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Abstract

The recent emerging technology such as the Internet of Things (IoT) bring internet connectivity to

the physical objects and allow more resources to connect the internet and provide services on the

Web. Due to the expansion of the digital system, the way information is spread has a great impact

on the business. The Web of data provides an interlinked data space and allows search, querying,

and reasoning. Efficient discovery of and querying data on the Web remains a key challenge due

to the limited capability and high latency of searching on the Web. Semantic Web Technology

promotes common data formats on the Web as a Resource Description Framework (RDF), and to

query these data the SPARQL endpoints are available that allow searching and re-using of these

data. The proliferation of semantic big data has resulted in a large amount of content published

over the LOD. Semantic Web application consumes these data by issuing SPARQL queries.

Recently, Linked Data has emerged as one of the best practices to represent and connect these

repositories, also allowing the exchange of information in an interoperable manner. Linked Data

not only supports the integration of multiple data from diverse sources but also provides a way

to query these datasets. The vast amount of data, especially in the field of Bio-medical are being

published as Linked Data. As the Linked Open Data (LOD) cloud is a global information space

and offers a wealth of structured facts, which are useful for a wide range of usage scenarios.

Whenever there is public data available, data consumers want to query it, and nothing is more

compelling than querying the vast amount of the Linked Data. With over 800 million triples are

currently stored in DBpedia, the search of the specific resources has never been this high before.

The Linked Data cloud handles a large number of requests from applications consuming the

data. Many of the current data analytic solutions require continuous access to these data sets. The

major challenge faced by querying the Linked Data cloud on account of the inherently distributed
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nature of Linked Data is its high search latency and lack of tools to connect SPARQL endpoints.

Accessing Linked Data cloud at query time is prohibited due to high latency in searching the

content and limited capability of tools to connect to these databases. Therefore, the performance

of retrieving data from LOD repositories is one of the major challenges. In spite of the increased

performance of SPARQL endpoints the main problem remains due to the low availability of these

endpoints as on average the downtime of SPARQL endpoints is more than 2 days each month.

A survey conducted on 427 public SPARQL endpoints registered on the DataHub shows the low

efficiency of these endpoints with an availability rate above 90%. Although the Linked Data cloud

supports SPARQL queries to access data from its publicly available interfaces, a central problem

is the lack of trust regarding these endpoints due to network instability and latency. Therefore, the

typical solution is to dump the data locally and maintain endpoints to process these data. The data

stored at the local endpoints are not up-to-date and require constant updates, therefore, accurately

hosting the endpoints requires expensive infrastructure support.

Existing research shows that the SPARQL server with high demands is often hard to host

and which is further complicated as the endpoints are publicly hosted due to the unpredictable

workloads. The current way of querying the SPARQL endpoint is to utilize the HTTP that is

implemented on top. The client sent the request through these endpoints and the server returns

the request. Due to the massive data involved server needs to execute a significant amount of

work. The SPARQL query processing is different than the regular HTTP processing as the query-

based partitioning of resources occurs. Therefore, regular HTTP caching strategies can not be fully

applied to the Linked Data scenario. In the recent past, many efforts have been made to improve

the performance of effectively querying Linked Data as compared to querying a triple stored in

a relational database, querying a triplestore is still slower by 20%. To circumvent the problem of

effectively querying Linked Data caching is the most popular technique to reduce query time by

serving the requests from a cache. The idea of query caching is to reuse the previously issued

queries. In the distributed setting the benefits of caching are more evident, as the previously issued

queries are stored on the remote source. The caching will immediately improve the robustness of

the system where the remote resources are not available due to the network insatiability. Existing

caching approaches consider caching of entire query result which means that similar queries can
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not be served from cache.

To cope with the above challenge, we argue in this thesis, it is advantageous to maintain a

local cache for efficient querying and processing. We build a decentralized cache in which the

client can take care of their own processing and maintain the access patterns of similar queries.

