+∇g · ∇φ. (2.48)

In a more general case, one may wish to add a constant velocity V0 (which is equivalent to

adding an area constraint to the energy), for example to increase the convergence speed,

obtaining

∂tφ = g.(κ + V0).|∇φ|+∇g · ∇φ. (2.49)

Comparing this with the Geometric AC (2.43), we see that the extra stopping term

(∇g · ∇φ) is used to increase the attraction of the evolving contour towards an edge, of

special help when the edge has different gradient values and/or gaps along it.

2.5.6 GVF-Geometric AC

Inspired from the observations that the GVF consists of the optimal direction to be fol-

lowed to reach the object boundaries and that evolving the contour in the direction of

its normal is a main characteristic of the geometric active contours, Paragios et al. [93]

proposed an integration of GVF into the Geometric AC as

∂tC = g
(
κ + V0K(x) + (1− |K(x)|)[û, v̂] · ~N

)
~N (2.50)
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or in its equivalent level-set formulation

∂tφ = g
{

(κ + V0K(x))|∇φ| − (1− |K(x)|)[û, v̂] · ∇φ
}

(2.51)

where [û, v̂] is the normalized GVF and K(x) = sign
(
[û, v̂] · ~N

)
e−δ|[û,v̂]· ~N | with δ a

scaling factor. K(x) approaches 1 when the normal vector ~N and the GVF [û, v̂] are close

to orthogonal and 0 otherwise.

In the above flow, (1−|K(x)|)[û, v̂] has the effect of a bidirectional flow that moves the

curve towards object boundaries from either sides whereas V0K(x) serves as an adaptive

balloon force used to determine the evolution when the bidirectional flow term becomes

inactive. Similar to that of the Geometric AC, the overall speed of this curve evolution is

coupled with the edge-driven information via the stopping term g.

2.5.7 Chan-Vese AC

Chan and Vese [24] proposed an alternative form of AC based on the Mumford and Shah

functional for segmentation [84]. Unlike other level set-based ACs which rely much on

the gradient of the image as the stopping term and thus have unsatisfactory performance

in noisy images, the CV AC model utilizes instead the homogeneity characteristic of an

object. In this case, the image I is assumed to be consisted of two areas with approximately

piecewise-constant intensities, of different value cin and cout. The “fitting” term is defined

as

F (C) = F1(C) + F2(C) =
∫

inside(C)
|I(x)− c1|2 dx +

∫

outside(C)
|I(x)− c2|2 dx (2.52)

where c1 and c2 are respectively the average intensities inside and outside the variable

curve C. As can be seen in Figure 2-9, the “fitting” term is minimized if the curve C is

placed exactly on the boundary of the two areas.

One can regularize the solution by constraining the length of the curve and the area
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F1(C) > 0, F2(C) = 0 F1(C) = 0, F2(C) > 0 F1(C) > 0, F2(C) > 0 F1(C) = 0, F2(C) = 0

Fitting > 0 Fitting > 0 Fitting > 0 Fitting = 0

Figure 2-9: All possible positions of the curve. When it is on the boundary of the object,

the “fitting” term is minimized.

inside it, leading to the energy

E(C) = νLength(C) + V0Area(inside(C)) + F (C) (2.53)

where ν and V0 are constants. For the level-set formulation, the Heaviside function H(·)
is used

H(u) =





1, if u ≥ 0

0, if u < 0.
(2.54)

The energy then reads

E(C) = ν

∫

Ω
|∇H(φ(x))|dx + V0

∫

Ω
H(−φ(x))dx+

∫

Ω
|I(x)− c1|2 H(−φ(x))dx +

∫

Ω
|I(x)− c2|2 H(φ(x))dx.

(2.55)

The solution for minimizing this energy is obtained [24] by gradient descent method as

∂tφ = |∇φ| [νκ + V0 + (I − c1)2 − (I − c2)2
]
. (2.56)

This flow evolves the curve, looking for a two-phase segmentation of the image, given

by Î(x) = cinH[φ(x)] + cout(1−H[φ(x)]).

For multiphase cases [129], we can write illustratively the formulations for four phases
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or classes (and therefore using the two level-set functions φ1 and φ2) as

∂φ1

∂t
= |∇φ1|

{
ν1κ1 − V01 −

[
(u0 − c11)2 − (u0 − c01)2

]
H(φ2)

− [
(u0 − c10)2 − (u0 − c00)2

]
(1−H(φ2))

}

∂φ2

∂t
= |∇φ2|

{
ν2κ2 − V02 −

[
(u0 − c11)2 − (u0 − c10)2

]
H(φ1)

− [
(u0 − c01)2 − (u0 − c00)2

]
(1−H(φ1))

}

where νi and V0i are constants, κi = div
(
∇φi

|∇φi|
)
, i = {1, 2}, and

c11(φ) = average(u0) in {x : φ1(x) > 0, φ2(x) > 0},
c10(φ) = average(u0) in {x : φ1(x) > 0, φ2(x) < 0},
c01(φ) = average(u0) in {x : φ1(x) < 0, φ2(x) > 0},
c00(φ) = average(u0) in {x : φ1(x) < 0, φ2(x) < 0}.

2.6 Relation between Diffusion Filters and Active Contours

The Geodesic AC flow in (2.48) can be rewritten as

∂tφ = |∇φ|div
(

g(I)
∇φ

|∇φ|
)

(2.57)

where g is the edge function. This equation deals with two functions: the level-set function

φ and the image I. Consider a special case when φ = I, meaning that the auxiliary level-set

function is selected as the image itself. Then, one obtains

∂tI = |∇I|div
(

g(I)
∇I

|∇I|
)

. (2.58)

A straightforward interpretation of (2.58) is that each of the level sets of the image moves

under the geodesic flow, searching for its minimal edge-weighted length, leading to a

smoother image. This flow is thus called self-snakes. The smoothing effect of the flow can

be made clearer by rewriting it as

∂tI = Fdiffusion + Fshock (2.59)
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where

Fdiffusion = g(I)|∇I|div
( ∇I

|∇I|
)

, (2.60)

Fshock = ∇g(I) · ∇I. (2.61)

Expanding Fdiffusion, one has

Fdiffusion = g(I)
∂xxI(∂yI)2 − 2∂xI∂yI∂xyI + ∂yyI(∂xI)2

(∂xI)2 + (∂yI)2
. (2.62)

On the other hand, denoting ξ as the direction perpendicular to the gradient ∇I, that

is, ξ = [−∂yI, ∂xI]√
(∂xI)2+(∂yI)2

, and calculating the second-order directional derivative of I in the

direction of ξ, one obtains

∂ξξI =
∂xxI(∂yI)2 − 2∂xI∂yI∂xyI + ∂yyI(∂xI)2

(∂xI)2 + (∂yI)2
. (2.63)

This means that

Fdiffusion = g(I)∂ξξI (2.64)

and that the term Fdiffusion diffuses the image in the direction of ξ (perpendicular to ∇I,

or parallel to edges) with the amount determined by g(I) which can be chosen as in the

snakes model.

The other term, ∇g · ∇I, looks very much like a shock filter for image deblurring [90].

Therefore, the self-snakes flow (2.58) acts as a combination of anisotropic diffusion and

shock filtering, leading to the dual effects: smoothing along edges and enhancing across

them. Figure 2-10 shows an example of self-snakes flow applied on a retinal image.

Now, if one divides ∇I from the self-snakes flow and selects a function ĝ(I) satisfying

ĝ(I) = g(I)
|∇I| , the flow comes down to the Perona-Malik model

∂tI = div (ĝ(I)∇I) . (2.65)

This relation is interesting since it by somehow shows the intrinsic connection between the

Geodesic AC and the Perona-Malik flow, two of the most influential works in the field.
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Images Corresponding level sets

Figure 2-10: De-noising a retinal image with self-snakes. Top to bottom: original image

and its de-noised versions after 10 iterations and 30 iterations, respectively. Note how

edges are preserved.
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2.7 Summary

This chapter has presented a number of variational models for image processing in general

and enhancement and segmentation in particular. As we have seen, one of the simplest and

earliest variational models for enhancement is linear diffusion filter which was proven to be

equivalent to classical Gaussian filtering. And then, since Perona-Malik model of nonlinear

diffusion was introduced, a large amount of research has been devoted to the understanding

of mathematical properties of this and related variational formulations [6, 22, 143] and its

relations with other image processing techniques [113, 117, 146], to its modification for

fast and precise implementations or for specific applications [49], to the development of

more stable functions [5, 22, 86, 143], and to the introduction of directional diffusivity,

leading to the anisotropic diffusion flow of Weickert. To support the directional estimation

in anisotropic diffusion, many operators have been introduced, including structure tensor,

Hessian tensor, and directional filter bank.

In segmentation community, the snakes model of Kass et al. has opened up a very

interesting research direction. Many snakes models have been proposed such as the GVF

AC, the Geometric AC, the Geodesic AC, the GVF-Geometric AC, the Chan-Vese AC, to

name a few. They can be classified based on how the contour is represented, leading to the

parametric and geometric types, or how the flow is derived, leading to the energy-based

or the curve evolution-based types. The field is still busy; more and more snakes models

continue to be introduced yearly and even monthly (see e.g., [108, 51, 138, 122, 121, 78, 67]

and the references therein).

Moreover, the Geodesic AC, one of the most influential works, was shown to be in-

trinsically connected to the Perona-Malik model for enhancement. This amazing relation

reinforces the fact that variational methods play a more and more important role as a

modern technique in image processing. A rough taxonomy of variational methods is given

in Figure 2-11, where the knowledge-incorporated enhancement and segmentation are the
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Figure 2-11: Taxonomy of variational methods in image processing.

two proposed models that will be described in the next two chapters. As applications,

the proposed models are applied to vessel enhancement and bone segmentation in medical

imagery, respectively.



Chapter 3

Curvilinear Structure

Enhancement

Image enhancement refers to sharpening certain features of interest of an image, based

upon which other visual decisions made afterwards are more correctly and robustly. The

features can be image contrast, boundaries, edges, or lines. Here, I would like to differ-

entiate enhancement of image contrast from that of object structures. The former deals

with improving the appearance of the whole image and there are a huge body of literature

devoted to it, ranging from classical noise reduction methods like spatial- and frequency-

based filtering, histogram modification [50] to diffusion filtering. The latter is to bring

out details that are obscured. Among many structures of this kind, lines are of much

interest since they have many applications, especially in remote sensing, military, and

medical areas. There, it can be used to extract linear (or curvilinear) features such as

roads, railroads, rivers, or blood vessels.

Initially, line enhancement can be done using purely image-driven methods same as

in contrast enhancement tasks. These techniques are “bottom-up” approaches which are

fully automatic. Being fully automatic is ideal from an operator’s point of view, but their

54
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efficacy is limited to applications where the images are of good quality. Unfortunately,

medical images are often not among these good quality images due to the acquisition

methods that require much safety considerations. One would not open the whole human

body to picture blood vessels inside it (even doing so, one still hardly gets the whole

vessel tree). Instead, one may use less invasive techniques such as angiography where X-

ray and contrast agents are used to take arterial system images. However, the structures

of interest (vessels) are surrounded by many other organs, making the resulting image

noisy and blurred.

To deal with medical images, many “top-down” approaches have been proposed over

the last decade. The main idea is to introduce prior knowledge about the structure in a

form of a model to aid the image analysis tasks. The model can be of image acquisition,

object being imaged, or human observer. Under the variational framework, it is easy for

such prior knowledge to be incorporated. The following section reviews a popular Hessian-

based filter for enhancing line-like structures where the prior knowledge is expressed in

the form of a local discriminant function that is based on the eigenvalues of the Hessian

tensor of the image. Multiscale analysis is used in the filter to capture lines of various

sizes. The filter can highlight line structures very well but sometimes causes junction

suppression, which in turn yields discontinued lines. Section 3.2 presents a novel filter,

called DDFB-based filter, to overcome the limitation of the Hessian-based filter. In the

proposed filter, together with the knowledge used in the Hessian-based approach, another

intrinsic knowledge is incorporated: lines have directional elongated structure, which can

be well detected using directional filter bank (DFB). The key concept resides in replacing

the estimation of the line directions via Hessian eigenvectors by the directional information

available in directional images which are obtained in advance by decomposing the input

image using a DFB. Finally, Section 3.3 applied the two mentioned approaches to enhance

vessels in angiography images to evaluate their performances in a clinical setting.
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3.1 Hessian Based Enhancement Filter

An intensity image I(x), where x = (x, y), can be approximated by its Taylor expansion

about a point x0 up to the second order

I(x) ' I(x0) + ∆xT · ∇I(x0) +
1
2
∆xT H(I(x0))∆x (3.1)

∆x = x− x0 (3.2)

where ∇I(x0) and H(I(x0)) are respectively the gradient vector and the Hessian matrix

at point x0.

Without loss of generality, one assumes that the object of interest is bright over a

darker background. So, a line-like structure can be modeled as a tube with a Gaussian

profile across its axis, which is identical to the x-axis

I0(x, y) =
C

2πσ2
0

e
− y2

2σ2
0 . (3.3)

The Hessian of the above model is then expressed as

H =




∂2I0
∂x2

∂2I0
∂x∂y

∂2I0
∂x∂y

∂2I0
∂y2


 =


 0 0

0 y2−σ2
0

σ4
0

I0


 (3.4)

and its eigenvalues and eigenvectors

λ1 = 0 ; λ2 = y2−σ2
0

σ4
0

I0

~v1 = (1, 0); ~v2 = (0, 1).
(3.5)

Inside the tube, |y| < σ0 and thus a line-like structure is declared when λ2 < 0 and

R =
∣∣∣λ1
λ2

∣∣∣ ¿ 1, leading to the enhancement filer [48]

ψ(x) =





0 if λ2 > 0,

µ exp
(
− R2

2β2

)
else

(3.6)

where µ and β are constant.
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In order to capture lines with various sizes, one should compute the gradient and the

Hessian at multiple scales σ in a certain range. In this case, the only way to ensure the

well-posed properties, such as linearity, translation invariance, rotation invariance, and re-

scaling invariance, is the use of linear scale space theory [44, 69], in which differentiation

is calculated by a convolution with derivatives of a Gaussian

Ix = σγGx,σ ∗ I ; Iy = σγGy,σ ∗ I (3.7)

where Ix and Iy are respectively the spatial derivatives in x- and y-direction of the image

I(x, y) and Gx,σ and Gy,σ spatial derivatives of a Gaussian with standard deviation σ:

Gσ(x, y) =
1

2πσ2
e−

x2+y2

2σ2 . (3.8)

The parameter γ was proposed by Lindeberg [69, 70] to normalize the derivatives of the

image. This normalization is necessary for comparison of the response of differentiations

at multiple scales because the intensity and its derivatives are decreasing functions of scale.

In line enhancement applications where no scale is preferred, γ is usually set to one.

When multiscale analysis is applied, the model in (3.3) is convolved with a Gaussian

of standard deviation σ. The derivations in (3.4) and (3.5) are still correct except that σ0

is replaced with
√

σ2
0 + σ2. We can see from those derivations that at pixels inside a line

(y2 < σ2
0), we have one negative eigenvalue corresponding to the eigenvector orthogonal

to the axis of the line. The other eigenvalue, which is smaller in absolute value, associates

with the eigenvector having the same direction as the line axis. Note also that in this

case, when the line direction (~v1) is aligned with the x-axis, the eigenvalues of Hessian are

same as its diagonal values.

3.2 DDFB Based Enhancement Filter

We observe that in the Hessian-based approaches, the line’s direction is first estimated

via the Hessian eigenvectors and then its structure is determine based on the Hessian
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eigenvalues. These are of course the local information which is prone to be erroneous in

some applications due to, e.g., noise. In such cases, more global information is needed. As

mentioned in the previous chapter, the DFB may be an appropriate tool to provide the

global directional information. However, as discussed next, the DFB has some limitations

in image analysis. Thus, a decimation-free directional filter bank (DDFB) is proposed

and used instead. The approach is then called the DDFB-based enhancement filter. The

method consists of three steps, as shown in Figure 3-1: Step 1: construction of directional

images, step 2: directional image enhancement, and step 3: recombination of enhanced

directional images. These steps will be described in details after the description of the

DDFB.

3.2.1 Decimation-free directional filter bank

The subbands obtained from DFB are smaller in size as compare to the original image.

The reduction in size is due to the presence of decimators. As far as image compres-

sion is concerned, decimation is a must condition. However, when DFB is employed for

image analysis purposes, decimation causes two problems. One is, as one increases the

directional resolution, spatial resolution starts to decrease [9], due to which one looses

the correspondence among the pixels of DFB outputs. The other is, an extra process of

interpolation is involved prior to enhancement or recognition computation [11, 12, 95].

This extra interpolation process not only affects the efficiency of whole system but also

produces false artifacts which can be harmful especially in case of medical imagery. For

example, some vessels may be broken and some can be falsely connected to some other ves-

sels due to the artifacts produced by interpolation. So a need arises to modify directional

filter bank structure in a sense that no decimation is required during analysis section. To

meet that need, the authors in [41, 98] presented new rules to modify DFB. Based on

those rules, the author suggests to shift the decimators and resamplers to the right of the
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Figure 3-1: Block diagram of the proposed enhancement framework. There are three

main steps: construction of directional images, line enhancement, and recombination of

enhanced directional images.
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filters to make a DDFB, which yields directional images rather than directional subbands.

This consequently results in elimination of interpolation and naturally fits the purposes

of feature analysis. The block diagram of the DDFB structure is shown in Figure 3-2.

First stage of DDFB

Construction of the first stage of DDFB only requires two filters which are H00(ω1, ω2)

and H11(ω1, ω2). They have hourglass-shaped like passbands as shown in Figure 3-2(a).

Hourglass-shaped filters are created by shifting the modulators present at the first stage of

DFB to the left of filters using rules proposed in [11]. So the interrelation between filters

used during the first stage of DFB and that of DDFB can be given as

H00(ω1, ω2) = H0(ω1 + π, ω2), (3.9)

H11(ω1, ω2) = H0(ω1, ω2 + π), (3.10)

where H0(ω1, ω2) is a diamond-shaped passband filter used during the first stage of DFB.

No downsampler is applied after the input image is filtered by H00(ω1, ω2) and H11(ω1, ω2).

By doing so, the size of outputs from the first stage becomes equal to the size of input

image. Due to this reason, these outputs are named as directional images.

Second stage of DDFB

The filters required for the construction of the second stage are H00(QT (ω1, ω2)) and

H11(QT (ω1, ω2)), where T represents transpose and Q is same as the Quincunx downsam-

pling matrix in the first stage of DFB. Basically Q, which should have been in the first

stage of DDFB, was shifted to the right of the second stage filter using Figure 3-3. Filters

of this stage of DDFB can be related to filters of that of DFB by the following equations:

H00(QT (ω1, ω2)) = H0(QT (ω1 + π, ω2)), (3.11)

H11(QT (ω1, ω2)) = H0(QT (ω1, ω2 + π)). (3.12)
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(a)

(b)

(c)

Figure 3-2: DDFB structure. a) First stage, b) Second stage, and c) Third stage. DDFB

provides directional images of same size as the original image, which fits the purposes of

image analysis.
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(a)

(b)

Figure 3-3: Rules used to shift resampling and downsampling matrix to the right.

Directional images obtained from the first stage of DDFB are filtered through these two

filters. No further operation is required at the end of this stage. Spectral regions of

directional images obtained after filtering through this stage’s filters are shown in Figure 3-

2(b).

Third stage of DDFB

Filters used during the third stage of DDFB are H i
00(ω1, ω2) and H i

11(ω1, ω2), where i =

1, 2, 3, and 4 as shown in Figure 3-2(c). Overall eight different filters are created to be

used during this stage. Mathematically this stage of DDFB can be related to that of DFB

as

H i
00(ω1, ω2) = H0(RT

i QT QT (ω1 + π, ω2)), (3.13)

H i
11(ω1, ω2) = H0(RT

i QT QT (ω1, ω2 + π)), (3.14)

where Ri and Q are respectively the same resampling and downsampling matrices as used

in DFB.

Basically, one has shifted all the modulators, the downsamplers and resampling ma-

trices present in DFB to the right of all the filters. So, at the end of the third stage,

one will be left with two downsampling matrices, one resampling matrix followed by the

post-sampling matrix. These matrices are not applied onto directional images. Directional

images present at the third stage of DDFB are visually correct as no downsampling was
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applied to input image during the whole structure of DDFB. Figure 3-4 demonstrates

eight-directional images obtained by applying DDFB on the original image shown in Fig-

ure 3-6(b) with n = 8 (i.e., k = 3).

Although eight-band DDFB is described here, it can be extended to 16-band and 32-

band DDFB and so on. For this extension to take place, one can take advantage of simple

extension rules for DFB as described in [96]. For a given application, to decide how many

directional images are needed, one assesses how much directional resolution one is in need

of, at the cost of additional computation.

Furthermore, the 2D DDFB can be extended to 3D DDFB on the same lines as 2D

DFB being converted to 3D DFB as an optimum three-dimensional matched filter for

linearly moving objects in noise. More details can be found in [96] where the 3D DFB

is referred to as velocity selective filter bank (VSFB) for emulating the behavior of the

spatio-temporal continuous wavelet transform (CWT) that has proven useful for motion

estimation [83, 82]. The VSFB approach offers a computational advantage over direct

implementation of the CWT in the sense that it exploits the temporal information in

addition to 2D spatial coordinates which is critical in some real world applications.

3.2.2 A comparative analysis between DDFB and DFB

Firstly, the aliasing present in DFB is avoided by the shifting of resampling and down-

sampling matrices to the right. By this way, one is able to get directional images of the

same size as the original image. One of the main advantages of DDFB is the fact that due

to absence of aliasing, directional images are visually correct.

Secondly, in DFB, spatial resolution decreases at least as fast as the directional resolu-

tion increases. The more one knows about the orientation of a feature, the less he knows

about its length and vice versa [9]. However, in DDFB, there is no interdependency be-

tween the length and orientation of the feature. This means that increasing directional
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(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Figure 3-4: Directional images obtained using DDFB with n = 8. (a) Input image, (b)

the directional image corresponding to orientations in the range 45-67.50, (c) 67.5-900, (d)

90-112.50, (e) 112.5-1350, (f)135-157.50, (g) 157.5-1800, (h) 0-22.50, and (i) 22.5-450.
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resolution does not affect spatial resolution. Although in DDFB no downsamplers are

employed at all, complexity will be higher due to the increased data size. Nevertheless,

artifacts due to aliasing are avoided in reconstruction. This is important in medical images

as some aliasing artifacts can be misleading.

Thirdly, in DDFB, since directional images are of same size as the original image, no

interpolation step to establish one-to-one pixel correspondence is needed like in DFB. As

a result, DDFB avoids false artifacts produced during interpolation in subbands.

Finally, the synthesis section of DFB requires exactly the reverse process of the analysis

section. In contrast, at any stage in DDFB, synthesis can be achieved by the simple

addition of directional images. So the overall process of synthesis section is simplified in

DDFB.