Therefore, the client solves the complex queries and only allow the server to request simple data

retrieval operations. Due to the continuous evolution of the LOD cloud, local copies have become

outdated. In order to utilize the best resources, improvised scheduling is required to maintain the

freshness of the local data cache. In this thesis, we have proposed an approach to efficiently capture

the changes and replace the cache. Our proposed approach, called Application-Aware Change

Prioritization (AACP), consists of a change metric that quantifies the changes in LOD, and a

weight function that assigns importance to recent changes. We have also proposed update policies,

called Preference-Aware Source Update (PASU), which incorporates the previous estimation of

changes and establishes when the local data cache needs to be upgraded. The aim of this work to

accelerate the overall query processing of the LOD cloud. Our work alleviates the burden on the

SPARQL endpoint by identifying subsequent queries learned from client historical query patterns

and caching the result of these queries.
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Chapter 1
Introduction

1.1 Overview

The Web often contains valuable information, but often poorly manage and inaccurate information

can be found. The Web of data is often interlinked data space and allows search, querying, and

reasoning. Semantic Web Technology promotes common data formats on the Web as a Resource

Description Framework (RDF), and to query these data the SPARQL endpoints are available that

allow searching and re-using data. As the Web of data evolves and information is being added and

removed, therefore local copies of Web sources need to be updated from time to time to ensure the

quality and consistency of data. Due to the evolution of data many Web data application maintains

local copies and naive approach for detecting changes in the Web of data is to download the

arbitrary-size RDF data and compare them [1–3]. Whereas most research has been conducted

in generating and publishing the RDF data, this thesis proposed novel approaches on efficient

management of the evolution of Web data to achieve optimal accuracy and efficient use of available

computational resources.

The World Wide Web is based on a graph that is connected through edges and hyperlinks. The

content of the Web pages is normally connected with the Hypertext Markup Language (HTML)

and transferred using the Hypertext Transfer Protocol (HTTP). Tim Berners-Lee describes the key

features of LOD as to provide the unique Uniform Resource Identifier (URI) for referencing enti-

ties, allow accessing those URIs through HTTP and use the standard to represent information [4].

Therefore, URIs and HTTP are the essential features of LOD to access the data on the Web.

The main goal of the LOD is to retrieve and interpret information as an HTML document only

provides rendering information. Whereas LOD resources can be utilized for complex reasoning.

Many famous projects utilized LOD for example DBpedia [5] aims at publishing the structured

1
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contents from the Wikipedia pages. Other projects that focus on publishing the specific resources is

LinkedGeoData [6] that extract the information from the OpenStreetMap1 (a community project).

This project is providing more than one billion resources. Recently, domain-specific projects are

popular that utilized LOD such as LinkedCT [7] which contains information about clinical trials.

Currently, thousands of LOD resources are available that offer no restriction on using and alter-

ing the content that enables users to freely utilize these resources. Nowadays, the Semantic Web

community promotes Linked Open Data (LOD) to address interoperability and sharing issues for

online datasets [8]. The LOD cloud offers a wealth of information including geo-location facts2

and cross-domain information. Currently, it is estimated that more than thirty billion facts have

been published over LOD [9]. The format of LOD is encoded as RDF,3 which consists of a sub-

ject, a predicate, and an object that is stored in Triplestore4. RDF is widely used as an information

model for vast semantic data. However, in the RDF data model, the querying complexity is higher

than the relational data model. Currently, widely used RDF datasets such as DBpedia [10], handle

abundant requests from diverse applications [11].

In the recent past, massive amounts of data are available publicly and these data are produced

at an alarming rate in all domains of medical sciences, creating what we today call ”Big Data”.

The era of big data generates new opportunities for the research community to build solutions

to search and integrate life sciences data effectively [12]. Most of these datasets have varied for-

mats or lack any format and are stored in disparate locations that are poorly linked, which hinders

the operator from efficiently searching and retrieving data. Recently, Linked Data has emerged as

one of the best practices to represent and connect these repositories, also allowing the exchange

of information in an interoperable manner. Linked Data ontologies not only support the integra-

tion of multiple data from diverse sources but also provide an efficient way to query these datasets.

Healthcare systems and recent technologies have realized the importance of acquiring and preserv-

ing Big data streams for decision making. Therefore, with the evolution of big data in healthcare,

the research trends have shifted from massive storage to efficient analysis of data [13].

In various healthcare disciplines, the use of large datasets is becoming popular and the data is

1http://www.openstreetmap.org/
2https://linkedgeodata.org/
3https://www.w3.org/RDF/
4https://jena.apache.org/
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shared on the cloud. Modern stream analytics applications [14,15] are exploiting the fusion of data

streams and Linked Data publicly available on the Web. Recent investigations [16–22] have shown

that the content of Linked Data is dynamic in nature and keeps on evolving. Linked Data content

changes over time and some of the data stored in the local cache becomes outdated. Therefore,

knowledge about what has changed in the database is important for analytics applications [1].