3.2.3 Step 1: construction of directional images

The input image is decomposed to n = 2k (k = 1, 2, . . .) directional images Ti. The

motivation here is to detect thin and low-contrast line-like structures while avoiding false

detection of blob-like structures. Directional segregation property of DDFB is helpful

in eliminating randomly oriented noise patterns and blob-like structures which normally

yield similar amplitudes in all directional images (see Figure 3-4).

Before these directional images are enhanced in the next step, they are utilized to

efficiently remove non-uniform illumination (NUI), which limits the correct enhancement.

One conventional approach to correct NUI is to directly apply homomorphic filtering [50]

on the original image. A general image can be characterized by two components: (1)

the illumination component, which changes slowly in a neighborhood due to light source

characteristics and thus is low-frequency and (2) the reflectance component, which is

determined by the amount of light reflected by the objects and therefore is high-frequency.

The homomorphic filter is to suppress the low-frequency component while enhance the
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(a) (b)

Figure 3-5: Results of NUI removal for the input image in Figure 3-4 using homomorphic

filter. (a) Direct filtering on the original image and (b) filtering on directional images and

then re-combining them. The former amplifies background noise whereas the latter does

not.

high-frequency one. However, the direct application of homomorphic filtering is sometimes

unsatisfactory because it may enhance high-frequency background noise as can be seen in

Figure 3-5(a). Tuning the filter parameters in this case suffers from a compromise: the

more NUI is removed, the more background noise is enhanced. Differently, one can employ

several homomorphic filters, each of which matched with its corresponding directional

image as shown in the dash-boundary box in Figure 3-1. This new arrangement provides

a better control on the parameters of individual homomorphic filter. For the sake of

comparison, the recombination of directional homomorphic filtered images is shown in

Figure 3-5(b). The image is now largely uniformly illuminated without unexpected noise

amplification.

3.2.4 Step 2: directional image enhancement

As pointed out in Section 3.1, in order to compute the Hessian eigenvalues with less noise

sensitiveness, it is necessary to align the line direction with the x-axis. One possible way

is to rotate the directional images. Nevertheless, image rotation requires interpolation
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which is likely to create artifacts and thus is harmful especially in case of medical imagery.

Therefore, one can rotate the coordinates rather than the directional images.

Suppose the directional image Ii (i = 1, . . . , n) corresponds to the orientations ranging

from θi,min to θi,max (counterclockwise angle). Its associated coordinates Oxy will be

rotated to Ox′y′ by an amount as large as the mean value θi

θi =
θi,min + θi,max

2
. (3.15)

According to (3.26)−(3.28) in the Appendix section, Hessian matrix of the directional

image Ii in the new coordinates Ox′y′ is determined as

H ′ ≡

 h11 h12

h21 h22


 =




∂2Ii
∂x′2

∂2Ii
∂x′∂y′

∂2Ii
∂x′∂y′

∂2Ii
∂y′2


 (3.16)

where
∂2Ii

∂x′2
=

∂2Ii

∂x2
cos2 θi +

∂2Ii

∂x∂y
sin (2θi) +

∂2Ii

∂y2
sin2 θi, (3.17)

∂2Ii

∂y′2
=

∂2Ii

∂x2
sin2 θi − ∂2Ii

∂x∂y
sin (2θi) +

∂2Ii

∂y2
cos2 θi, (3.18)

∂2Ii

∂x′∂y′
= −1

2
∂2Ii

∂x2
sin (2θi) +

∂2Ii

∂x∂y
cos (2θi) +

1
2

∂2Ii

∂y2
sin (2θi) . (3.19)

The Hessian eigenvalues are then defined by the diagonal values of H ′. As proven in

(3.3)−(3.5), these values are

h11 = 0, h22 = y′2−(σ2
0+σ2)

(σ2
0+σ2)2

I0(x′, y′) (3.20)

where σ selected in a range S is the standard deviation of the Gaussian kernel used in the

multiscale analysis.

Practically, the line axis is not, in general, identical to the x′-axis and so h11 ≈ 0.

Inside the line, |y′| <
√

σ2
0 + σ2 and thus h22 is negative. Therefore, line pixels are

declared when h22 < 0 and
∣∣∣h11
h22

∣∣∣ << 1.
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To distinguish background pixels from others, one define a structureness measurement

C =
√

h2
11 + h2

22 . (3.21)

This structureness C should be low for background which has no structure and small

derivative magnitude.

Based on the above observations, the line filter output, which is similar to that in [48],

can be defined as

φσ(p) = η(h22)exp

(
− R2

2β2

)[
1− exp

(
− C2

2γ2

)]
(3.22)

where p = (x′, y′), R = h11
h22

, β and γ are adjusting constants, and

η(z) =





0 if z ≥ 0;

1 if z < 0.
(3.23)

The filter is analyzed at different scales σ in a range S. When the scale matches the

size of the line, the filter response will be maximum. Therefore, the final line filter response

is

Φ(p) = max
σ∈S

φσ(p). (3.24)

One filter (3.24) is applied to one directional image to enhance line structures in it.

3.2.5 Step 3: recombination of enhanced directional images

Each directional image now contains enhanced lines in its directional range and is called

the enhanced directional image.

Denote Φi(p), i = 1, . . . , n, as the enhanced directional images. As mentioned in Sec-

tion 3.2.2, the synthesis of DDFB is achieved by simply summing all directional images.

Thus, the output enhanced image F (p) can be obtained by

F (p) =
1
n

n∑

i=1

Φi(p). (3.25)
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The whole filtering procedures can be summarized as follows. First, the input angiog-

raphy image is decomposed into n = 2k (k = 1, 2, . . .) directional images Ti using DDFB.

Then, n distinct homomorphic filters are employed to n respective directional images to

remove non-uniform illumination. The output uniformly illuminated directional images

Ii are enhanced according to (3.22)−(3.24). Finally, all enhanced directional images are

recombined to yield the final filtered image F as in (3.25).

3.3 Application: Vessel Enhancement

Correct assessment, especially accurate visualization and quantification, of blood vessels

reflected in X-ray angiograms or angiography images plays a significant role in a number of

clinical procedures. For various medical diagnostic tasks, it is necessary to measure vessel

width, reflectivity, tortuosity, and abnormal branching. For example, detecting the occur-

rence of vessels of a certain width may reveal the signs of stenoses. Grading of stenoses

is of importance to diagnose the severity of vascular disease and then to determine the

treatment therapy [87, 40]. Moreover, planning and performing neurosurgical procedures

require an exact insight into blood vessels and their branches, which exhibit much vari-

ability. In planning, they provide information on where the blood is drawn and drained to

differentiate between the feeding vessel and the transgressing vessel. While transgressing

vessels need to be preserved, feeding ones are selectively closed through the artery in in-

terventional neuroradiology such as brain arteriovenous malformations treatment. During

surgery the vessels serve to provide landmarks and guidelines to the lesion. In short, the

accuracy in navigation and localization of clinical procedures is determined by how minute

and subtle the vascular information is. Although it is possible for medical experts to de-

lineate vessels, manual delineation of the vasculature becomes tedious or even impossible

when the number of vessels in an image is large or when a large number of images is ac-

quired. Therefore, the development of automatic and accurate vessel-tree reconstruction
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(a) (b)

Figure 3-6: Angiography images with typical hindrances for accurate vessel-tree recon-

struction such as (a) low-contrast vessels and (b) non-uniform illumination.

from angiograms is highly desirable. Unfortunately, it has proven to be a challenging task.

The key fact is that vessels cannot be characterized uniformly. Because the blood either

by itself or by the contrast agent it carries is responsible for the vessel contrast to the

background, large vessels usually have high contrast while small ones resemble the back-

ground (see Figure 3-6(a)). Non-uniform illumination as shown in Figure 3-6(b), which

is one of the major sources of angiography image degradation [52], is also a hindrance

for accurate reconstruction because it is likely to make an individual vessel broken into

several segments. According to [72, 58], current automatic computer-assisted procedures

are still far from providing a precise spatial representation of the vessel tree.

In order to achieve an accurate vessel-tree reconstruction, the vessel enhancement pro-

cedure is an important preprocessing step. There are a variety of vessel enhancement

methods in the literature. Some works have taken linear filtering approach. Poli and

Valli [102] proposed a computationally efficient algorithm based on a set of linear filters,

obtained as linear combinations of properly shifted Gaussian kernels, sensitive to ves-

sels of different orientation and radius. Another type of linear filters, the morphological

connected-set filter, was utilized by Wilkinson and Westenberg [85] to capture filamentous

structures. Together with a shape criterion that can distinguish filamentous structures
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from others, connected-set filters can help to extract filamentous details without distor-

tion. Similarly, Eiho and Qian [38] and Zana and Klein [144] used morphological operators

such as erosion, dilation, and Top-Hat to enhance the shape of the artery and remove other

points. However, these methods were unable to suppress sudden noise and edge noise and

were less efficient on capillaries. A different linear filtering approach which combined

Laplacian filter with fuzzy logic was presented by Yan et al. [140]. Small vessels were not

captured satisfactorily by this approach either.

Non-linear anisotropic filtering has also been applied to vessel enhancement (Krissian

et al. [61, 60], Orkisz et al. [88]). This method searches for the local orientation of a

vessel to perform anisotropic smoothing without blurring its edge. While Krissian et al.

performed a particular version of anisotropic diffusion, Orkisz et al. used a kind of filter

bank called “sticks”, which can be seen as a set of directional structuring elements. Similar

approaches were also proposed by Czerwinski et al. [32, 33], Kutka and Stier [64], Chen and

Hale [26], and Du et al. [36, 35]. The last two combined the outputs of directional operators

without an explicit extraction of the vessel local orientation. The main disadvantage of

the methods in this category is that they can hardly detect vessels in a wide range due to

the fixed scale analysis. Although they can be extended to multiple scales by using sticks

of variable length, the computation time would increase very much.

Hessian-based multiscale filtering has been proposed in a number of vessel enhancement

approaches [48, 46, 47, 114, 71, 118]. One advantage of the approaches in this category is

that vessels in a large range of diameters can be captured due to the multiscale analysis.

In these methods, an input image is first convolved with the derivatives of a Gaussian

at multiple scales and then the Hessian matrix is analyzed at each pixel in the resulting

image to determine the local shape of the structures at that pixel (see Figure 3-7(a)).

The ratio between the minimum and the maximum Hessian eigenvalues is small for line-

like structures but it should be high for blob-like ones. Specifically, Krissian et al. [62]
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Figure 3-7: Block diagrams of a) conventional Hessian-based and b) correlation-based

approaches.

introduced several models of vessels and used the Hessian eigenvalues to define a set of

candidate pixels which could be the centerlines of vessels. At each of these candidates,

pre-defined multiscale response functions were computed to determine the likelihood of the

pixel corresponding to vessels of different scales (radii). The drawbacks of the Hessian-

based approaches are that they are highly sensitive to noise due to the second-order

derivatives and that they tend to suppress junctions since junctions are characterized

same as the blob-like structures. Junction suppression leads to the discontinuity of the

vessel network, which is of course undesirable. To deal with this problem, Agam et

al. [3] proposed a filter model which is based on the correlation matrix of the regularized

gradient vectors (first-order derivatives), to avoid the need for second-order derivatives

as demonstrated in Figure 3-7(b). This model generated good performance when dealing

with thoracic CT images. However, when dealing with angiography images, which are

more noisy and suffer from the non-uniform illumination, it shares the same limitations

of Hessian-based filters in finding small and low-contrast vessels. The reason is that it is

still using the Hessian eigenvalues to pre-select the vessel-candidate pixels at which the

filter is applied.

This section presents the evaluation of the DDFB-based enhancement filter on vessel
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enhancement. The study focuses on the processing of 2D images such as X-ray angiogra-

phy and retinal photography images. In such applications as intervention planning, blood

vessel and retinal pathology, blood-flow analysis, or drug evaluation, 2D imaging is of-

ten the method of choice since it provides sufficiently good results although 3D imaging

techniques would provide more information.

Experiments are performed with both synthetic images and real angiography and reti-

nal photography images to verify the performance of the DDFB-based filter in comparison

with the filters introduced by Frangi et al. [48] and Shikata et al. [118], which are consid-

ered as the standard techniques. In the DDFB-based filter, the input image is decomposed

to 16 directional images (n = 16) as a trade-off between performance and computation

time. If not stated otherwise, the scale range S = {1,
√

2, 2, 2
√

2, 4} is used for all three

models as proposed in [118]. The computation time (cpu time, in seconds), performed on

an Intel Duo Core 1.86 GHz with 1 GB of RAM, will be given in each case.

3.3.1 Junction suppression

Figure 3-8 shows the results of an synthetic image of size 158×176 which was processed by

the three filter models. The synthetic image is designed to contain vessels of different sizes

and junctions of different types. It is possible to see that the Frangi and Shikata filters

suppress junctions while the DDFB-based approach does not. The suppressed junctions

make vessels discontinuous. Although this error may be small, it can cause the splitting of

a single vessel, which in turn has a critical effect on the vessel-tree reconstruction accuracy.

It is the use of directional image decomposition that makes the proposed model work.

Normally, a vessel has one principal direction, which is mathematically indicated by a

small ratio between the minimum and maximum Hessian eigenvalue. Meanwhile, at a

junction, where a vessel branches off, there are more than two principal directions, and
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(a) (b)

(c) (d)

Figure 3-8: Vessel enhancement results. (a) The original synthetic image. (b) Enhanced

image by the Frangi method, cpu = 6.70 s, (c) by the Shikata method, 6.65 s, and (d) by

our approach, 8.44 s. The Frangi and Shikata methods suppress the junctions while ours

does not.
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thus the ratio of two eigenvalues is no longer small. As a result, the Frangi and Shikata

filters consider those points as noise and then suppress them. The DDFB-based approach,

on the other hand, decomposes the input image to various directional images, each of

which contains vessels with similar orientations. Consequently, junctions do not exist in

directional images and so are not suppressed during the filtering process. After that, due

to the recombination of enhanced directional images, junctions are re-constructed at those

points which have vessel values in more than two directional images. Therefore, junctions

are not only preserved but also enhanced in the final output image.

3.3.2 Noise sensitivity

To compare the performances of the filters with respect to noise levels, I construct a

set of phantom images as follows. First of all, one original phantom image with various

typical hindrances for accurate vessel detection is created (see Figure 3-9(a)) and later

on used as the “ground truth”. In this 512 × 512 sized phantom, fifteen vessel segments

are constructed for a wide range of widths and directions to model a vascular image.

For the sake of description, these segments are numbered in an increasing order from

left to right and top to bottom. Segment 1 represents distinct branch points in a real

angiography image, and Segments 4 through 7 characterize junctions with different widths

while Segment 3 stands for vessel orientation diversity. Moreover, Segments 2, 12, and 14

are designed deliberately to have variable cross-sectional widths. In addition, common

challenges such as the presence of close parallel vessels (Segments 8, 9, and 11), very

thin vessels (Segment 10), discontinued vessels (Segment 13), and vessels with variable

intensities along their length (Segment 15) are also incorporated into the phantom. Next,

based on this original phantom, a series of testing data are generated by adding various

levels of white noise, having standard deviation (SD) ranging from 5% to 80%. The noise

SD is calculated as a percentage of the 8-bit dynamic range of the image (0 − 255). To
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my experience, the data with noise SD of 80% represents the most possibly challenging

situation, which is well beyond any worst case of real angiography images. Figures 3-

9(b)-(d) present three samples of the testing data having noise SD of 5%, 45%, and 80%,

respectively.

The three filters are then applied on those phantom images and the outputs are seg-

mented using global thresholding to compare with the “ground truth”. The quantitative

performance is measured with receiver operating characteristic (ROC) curves [43]. An

ROC curve plots the rate of pixels correctly classified as vessels (i.e., true positive rate

or sensitivity) against the rate of pixels incorrectly classified as vessels (i.e., false pos-

itive rate or 1−specificity). The rates are obtained with all possible threshold choices.

Each discrete threshold value produces a (sensitivity, 1−specificity) pair corresponding to

a single point in the curve. The closer the curve approaches the northwest corner, the

better the filter performs. A single scalar value reflecting this behavior is the area under

the ROC curve (AUC), which is 1 for perfect performance. Note that to get rid of the

large number of background pixels correctly classified, one can compute the sensitivity and

specificity in the vicinity of the “ground truth” vessels which can be obtained by dilation.

In our experiment, the vicinity size is selected such that the number of background pixels

is comparable to that of the vessel pixels.

Figure 3-10 shows sample enhancement results for the data with noise SD of 10%. The

performances of the three filters applied on the whole testing data set are presented in

Figure 3-11. In this figure, the AUC measures are plotted as a function of the noise SD. We

can see that the DDFB-based filter outperforms the others for this data set. Specifically,

compared to the Frangi filter, it generates similar results in case of low noise (i.e., SD

of 5-10%) but performs much better when the noise level increases.
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(a) (b)

(c) (d)

Figure 3-9: Testing data with a size of 512× 512 and various amount of white noise. (a)

Original phantom (obtained from www.ecse.rpi.edu/censsis/phantom). (b) Noisy phan-

tom with noise SD of 5%, (c) 45%, and (d) 80%. The testing data incorporate most of the

common challenges to exact vessel extraction procedure such as image noise and presence

of close parallel vessels, very thin vessels, discontinued vessels, and vessels with variable

intensities along their length.
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(a) (b)

(c) (d)

Figure 3-10: Sample vessel enhancement results. (a) Sample phantom image with noise

SD of 10%. (b) Enhanced image by the Frangi filter, cpu = 66.42 s, (c) by the Shikata

filter, 65.86 s, and (d) by DDFB-based filter, 81.27 s.
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Figure 3-11: Performance plots vs. noise levels for the testing data described in Figure 3-9.

In average, the AUC of DDFB-based filter is relatively 3.74% and 7.02% larger than that

of Frangi and Shikata filters respectively.

3.3.3 Real data

Similar to junction suppression problem, small vessel enhancement is critical because those

thin vessels which may appear broken or disconnected from larger structures will often be

omitted in the reconstruction procedures. Figure 3-12 shows the enhancement results of

the three filters applied on two real angiography images. The images are of size 401× 401

and belong to cardiac part of the human body. As can be observed, the Frangi filter gives

good results with large vessels but fails to detect small ones while the Shikata model is able

to enhance small vessels but unfortunately enhances background noise also. Conversely,

the DDFB-based filter can enhance small vessels with more continuous appearances.

Due to lack of ground truths for the above images, I leave them as qualitative results

but instead utilize the Utrecht database1 to quantitatively evaluate the three filters on
1Available at http://www.isi.uu.nl/Research/Databases/DRIVE/
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3-12: Qualitative results for two cardiac angiography images. (a) and (e): Original

images, (b) and (f): Enhanced images by Frangi method, cpu = 43.22 s each, (c) and

(g): by Shikata method, 43.11 s, and (d) and (h): by DDFB-based approach, 49.08 s.

The Frangi and Shikata models fail to correctly enhance small vessels but the proposed

approach succeeds.
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Original images Frangi results Shikata results DDFB-based results Ground truths

(a) (b) AUC=0.944 (c) AUC=0.938 (d) AUC=0.958 (e)

(f) (g) AUC=0.867 (h) AUC=0.858 (i) AUC=0.923 (j)

Figure 3-13: Best and worst results for the Utrecht database in terms of AUC measures.

For each image, the Frangi method cpu = 87.02 s, Shikata 85.55 s, and DDFB-based

93.46 s.

real medical images. This database contains 40 retinal color images of size 584 × 565

and their corresponding vasculatures manually segmented by an expert, which are used as

ground truths. In this experiment, the negative of the green channel of the image is used

(see e.g., Figures 3-13(a) and (f)). The green channel is selected since it gives the highest

contrast and it is made negative because the filters assume that vessels are brighter than

the background as stated in Section 3.1. Since vessels in these images are relatively small,

the scale range S = {√2/2, 1,
√

2, 2, 2
√

2} is used. The validation process is performed

same as in Section 3.3.2.

Figure 3-13 shows for the results with highest and lowest AUC measures. The perfor-

mances of the three filters for the whole database are presented in Figure 3-14 and the
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Figure 3-14: Performance plots vs. sample number for the Utrecht database. The mean

and SD of these measurements are given in Table 3.1. In average, the DDFB-based filter

is 5.8% and 6.2% better than the Frangi and the Shikata filters respectively.
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Table 3.1: Mean and SD of the AUC of the three methods performed on the Utrecht

database.
Frangi Shikata DDFB-based

Mean 0.8994 0.8970 0.9519

SD 0.0162 0.0152 0.0060

mean and standard deviation are given in Table 3.1.

To evaluate the noise sensitivity of the filters for retinal images, I create a testing data

set similar to the previous section. Here, I use 40 ground truths of the Utrecht database

as original phantom images; each is added with noise having SD ranging from 5% to 80%.

By this way, we will have several images per noise level. Figure 3-15 plots variation ranges

of AUC per every noise level. Again, it can be seen that the DDFB-based filter is least

sensitive to noise among the three filters.

3.3.4 Discussions

This section has presented a novel approach of vessel enhancement for 2D angiography

images using directional decomposition. The novelty resides in adapting the Hessian-based

filters to be used in the directional images. In particular, this permits the estimation of

the vessel directions without the Hessian eigen-analysis. The advantage of the proposed

approach is that it distinguishes all vessels at bifurcations and crossings. At these config-

urations, one will obtain different vessel directions and thus different second derivatives

that are different from the Hessian eigenvalues (of the original image).

The larger the number of directional images n, the smaller the directional range and

as a result the more accurate the eigenvalue estimation is, at the cost of the computation

time. While the cpu time increases rather linearly with n, the performance does not

increase as much. A pilot experiment showed that the DDFB-based filter with n = 16
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Figure 3-15: Mean and SD bar plots of AUC vs. noise levels for 40 noise-added ground

truths of the retinal images. In average, the AUC of DDFB-based filter is relatively 3.47%

and 2.36% larger than that of Frangi and Shikata filters respectively.

performed about 4% better than that with n = 8 but the cpu time almost doubled. Also,

it can be seen from the previous section that the cpu time of the this filter with n = 16

is comparable to those of the Frangi and Shikata filters (e.g., respectively, 93 s, 87 s, and

85 s for a retinal image of size 584× 565). With those remarks, the author chose n = 16

rather than 32 or higher because the benefit on the relatively small performance gain is

not worth the cost of much more computation time.

Another advantage of the DDFB-based approach is the NUI removal using homomor-

phic filters on directional images. Looking at the dark disks in the retinal images in

Figures 3-13(a) and (f), one can see that the DDFB-based filter can reduce these artifacts

compared to the two other filters. Also, it has removed the bright blob at the center of

the image in Figure 3-13(a) whereas the others could not.

The experimental results show that the DDFB-based filter overcomes the limitations



CHAPTER 3. CURVILINEAR STRUCTURE ENHANCEMENT 85

of conventional Hessian-based methods such as junction suppression and noise sensitivity.

It also performs better on real angiography images. In conclusion, the author considers the

proposed DDFB-based filter a better candidate for pre-processing in an accurate vessel-

tree reconstruction in clinical tasks.

Although this work focuses on 2D images, the proposed approach can be extended to

deal with 3D images by extending DDFB to 3D, which is a future work. The 2D-to-3D

DDFB extension can be done on the same lines as 2D DFB being converted to 3D DFB

as described in [96]. Another aspect of future study will be on the clinical usage of the

proposed technique.

Appendix

Hessian Matrix in New Rotated Coordinates

Given a function f(x, y) in the coordinates Oxy. Suppose that:

1. Hessian matrix H of f(x, y), H =




∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂y

∂2f
∂y2


 is known a priori.

2. The coordinates Oxy is rotated to Ox′y′ by an counterclockwise angle θ; see Figure 3-

16.

Let us compute the Hessian matrix H ′ of f in Ox′y′

H ′ =




∂2f
∂x′2

∂2f
∂x′∂y′

∂2f
∂x′∂y′

∂2f
∂y′2


 .

We have

 x

y


 =


 cos θ − sin θ

sin θ cos θ





 x′

y′


 =


 x′ cos θ − y′ sin θ

x′ sin θ + y′ cos θ


 .
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Figure 3-16: The coordinates Oxy is rotated to Ox′y′ by a counterclockwise angle θ.

Thus,
∂f

∂x′
=

∂f

∂x

∂x

∂x′
+

∂f

∂y

∂y

∂x′
=

∂f

∂x
cos θ +

∂f

∂y
sin θ,

∂f

∂y′
=

∂f

∂x

∂x

∂y′
+

∂f

∂y

∂y

∂y′
=

∂f

∂x
(− sin θ) +

∂f

∂y
cos θ.

Then
∂2f
∂x′2 = ∂

∂x′

(
∂f
∂x′

)
= ∂

∂x′

[
∂f
∂x cos θ + ∂f

∂y cos θ
]

= cos θ
[

∂2f
∂x2

∂x
∂x′ + ∂2f

∂x∂y
∂y
∂x′

]
+ sin θ

[
∂2f
∂y2

∂y
∂x′ + ∂2f

∂y∂x
∂x
∂x′

]

= ∂2f
∂x2 cos2 θ + ∂2f

∂x∂y sin (2θ) + ∂2f
∂y2 sin2 θ.

(3.26)

Similarly,
∂2f

∂y′2
=

∂2f

∂x2
sin2 θ − ∂2f

∂x∂y
sin (2θ) +

∂2f

∂y2
cos2 θ, (3.27)

and
∂2f

∂x′∂y′ = ∂
∂x′

(
∂f
∂y′

)
= ∂

∂x′

[
∂f
∂x (− sin θ) + ∂f

∂y cos θ
]

= − sin θ
[

∂2f
∂x2

∂x
∂x′ + ∂2f

∂x∂y
∂y
∂x′

]
+ cos θ

[
∂2f
∂y∂x

∂x
∂x′ + ∂2f

∂y2
∂y
∂x′

]

= −1
2

∂2f
∂x2 sin (2θ) + ∂2f

∂x∂y cos (2θ) + 1
2

∂2f
∂y2 sin (2θ) . ♦

(3.28)



Chapter 4

Inhomogeneous Object

Segmentation

As a first definition, image segmentation is to partition the image into its constituent parts

which correspond to separated objects. One then may think of the extraction of object

boundaries, where simple edge detectors like gradient-based and second-order derivative-

based operators [50] or a more elaborated approach like Canny edge detector [18] are widely

used. However, an edge detector is usually not suitable for extracting object boundaries

due to many reasons. Firstly, extracted edges do not always correspond to object bound-

aries. For example, one may think of texture. Secondly, edge detectors usually yield

discontinued edges whereas objects are necessarily separated by closed contours. So post-

processing tasks are needed to link discontinued edges, which are complex and prone to

be erroneous. Finally, edge detectors depend on the local information in a neighborhood

of a pixel. Being local is sometimes advantageous, yet in many cases, the global view of

the object appearance is of significant clues. Therefore, image segmentation in general

is different from edge detection. The former is to provide regions, represented by closed

boundaries, not edges.

87
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Region growing [13, 50] is one of the simple techniques that provide regions. Start-

ing with a set of seed points, the algorithm successively appends to each seed point its

neighboring pixels that share similar image features like intensity, texture, or color, etc. to

form larger regions. It is an iterative process that stops when all pixels are processed. The

algorithm can be regarded as a heuristic minimization for the Mumford-Shah functional

(see Chapter 2) where the energy decreases while the regions are growing. Therefore, just

like its energy optimization counterpart, region growing suffers from the sensitivity to seed

selection as the initial condition, which can lead to under- or over-growing.

On the other hand, since it was first introduced in [57], active contour (AC) has

attracted a large amount of researches and become one of the most widely used techniques

in image segmentation. One advantage of AC models is that they are always closed,

yielding continuous object boundaries, which no longer requires post-processing tasks to

connect discontinued segments. Parametric ACs depend on the parameterizations of the

contours and thus cannot naturally handle topological changes whereas geometric ACs

can, making themselves suitable for applications where the number of objects in an image

is not known in advance.

In general, geometric ACs are evolved under the level-set framework

∂φ

∂t
= bκ |∇φ|︸ ︷︷ ︸

CurvatureBased

+ VN |∇φ|︸ ︷︷ ︸
NormalDirection

+ ~S · ∇φ︸ ︷︷ ︸
VectorFieldBased

(4.1)

where κ is the Euclidean curvature and b, VN , and ~S are three parameters determining

the velocity and direction of the evolution. The curvature-based force is to smooth the

curve; the normal direction force shrinks or expands the curve along its normal direction;

and the external vector field-based force acts as a translation operator. Depending on

how to choose those three parameters, we have different AC models such as the (original)

Geometric AC, the Geodesic AC, the GVF Geometric AC (shortly, GVF-Geo AC), and

the Chan-Vese (CV) AC as introduced in Chapter 2 and summarized in Table 4.1.
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Table 4.1: Level-set parameters of the classical AC models.

b VN
~S

Geometric g(x) V0g(x) ~0

Geodesic g(x) V0g(x) ∇g

GVF-Geo g(x) V0K(x)g(x) g(x)(1− |K(x)|)[û, v̂]

CV γ V0 + (I − cin)2 − (I − cout)2 ~0

γ and V0 are constants, g(x) an edge function, e.g., g(x) = e
− 1

σ2
e
|∇Iσ(x)|2

with σe a

scaling factor, [û, v̂] the GVF, and K(x) a function depending on the curve normal

and the GVF.

4.1 Problems of Chan-Vese Active Contours

We can see from Table 4.1 that the first three models depend heavily on the edge function

g(|∇Iσ|2), making themselves prone to be trapped in false edges caused by noises. This can

be alleviated by performing smoothing with larger σ, yet it in turn leads to inexact results

because edges are smoothed as well. The CV AC, on the other hand, does not depend on

g (this gives it the name “without-edge AC”) but on the homogeneity assumption, i.e.,

image features within a segment should be similar. In this case, the image I is assumed

to consist of two segments with approximately piecewise-constant intensities. The CV

“fitting” term (2.52) is an approximation of the Mumford - Shah functional and rewritten

here for readable convenience

F (C) = F1(C) + F2(C) =
∫

inside(C)
|I(x)− cin|2dx +

∫

outside(C)
|I(x)− cout|2dx (4.2)

where cin and cout are respectively the average intensities inside and outside the variable

curve C. Compared to the other three AC models, the CV AC can detect the objects

more exactly since it does not need to smooth the initial image (via the edge function

g(|∇Iσ|2), even if it is very noisy. In other words, this model is more robust to noise; see
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Figure 4-1: CV AC’s failure on capturing an inhomogeneous object, cpu = 58s. Left to

right: initial (F (C) = 645), intermediate (312), final (34), and desired position (197). The

plot of F (C) at every iteration is given in Figure 4-2.

Sections 4.3.7 and 4.3.8. This model was also shown to provide a relaxed initial position

requirement [24].

However, the convergence of the CV AC depends on the homogeneity of the segmented

objects. When the inhomogeneity becomes large like in carpal bones or knee bones, the

CV AC provides unsatisfactory results. To address this, let us consider a synthetic image

(size 128× 128) with an inhomogeneous object having five different parts over the bright

background as shown in Figure 4-1. The image intensity is scaled on the range [0, 1],

with 1 the brightest. The CV fitting term F (C) is calculated at each iteration during

the evolution and plotted in Figure 4-2. As expected, the curve moves in the direction of

decreasing F (C) and stops when F (C) reaches a minimum value, which is F (C∗) = 34 (at

iteration number 16) in this case. Nevertheless, this is not the “desirable” result, whose

minimum fitting term is F (Cdes) = 197. Clearly, the desirable minimum here is larger

(more local) than the practically resulting minimum F (C∗).

4.2 Density Distance Augmented Chan-Vese Active Con-

tours (Aug. CV AC)

From the above example, we can see that the global minimum of the CV energy func-

tional does not always guarantee the desirable results, especially when a segment is highly
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Figure 4-2: CV fitting term F (C) at every iteration of the CV AC evolution process. The

obtained minimum (≈ 34) is not the “desirable” one (≈ 197).

inhomogeneous. To provide flexibility in searching for the desirable minimum (which is

often neither the most local nor global), Li and Yezzi [67] proposed a dual-front AC model

with the active region’s width as a controlling factor. The model is an iterative process

consisting of the active region relocation and the dual front evolution which is another

iterative process, demanding a high computational cost.

Alternatively, this section presents a novel model, called Density distance augmented

Chan-Vese Active Contour (Aug. CV AC) to tackle the problem of CV AC. The reason CV

AC fails is that in this model, a segment is represented by only its mean value, which is not

sufficient for a highly inhomogeneous object. Hence, the proposed model uses the whole

density function instead of only the mean value. The intrinsic knowledge incorporated

here is that distinct organs shall generate distinct configurations in a medical image, i.e.,

I assume that the density function of one organ should be different from that of another

one. The difference between density functions, given by the Bhattacharyya distance [55],

is reflected as an additional energy term into the CV fitting term F (C) in order to balance

the differences within every segment and the distances between separate segments. By

properly weighting the two terms, the new evolution flow, which is implemented in a level-

set framework, can flexibly drive the contour towards the desirable position without the
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overhead required by the iterative dual-front evolution. If one considers segmentation as

a classification problem, the proposed flow searches for a classifier that provides optimal

classification errors since it both minimizes the error within one class and maximizes the

distances between classes.

Although there are alternative measures defining the distance between probability

distributions such as the Fisher ratio, the Kullback-Leibler divergence [63], the Bhat-

tacharyya distance is chosen for both its better performance in applications of signal

selection as observed in [55] and its simple analytical form. Specifically, in the active

contour framework, the Bhattacharyya distance between the density functions inside and

outside the curve C, i.e., pin(z) and pout(z), z ∈ Rn, is defined as [− log B(C)] where

B(C) ≡ B =
∫
Rn

√
pin(z)pout(z)dz and thus the maximization of this distance is equiva-

lent to the minimization of B(C). The additional term B(C) is incorporated as

E0(C) = βF (C) + (1− β)B(C) (4.3)

where β ∈ [0, 1]. Note that to be comparable to the F (C) term, in practice, B(C) is

multiplied by the area of the image because its value is always within the interval [0, 1]

whereas F (C) is calculated based on the integral over the image plane. As usual [24], one

regularizes the solution by constraining the length of the curve and the area of the region

inside it, yielding the total energy functional as

E(C) = γLength(C) + V0Area(inside(C)) + βF (C) + (1− β)B(C) (4.4)

where γ and V0 are non-negative constants.

The intuition behind the proposed model, infC E(C), is that we seek for a curve which

is regular (the first two terms) and partitions the image into two regions such that the

differences within each region are minimized (the F (C) term) and the distance between

the two regions is maximized (the B(C) term).

For the level-set formulation, let us define φ as the level-set function, I : Ω → Z ⊂ Rn

as a certain image feature such as intensity, color, texture, or a combination thereof, and
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H(·) and δ0(·) as the Heaviside and the Dirac functions respectively.

H(u) =





1, if u ≥ 0

0, if u < 0
δ0(u) =

d
du

H(u). (4.5)

The energy functional can then be rewritten as

E(φ) = γ

∫

Ω
|∇H(φ(x))|dx + V0

∫

Ω
H(−φ(x))dx

+ β

[∫

Ω
|I(x)− cin|2 H(−φ(x))dx +

∫

Ω
|I(x)− cout|2 H(φ(x))dx

]

+ (1− β)
∫

Z

√
pin(z)pout(z)dz

(4.6)

where

pin(z) =

∫
Ω δ0(z − I(x))H(−φ(x))dx∫

Ω H(−φ(x))dx
pout(z) =

∫
Ω δ0(z − I(x))H(φ(x))dx∫

Ω H(φ(x))dx
. (4.7)

In a general form, it reads

E(φ) =
∫

Ω
f(φ, φx1 , φx2 , ..., φxn)dx

︸ ︷︷ ︸
F̃ (φ)

+ (1− β)B(φ) (4.8)

where x = [x1, x2, ..., xn] ∈ Rn, φxi = ∂φ
∂xi

, i = 1..n, B(φ) =
∫
Z

√
pin(z)pout(z)dz, and

f = γδ0(φ)|∇φ|+ V0H(−φ) + β|I − cin|2H(−φ) + β|I − cout|2H(φ).

The first variation (w.r.t φ(x)) is given by

δE

δφ
=

δF̃

δφ
+ (1− β)

δB

δφ
. (4.9)

Using Euler-Lagrange equation, one has

δF̃

δφ
=

∂f

∂φ
−

n∑

i=1

∂

∂xi

∂f

∂φxi

= δ0(φ)
[−V0 − β(I − cin)2 + β(I − cout)2 − γκ

]
. (4.10)

On the other hand,

δB

δφ
=

1
2

∫

Z

(
∂pin(z)

∂φ

√
pout(z)
pin(z)

+
∂pout(z)

∂φ

√
pin(z)
pout(z)

)
dz (4.11)
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where pin(z) and pout(z) are given in (4.7). Differentiating them w.r.t φ(x), one obtains

∂pin(z)
∂φ

=
δ0(φ)
Ain

[pin(z)− δ0(z − I)]
∂pout(z)

∂φ
=

δ0(φ)
Aout

[δ0(z − I)− pout(z)] (4.12)

where Ain and Aout are respectively the areas inside and outside the contour and are given

by

Ain =
∫

Ω
H(−φ(x))dx Aout =

∫

Ω
H(φ(x))dx. (4.13)

Substituting (4.12) into (4.11) and taking some simple modifications, one obtains

δB

δφ
= δ0(φ)V (x) (4.14)

where

V (x) =
B

2

(
1

Ain
− 1

Aout

)
+

1
2

∫

Z
δ0(z − I(x))

(
1

Aout

√
pin(z)
pout(z)

− 1
Ain

√
pout(z)
pin(z)

)
dz. (4.15)

Combining (4.9), (4.10), and (4.14), one can derive the first variation of E(φ) as

∂E

∂φ
= δ0(φ)

[−γκ− V0 − β(I − cin)2 + β(I − cout)2 + (1− β)V
]
. (4.16)

Hence, the evolution flow associated with minimizing the energy functional in (4.6) is

given by

∂φ

∂t
= −δE

δφ

= δ0(φ)

{
γκ + V0 + β

[
(I − cin)2 − (I − cout)2

]

− (1− β)
[
B

2

(
1

Ain
− 1

Aout

)
+

1
2

∫

Z
δ0(z − I)

(
1

Aout

√
pin

pout
− 1

Ain

√
pout

pin

)
dz

]}
.

(4.17)
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4.2.1 Implementation

There are a couple of possible regularizations of function H (and δ0) [24, 145] which deter-

mine the number of level curves that the evolution flow for φ acts on. Some regularzations

make the flow acts on a few level curves around the zero level set {φ(x) = 0} whilst

some others acts on all level curves. In this model, δ0(φ) is replaced by |∇φ| so that the

evolution is extended to all level sets of φ as suggested in [145].

The pseudo-code for the proposed algorithm can be outlined as follows:

- k = 0, initialize φk by φ0.

- Compute the mean values cin and cout.

- Compute pin(z) and pout(z) according to (4.7).

- Compute Ain and Aout by (4.13).

- Evolve the curve using (4.17) to obtain φk+1.

- Reinitialize φ as the signed distance function of the current curve

(see [89] for details).

- Check whether convergence is met. If not, k = k+1 and go back

to the second step.

4.2.2 Preliminary results

Let us get back to the phantom image in the example in Section 4.1. Figure 4-3 shows the

results of the Aug. CV AC with various β values. The object is correctly detected with

a large range of β while neither of the two extremum cases (β = 0 and β = 1) succeeds.

Figure 4-4 plots the energy minimization process where β = 0.5 for a comparison with

that in Figure 4-2. The “desirable” minimum F (Cdes) = 197 was successfully found.

Figure 4-5 shows the segmentation results for a real CT image. We can see that the

CV AC provides unsatisfactory result (the inner region is excluded due to its intensity

similarity to the background’s) whereas the proposed model can capture the whole bone
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(a) (b) (c)

(d) (e) (f)

Figure 4-3: Results of the Aug. CV AC applied on the example image in Figure 4-1 using

various values of β: (a) initial curve in white, (b) final curve with β = 1.0 (purely the

CV term), cpu = 57s, (c) β = 0.8, cpu = 21s, (d) β = 0.5, cpu = 71s, (e) β = 0.3, cpu

= 18s, and (f) β = 0.0 (purely the Bhattacharyya term), cpu = 25s. The whole body is

segmented correctly with a large range of β, i.e., (c)-(e).
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Figure 4-4: CV fitting term F (C) at every iteration of the Aug. CV AC evolution process

with β = 0.5. The “desirable” minimum is found.

(a) F (C) = 520 (b) F (C) = 192 (c) F (C) = 231

Figure 4-5: Segmentation result for a CT image (size 120× 190). (a) Initial, (b) CV AC,

cpu = 72s, and (c) Aug. CV AC, cpu = 179s.

region although the former reaches the smaller value of energy term (F (C) = 192 as

compared to 231). This again proves that the global minimum is not always the desirable

one.

In summary, this section presents a novel active contour model, called the Aug. CV

AC. The model incorporates into the CV energy functional the Bhattacharyya distance

between the density functions inside and outside the curve to drive it towards a “desirable”

minimum which is often not the global one. The evolution flow of the proposed model

is derived using the level-set framework, making itself inherit advantages of a geometric

AC such as topology adaptability. The experimental results with both synthetic and

real medical images show that the Aug. CV AC overcomes limitations of the CV AC
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when dealing with inhomogeneous objects. It is also possible to see that the cpu time of

the new model is comparable to or even less than that of the CV AC despite the higher

computational cost. This is due to the fact that the additional evolving term helps to move

the curve faster towards convergence. Its effectiveness in medical image segmentation is

further evaluated in the next section using larger data sets of CT bone images, acquired

in a clinical setting.

4.3 Application: Bone Segmentation From CT Images

Along with the advancements in medical imaging modalities such as ultrasound, magnetic

resonance imaging (MRI) and computed tomography (CT), medical image analysis has

drastically increased its importance in clinical procedures [101]. Current research works

can be classified into four categories according to their purposes: enhancement, regis-

tration, visualization, and segmentation of the images. Image enhancement [25] deals

with yielding more accurate images with improved contrast and reduced noise. Image

registration [31] is an essential technique for multi-modality imaging where MRI, SPECT,

PET, or angiography could be registered to each other to complement information. For

instance, the complementary information such as soft-tissue information from MRI could

be added to CT or vascular data to the anatomical MRI. Image visualization [112] is to

provide more effective viewing of complex structures or information of human body. Im-

age segmentation deals with an extraction of targeted regions of interests (ROIs) from the

original image with minimum human interaction. Nowadays, due to increasing comput-

ing power, a combination of these research topics is integrated into the computer-aided

surgery planning or the image-guided surgery system [101].

In computer-assisted orthopedic surgery, automatic image segmentation, especially

automatic bone segmentation from CT imagery, is a critical but challenging component.

Challenges are twofold: in developing good segmentation algorithms and in automating
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(a) (b) (c)

Figure 4-6: Typical CT bone images with challenging obstacles for accurate segmentation

such as (a) weak edges, (b) gaps and texture areas, and (c) blurred inter-bone regions as

indicated with boxes.

them. The former has three main hindrances: i) inhomogeneous bone structures, ii)

low contrast edges, and iii) overlapping intensity values of bones, whereas the latter is

even more challenging because it requires high performance to be obtained with minimal

user interactions such as image-dependent initialization or prior information about the

number of bones and/or their shapes. Inhomogeneous regions are due to the nature of

bone structure in which the outer layer (i.e., cortical bone) is denser than the inner one

(i.e., spongy bone). As a result, the cortical bone appears brighter in CT images while

the spongy bone is darker and sometimes textured. Moreover, during image acquisition

process, small gaps can exist in the bone surfaces where blood vessels go through. Also,

when the boundaries of two bone regions are close to each other, they tend to be diffused,

making the background pixels between them brighter and thus lower contrast. The boxes

in Figure 4-6 indicate these challenging characteristics.

There have been several attempts including global thresholding, region growing [2], re-

gion competition [147], atlas-based [37], artificial intelligence, watershed segmentation ap-

proaches, and various combinations thereof as surveyed in [130, 115]. Most of the methods

have shown success in certain anatomical structures where they have been optimized such

as carpal bones [115], acetabulum and femoral head [148], spinal canal [17], pelvis [141, 37],
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vertebrae [76], ribs [120], and phalanx bones [105]. In [130], two methods were validated on

knee bone segmentation, which is also the subject of this study. The first one is a four-step

process [56] which contains region-growing using local adaptive thresholds, discontinued-

boundary closing, anatomically oriented boundary adjustment, and manual correction.

The other one is a seeded edge-detection and tracing algorithm [141] where initial seeds

are obtained by thresholding in intensity histograms. The aforementioned methods often

require several steps with certain degrees of user interaction, especially additional tasks

are in need to close discontinued object boundaries.

On the other hand, traditional snakes and many modified versions have also been used

for bone segmentation. In [103], the authors incorporated region-based image features to

the snakes model of Kass et al. [57], which was edge-based, to improve its convergence

and dependence on initial position and to reduce its sensitivity to noise. Sharing the same

idea, Pardo et al. [94] introduced new region potential term which did not rely on prior

knowledge about image statistics. Although the integration of edge and region information

made the model more robust to noise and permitted a more precise segmentation of

bones, the automatic selection of relative weighting between edge and region terms remains

an unsolved problem. In another work [115], Sebastian et al. combined conventional

approaches such as bubbles active contours [124], region growing, region competition, and

morphological operations in a unified framework. Specifically, from initialized seeds, region

growing was taken place under the evolution implementation of bubbles. The growth

of seeds was also modulated by the inter-seed skeleton-mediated competition between

neighbor regions. The method inherited the advantages of each individual approach to

overcome the discretization drawbacks of the region competition method, the convergence

problems and initial placement sensitiveness of curve evolution methods. Nevertheless, it

had limited performance in case of narrow and diffused inter-bone spaces. Ballerini and

Bocchi [7] proposed the use of multiple genetic snakes whose energy minimization was
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based on the Genetic Algorithms (GA) which helped to tackle the initialization problem.

However, the method required much user interaction in determining the energy weights

and the functionals governing the snake behavior.

Although those modified AC models can overcome the drawbacks of conventional ones

in some particular situations, they are still far from the automatic bone segmentation pro-

cedure that requires high accuracy, initialization insensitivity, and topology adaptability

(i.e., automatic splitting and merging ability to capture multiple objects). This section

presents the evaluations of five recently developed AC models, namely the Geometric AC,

the Geodesic AC, the GVF-Geo AC, the CV AC, and the Aug. CV AC, in extracting knee

bones from CT images in comparison against 3D-DOCTOR software1, which is considered

as a semi-automatic method. Other models that incorporate prior knowledge about object

shape [110, 30, 126] or texture [92] are not considered since they require a training stage

and thus are hardly automated and cannot fairly compared. The motivation here is to

find the most appropriate technique that produces highest segmentation accuracy with

least user interaction. From a clinical perspective, the development of such an algorithm

is of great value since it can significantly reduce the amount of time a practitioner spends

to inspect and modify the results of a more or less automatic segmentation. Knee bones

are chosen as the regions of interest because they have all segmentation challenges as de-

scribed above. Together with both qualitative and quantitative evaluations on real CT

images, the influences of noise and contrast are also investigated with simulated data.

4.3.1 Parameter setting and tuning

There are four parameters for the above-mentioned AC models: σ, σe, V0, and ν. σ de-

termines the width of the smoothing Gaussian kernel used in the edge function g and is
1A commercial software (Able software Corp., http://www.ablesw.com/3d-doctor/), approved by FDA

(US Food and Drug Administration) for medical imaging and visualization applications and currently used

by leading hospitals, medical schools, and research organizations around the world.
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chosen small enough to retain minute details. It is fixed as σ = 0.3 for all experiments.

The rest are chosen depending on each specific case. Decreasing σe helps to detect weak

edges but in turn traps the contour in false edges that are caused by noise. Since V0

constantly moves the contour along its normal direction regardless of its current position,

increasing V0 will speed up the evolution but can march the contour over weak edges. So,

σe and V0 should be large for noisy images and vice versa. ν weights the length constraint

of the CV and the Aug. CV ACs. If we have to detect all or as many objects as possible

and of any size, then ν should be small. If we have to not detect smaller objects (like

points, due to noises), then ν has to be larger.

In practice, some preliminary testing are needed for a new set of images with similar

characteristics. In my experiments, I estimate the noise and contrast levels of one or two

images from a testing set to provide an initial guess of the parameter set based on the

above guidelines. Then I use a coarse to fine scheme to obtain the “best” parameters

based on both visual evaluation and quantitative measures.

4.3.2 Testing data

Three testing data sets, named Contrast, Noisy, and Real CT images, are used to test the

five techniques on CT bone segmentation. The last consists of sixteen CT images covering

the knee regions of one person; see Figure 4-7. The former two are of synthetic data made

to see how these techniques behave at different contrast and noise levels respectively and

were created as follows. First, a medical expert was asked to carefully extract bone regions

from the sixteen CT images, which will be used as “ground truths” later on. Then, each

extracted bone region was placed on ten homogenous backgrounds with various intensities

to obtain ten images having contrast varying from 1% to 20%. Here, I adopt the definition

of contrast introduced by Morrow et al. [81]

Ct =
B0 −B

B0 + B
100% (4.18)
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Figure 4-7: Real CT data set.

where B and B0 are respectively the mean intensity of the object (foreground) and the

surrounding region (background) in an image. In my real CT data, the contrast is about

8%. To my knowledge, CT images with the contrast of 20% are quite clear and those

with the contrast of 1% are beyond the worst case. By this way, I had a Contrast data

set consisting of 160 images (16 images × 10 contrast levels each) with typical CT bone

segmentation challenges. Similarly, placing extracted bones on noisy backgrounds with

SNR of 50, 40, 30, 20, and 10 dB, I formed a Noisy data set consisting of 80 images (16

images × 5 noise levels each). Images with SNR of 10 dB are beyond the worst case.
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4.3.3 Evaluation method

For quantitative comparison, I use two error measures, ε1 and ε2, defined as

ε1 = 1− #(Extracted regions ∩ True regions)
#(Extracted regions ∪ True regions)

ε2 = Hd(Extracted boundaries, True boundaries) (4.19)

where # denotes the number of points in a set and Hd(A,B) the Hausdorff distance

between two polygons A and B.

Hd(A, B) = max{h(A,B), h(B, A)} (4.20)

where h(A,B) = max
a∈A

min
b∈B

{dist(a, b)} and dist(a, b) is the Euclidean distance between

points a and b.

The error measure ε1 quantifies the relative overlap between the segmented and the

true regions and ε2 measures the difference of the extracted and the true contours. The

former provides a global goodness of the result whereas the latter determines how much

details of the object shape are captured. The more these measures are close to zero, the

better the segmentation is.

4.3.4 Sensitivity to β

Similar to the experiment in the previous section, the sensitivity of the Aug. CV AC with

respect to the β parameter is investigated here using the real CT data set. The result is

shown in Figure 4-8. It can be seen that this AC model is not much β-sensitive since it

provides small error measures with many β values ranging from 0.4 to 0.7.

4.3.5 Topology-adaptability and initialization-insensitivity

I consider an AC to be topology-adaptable if it can naturally split and merge to capture

multiple objects in the image without any prior information and initialization-insensitive
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Figure 4-8: Performances of Aug. CV AC applied on the real CT data set vs. β values.

if it can do that regardless of its initial position and size. Figure 4-9 shows three types

of initialization and the corresponding results. Note that only one representative result

is shown for three models: Geometric, Geodesic, and GVF-Geo AC because they yield

similar results for this synthetic image. We can see that these three models work well with

the first two types (the initial contour is totally outside or inside the objects) but fail with

the last one (initial contour is cross the objects) whereas the CV and the Aug. CV ACs

succeed with all three types. The reason is that the former three models can only move

in a fixed direction based on the sign of the constant V0; see (2.43)-(2.51). When V0 is

positive (negative), the whole contour will shrink (expand) all the time. Meanwhile, the

image-dependent term [V0 + (I − c1)2 − (I − c2)2] in the CV AC flow (2.56) (or similar

term in the Aug. CV AC flow (4.17)) allows the contour to expand and shrink where

appropriate because it can be negative at some points and positive at others.

4.3.6 Experiment 1 - Performance at Various Contrast Levels

In this experiment, I use the Contrast data set to evaluate the performance of the AC

models with respect to different contrast levels. The parameter settings are chosen as
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Outside

Inside

Cross

Figure 4-9: Topology-adaptability and initialization-sensitivity. Left to right: initializa-

tion, Geometric/Geodesic/GVF-Geo, CV, and Aug. CV ACs. The latter two models

succeed with all three types of initialization whereas the others fail with the cross-type.

Table 4.2: Parameter settings for Experiment 1.

Geometric Geodesic GVF-Geo CV Aug. CV

(σ2
e , V0) (σ2

e , V0) (σ2
e , V0) (ν, V0) (ν, V0)

0.2, 0.5 0.2, 0.7 0.2, 0.5 1, 0 1, 0

described in Section 4.3.1 and shown in Table 4.2. Figure 4-10 shows visual results from

two samples having contrast of 13% and 1%, respectively. Mean values of error measures as

functions of contrast level are plotted in Figure 4-11 and corresponding SD values are given

in Table 4.3. We can see that although the CV AC performs well when image contrast is

high (more than 15%), its performance decreases very quickly with the contrast whereas

the others are more robust to contrast level. One possible reason is that the homogeneity

assumption of CV model cannot be guaranteed in low contrast images, i.e., many parts of

the object resemble background and thus are likely to be misclassified (see Figure 4-10,

lower row).
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Figure 4-10: Performance at various contrast levels. Upper row: contrast = 13% and

lower row: contrast = 1%.
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Figure 4-11: Plots of error means vs. contrast levels. Mean value is calculated over sixteen

samples at each contrast level.
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Table 4.3: Mean and SD of error measures for Contrast data set.
Contrast Mean (SD)

[%] Geometric Geodesic GVF-Geo CV Aug. CV

ε1 1 0.108 (0.074) 0.150 (0.095) 0.092 (0.029) 0.479 (0.055) 0.050 (0.041)

3 0.110 (0.082) 0.133 (0.070) 0.101 (0.060) 0.368 (0.159) 0.032 (0.022)

5 0.108 (0.096) 0.132 (0.077) 0.087 (0.046) 0.271 (0.109) 0.034 (0.024)

7 0.096 (0.078) 0.134 (0.088) 0.092 (0.079) 0.239 (0.105) 0.033 (0.020)

9 0.118 (0.105) 0.127 (0.088) 0.076 (0.051) 0.115 (0.080) 0.036 (0.026)

11 0.096 (0.100) 0.124 (0.109) 0.087 (0.066) 0.086 (0.036) 0.032 (0.024)

13 0.094 (0.073) 0.099 (0.080) 0.068 (0.038) 0.052 (0.034) 0.035 (0.024)

15 0.082 (0.070) 0.104 (0.072) 0.063 (0.051) 0.039 (0.023) 0.037 (0.023)

17 0.062 (0.039) 0.085 (0.054) 0.054 (0.018) 0.034 (0.018) 0.044 (0.029)

20 0.066 (0.033) 0.063 (0.021) 0.064 (0.042) 0.027 (0.012) 0.041 (0.024)

ε2 1 9.07 (3.47) 11.51 (3.51) 8.12 (1.47) 20.69 (2.41) 7.30 (2.09)

3 9.67 (3.84) 10.92 (3.39) 9.91 (3.60) 19.68 (4.39) 6.75 (1.76)

5 9.36 (3.52) 10.35 (3.10) 8.51 (2.79) 16.25 (6.63) 6.81 (1.75)

7 9.22 (3.07) 10.90 (3.49) 9.20 (3.51) 14.18 (6.77) 7.07 (2.53)

9 10.18 (4.14) 11.94 (3.82) 8.20 (2.79) 9.97 (6.72) 6.81 (1.80)

11 9.31 (3.94) 10.71 (4.09) 9.05 (2.86) 9.48 (4.48) 6.78 (1.85)

13 9.27 (3.02) 9.62 (3.77) 7.71 (2.17) 8.05 (2.23) 6.86 (1.89)

15 9.24 (3.69) 9.87 (3.40) 8.23 (3.23) 7.00 (1.88) 7.29 (2.24)

17 7.86 (2.25) 9.07 (3.31) 7.38 (1.81) 7.05 (1.85) 7.26 (2.21)

20 8.27 (1.89) 8.49 (2.48) 8.00 (2.69) 7.02 (1.86) 6.66 (3.01)
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Table 4.4: Parameter settings for Experiment 2.

SNR Geometric Geodesic GVF-Geo CV Aug. CV

[dB] (σ2
e , V0) (σ2

e , V0) (σ2
e , V0) (ν, V0) (ν, V0)

10 20, 3 20, 7 30, 7 1, 0 1.5, 0

20 3, 3 3, 9 4, 6 0.5, 0 1, 0

30 1, 1 2, 1 3, 1 0.05, 0 0.5, 0

40 1, 1 2, 1 3, 1 0.05, 0 0.5, 0

50 1, 1 2, 1 3, 1 0.05, 0 0.5, 0

4.3.7 Experiment 2 - Performance at Various Noise Levels

Similarly, the Noisy data set is used to evaluate the performance of the five AC models

with respect to various noise levels. The parameter settings are shown in Table 4.4 and

sample results in Figure 4-12. Quantitative comparisons for this testing data set are

given in Figure 4-13 and Table 4.5. The Geometric, the Geodesic, and the GVF-Geo ACs

provide similar performance to the others when noise level is low. However, they tend to

get stuck in false edges caused by noise when noise level increases due to the edge function

g. On the other hand, the CV and the Aug. CV are more robust to noise as they do not

depend on the edge information.

4.3.8 Experiment 3 - Performance with Real Data

The aim of this experiment is to investigate how the AC models work with real CT

images in comparison against 3D-DOCTOR software. The parameter settings are shown

in Table 4.6.

Figure 4-14 shows segmentation results for two sample CT images. It can be seen

that the first three models, i.e., the Geometric, the Geodesic, and the GVF-Geo ACs, do

not generate visually satisfactory results whereas the other two do. The Geometric AC
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Figure 4-12: Performance at various noise levels. Upper row: SNR = 30dB, lower row:

10dB.
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Figure 4-13: Plots of error means vs. SNR. Mean value is calculated over sixteen samples

at each SNR.
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Table 4.5: Mean and SD of error measures for Noisy data set.
SNR Mean (SD)

[dB] Geometric Geodesic GVF-Geo CV Aug. CV

ε1 10 0.361 (0.090) 0.350 (0.087) 0.269 (0.067) 0.122 (0.031) 0.096 (0.024)

20 0.262 (0.065) 0.299 (0.075) 0.197 (0.049) 0.047 (0.012) 0.039 (0.010)

30 0.051 (0.013) 0.061 (0.015) 0.061 (0.016) 0.020 (0.018) 0.021 (0.003)

40 0.051 (0.020) 0.061 (0.011) 0.050 (0.010) 0.013 (0.005) 0.017 (0.007)

50 0.050 (0.011) 0.052 (0.009) 0.045 (0.012) 0.010 (0.004) 0.015 (0.004)

ε2 10 24.597 (5.402) 23.586 (5.403) 25.237 (5.406) 19.144 (4.785) 15.074 (3.771)

20 22.347 (5.594) 23.030 (5.594) 20.186 (5.051) 11.903 (3.117) 10.094 (3.270)

30 8.854 (2.213) 8.902 (2.231) 8.833 (2.362) 8.507 (2.381) 7.906 (2.235)

40 8.756 (3.217) 8.620 (2.457) 8.339 (3.215) 6.827 (2.103) 7.036 (2.671)

50 8.282 (3.031) 7.421 (1.543) 8.090 (2.232) 6.102 (2.142) 6.597 (1.328)

Table 4.6: Parameter settings for Experiment 3.

Geometric Geodesic GVF-Geo CV Aug. CV

(σ2
e , V0) (σ2

e , V0) (σ2
e , V0) (ν, V0) (ν, V0)

0.2, 0.4 0.2, 0.8 0.2, 1.2 0.5, 0 5.0, 0

Figure 4-14: Two sample segmentation results. Left to right: initialization, Geometric,

Geodesic, GVF-Geo, CV, and Aug. CV ACs’ results.
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Figure 4-15: Qualitative comparison. Left to right: 3D-DOCTOR, CV AC, Aug. CV AC,

and the “ground truth”. The contours from the 3D-DOCTOR software contain cross-over

parts whereas the others do not.

tends to pass through some areas in the bone boundary where the stopping function g

is not small enough due to weak edges and/or gaps. In this situation, the Geodesic AC

with the extra stopping term ∇g · ∇φ (2.49) can pull back the boundary-passing-through

contour in weak-edge regions but it is likely to get stuck in false edges caused by noises.

The GVF-Geo AC model (2.51) has similar problem. Differently, the CV and the Aug.

CV AC models can successfully find the bone boundaries. The qualitative comparisons

between these two models and the 3D-DOCTOR software are presented in Figure 4-15.

These ACs yield better results in the sense that the contours are smoother and do not

contain cross-over parts as the commercial software does.

The mean and standard deviation of the error measures for sixteen images are given

in Table 4.7. Among the five AC models, the last two perform well and their performance

is comparable to that of the 3D-DOCTOR software. The smaller ε2 value of these models

over the commercial software can be explained by the better boundary shapes they yielded.
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Table 4.7: The mean and SD of error measures of AC models and the 3D-DOCTOR

software performed on sixteen CT images.
Geome. Geode. GVF-Geo. CV Aug. CV 3D-DOCTOR

ε1 0.184 (0.078) 0.155 (0.078) 0.147 (0.068) 0.086 (0.016) 0.089 (0.013) 0.078 (0.012)

ε2 12.74 (3.24) 10.84 (3.92) 11.62 (3.31) 6.76 (1.54) 7.12 (1.53) 7.49 (1.49)

4.3.9 Discussions

The feasibility of five different AC models on automatic bone segmentation from CT im-

ages have been examined. By “automatic”, I mean that a model can provide high accuracy

with minimal user interactions such as initialization and prior information about the num-

ber of bones and/or their shapes. Due to the level-set framework, all five models showed

their ability to capture complex shapes without any prior information. Furthermore, in

case of ideal image (see Figure 4-9), the CV AC and the Aug. CV AC’s performances were

invariable to different initial contour positions and sizes. Before assessing the performance

on real images, I investigated the influence of noise and contrast level on the segmentation

result, which is why Experiments 1 and 2 were carried on. Results show that the Geo-

metric, the Geodesic, and the GVF-Geo ACs are robust to image contrast but sensitive to

noise whereas the CV AC is robust to noise but sensitive to image contrast. Meanwhile,

the Aug. CV AC is robust to both noise and contrast levels.

The purpose of Experiment 3 is to evaluate the accuracy of the models on real patient

data, acquired in a clinical setting. Results show that the first three models provide

unsatisfactory results when dealing with bones that have smooth edges and/or gaps. On

the other hand, the CV AC and the Aug. CV AC models show excellent ability in

segmenting bone regions with the error measures comparable to those of the 3D-DOCTOR

software. These models even generate visually better results than the commercial software

does in the sense that the contours are smoother and do not contain cross-over parts which

cannot truthfully represent real bone structures.
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From these findings, I consider that the CV and the Aug. CV AC models offer best

potential for the automatic bone segmentation work. Moreover, when dealing with low

contrast images, the latter is more suitable.



Chapter 5

Contributions and Conclusions

All intelligent thoughts have already been thought;

what is necessary is only to try to think them again.

Johann Wolfgang von Goethe (1749-1832).

Variational methods have emerged for the past two decades as a pool of high-level

mathematical tools for image processing as opposed to the conventional low-level mathe-

matical operators which are largely heuristic and thus often lack of proofs of correctness.

However, they have shown to suffer from limited performance in medical applications since

medical images are very noisy and low contrast. This thesis has dealt with knowledge-

incorporated variational methods in medical image processing in order to improve their

performance and robustness. The work contributes to both technical and medical research

community. As contributions to technical researches, it has appended to the variational

methods two models to be used in enhancement and segmentation each.

It has presented a novel approach for Hessian eigen-analysis with emphasis on pre-

serving junctions while enhancing curvilinear structures. The conventional Hessian-based

enhancement approaches first estimate the object’s direction and the direction orthogonal

to it using the Hessian eigenvectors and then calculate the second-derivatives in those
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directions to determine the object’s structure (in fact, these directional derivatives are

reflected by the Hessian eigenvalues and thus one does not need to calculate them again).

The proposed approach replaces the directional estimation using Hessian eigenvectors with

the directional information available in directional images obtained using the DDFB. By

this way, the proposed approach can distinguish all line-like structures at junctions and

bifurcations. At these configurations, one will obtain different directions and thus different

second derivatives that are different from the Hessian eigenvalues (of the original image).

Also, directional decomposition alleviates the removal of NUI which is usually a challenge

for correct enhancement algorithm. Normally, NUI is directly removed from the input im-

age using homomorphic filter whose parameter tuning suffers from a compromise between

the amount of NUI removal (desirable) and that of the high-frequency noise enhancement

(undesirable). In the proposed approach, homomorphic filter is not applied on the input

image, but on its directional components. Here, a set of homomorphic filters is used; each

is optimized matched with its corresponding directional image. This new arrangement

provides a better control on the parameter of individual homomorphic filter.

In segmentation, the thesis has introduced a new energy functional that can help to

efficiently detect inhomogeneous objects. The proposed energy incorporates a density dis-

tance term into the Chan-Vese fitting term (which is an approximation of the Mumford-

Shah functional). The minimization of the energy is mathematically solved using the

calculus of variations and the gradient descent, leading to a new active contour model,

called Aug. CV AC, whose evolution flow is implemented using the level-set framework.

The resulting AC searches for a segmentation solution where not only the dissimilarity

within each segment is minimized but also the distance between distinct segments is max-

imized. This reduces the misclassification errors in cases of inhomogeneous objects where

the minimal dissimilarity within each object by its own cannot guarantee the desirable

result. Incorporating another term into an existing term means that a new weighting
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parameter is introduced. On one hand, it makes the flow more flexible in finding desirable

result. On the other hand, the additional parameter requires more effort from the user

to select suitable values for it. Fortunately, the proposed model has been shown to be

rather insensitive to the weighting parameter, i.e., it can converge with a large range of

the parameter’s value.

As contributions to medical researches, the thesis has applied the two proposed models

to vessel enhancement and bone segmentation, respectively. Enhancement of blood vessels

reflected in X-ray angiograms or angiography images is necessary yet challenging for their

accurate visualization and quantification which play a significant role in a number of

clinical procedures such as stenosis diagnosis or neurosurgical planning and performing.

The challenges are due to the fact that vessel’s width varies much, leading to various local

contrast level reflected in the image and due to non-uniform illumination caused by the

image acquisition. Extensive experiments have been performed in a number of synthetic

and real medical images to evaluate the performance of the proposed filter in comparison

with two conventional filters, i.e., the Frangi’s and the Shikata’s. The proposed filter has

shown its effectiveness in enhancing vessels of various sizes and types with more robustness

to noise. Furthermore, it overcomes the junction suppression problem of the conventional

ones. Although the error caused by junction suppression may be small, it can yield serious

clinical problem due to the resulting discontinued vessel tree.

Similar to vessel enhancement, automatic bone segmentation from CT images is a

critical but challenging task. Challenges are twofold: in developing a good segmentation

algorithm and in automating it. The former is difficult because of the inhomogeneous

nature of bones and the noisy and low contrast characteristics of CT images. By au-

tomating the segmentation algorithm, it is meant that high accuracy is obtained with

minimal user interactions. The thesis has evaluated the performances of five segmentation

models, namely the Geometric AC, the Geodesic AC, the GVF-Geo AC, the CV AC, and
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the proposed Aug. CV AC, in many synthetic and real CT images. Findings show that

the Aug. CV AC possesses many advantages such as topology adaptability, initialization

insensitivity, and noise and low-contrast robustness. The last advantage ensures high ac-

curacy to be obtained whereas the former two make it less dependent on user interaction.

This model also provides superior results compared to a commercial software in a set of

medical images. Therefore, the Aug. CV AC is the most suitable candidate for automatic

bone segmentation. From a clinical perspective, the development of such an algorithm is

of great value since it can significantly reduce the amount of time a practitioner spends

to inspect and modify the results of a more or less automatic segmentation.

According to Goethe, one does not have many chances to create any reasonably new

thought as all truly wise thoughts had already been thought thousands of time before.

There might be several arguments against this absolute statement, e.g., one may doubt

whether people in the Renaissance period talked about topics like internet or genetics.

Nonetheless, the statement is reasonable in the sense that a new thought cannot pop up

from nowhere but is based on several thoughts that have been thought before. At least, this

has been proven by the history of science. Revolutions are really rare in science; instead,

breakthroughs are usually obtained via an evolution process in which many small ideas are

sum up together. This statement is also true for this thesis: the idea of incorporating prior

knowledge for better performance is not new. However, this idea has been re-thought in

a different way: intrinsic knowledge obtained from medical objects is naturally embedded

into the proposed methods without additional efforts of defining external models like in

conventional approaches. In this sense, novel contributions of the thesis are significant.
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