Analytics applications need constant updates to guarantee the quality of service in maintaining

the local cache. To the extent of our knowledge, there is limited work addressing the problem of

maintaining local views (or caches) up-to-date [1,9,19,23–27]. Normally a maintenance policy is

needed to determine what to update and when. In the literature, three kinds of conventional main-

tenance policy have been reported for data analytics systems [28]: immediate (update immediately

after data arrives), deferred (no execution is performed on current query evaluation), and periodic

(update the local views on regular bases). However, these conventional policies fail to effectively

optimize local views for linking data due to slow response time. Figure 1.1 illustrates the overall

process of querying Linked Open Data, where the knowledge base layer uses the RDF as a data

representation model and the querying layer is responsible for conveying the SPARQL to interface

in order to return the results.

Recent investigations [16–22] have shown that the content of LOD is dynamic over time and

continuously evolving. The accuracy of the index drops [29] due to the continuous evolution of

LOD. Knowledge about the changing behavior of the LOD cloud is extremely important for ap-

plications consuming these data [1]. The LOD application pre-fetches the data and stores it in its

cache for future information needs. The LOD application utilizes caching techniques to lever-

age the query processing and serve the requests from its cache (also called cache hits) [30].

Many caching techniques have been developed for relational databases such as LRU [31] and

LFU [32]. The underlying structure of the LOD cloud is different from the relational databases.

These caching algorithms designed for relational databases are not applicable in the LOD sce-

nario [33]. Linked Data applications need constant updates to guarantee the quality of service and

maintain up-to-date copies of the data. In the ideal case, an application is needed to visit all the

data sources. However, in the real world scenario, this is not feasible due to limited computa-

tional resources. To the extent of our knowledge, we believe, there is limited work addressing the
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problem of updating local LOD caches [1, 9, 19, 23–27].

Existing approaches [1, 16, 34] that are dedicated to capture changes in LOD utilize HTTP

header information. The header information provides information concerning when the source in

the LOD cloud was changed last. Recent analyses [29, 35] have shown that application relying on

the last-modified HTTP header information is inappropriate and susceptible to drawing incorrect

conclusions. Alternative strategies [23, 24] have utilized scheduling and explore different features

such as such as Age [36] and Size [37] to assign the preference in order to visit the resources.

However, existing scheduling methods [23, 24] are not as effective as they do not consider the

importance of the preference score while conducting the cache update. Similarly, the cache mech-

anism of existing methods is computationally expensive; instead of only replacing with changed

items, the existing methods perform a full cache replacement. Recently [23], a crawling strategy

called Triple Linear Regression (TLR) has been proposed for RDF documents. However, due to

the poor accuracy of this approach, it can not be utilized in a real-world LOD application. The

opening chapter will contain the main motivation of this thesis in Section 1.1, the problem state-

ment along with the research question in Section 1.2, an overview of the existing approaches in

Section 1.3, and the proposed solution in Section 1.4. Finally, the key contributions of this thesis

in Section 1.5.

1.2 Motivation

The heap of structured data published over the Internet is increasing i.e., Linked Data [20]. Linked

Data is a global information space for representing and connecting data structurally. The format

of Linked Data is encoded as RDF5 which consists of the subject, predicate, and an object and

is stored in the Triplestore6. RDF is widely used as an information model for vast semantic data.

However, in the RDF data model, the querying complexity is higher than the relational data model.

As the SPARQL7 is standard language to query RDF dataset. To access the data, the SPARQL

service is deployed on each knowledge base which uses the HTTP bindings as shown in Figure 1.2.

5https://www.w3.org/RDF/
6https://jena.apache.org/
7https://www.w3.org/TR/rdf-sparql-query/
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The main part of the SPARQL language is Web Services Description Language (WSDL)8 that

describe the means for conveying queries and results to the processing service. Currently, widely

used RDF datasets such as DBpedia9 produces abundant request from diverse applications [11].

Nowadays, the amount of semantic data is growing rapidly, therefore for efficient query processing

and caching [11] is required. So caching is used to leverage the query processing on the Triplestore

and the data is present in its cache the request is sent immediately (also called cache hits) [30].

Many caching techniques have been developed such as LRU [31] and LFU [32] for rela-

tional databases. The underlying structure of the big semantic data is different from the relational

databases. In recent years, a lot of non-relational Triplestore [38] are emerging. The caching al-

8https://www.w3.org/TR/rdf-sparql-protocol/
9https://www.dbpedia.org/
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gorithm design for relational databases does not apply to Triplestore [33]. In the RDF triplestore,

some of the records are ”hot” (frequently accessed by the application) and others are ”cold” or sel-

dom accessed. The performance depends on the number of factors such as hot records in the cache

or residing in the memory for fast access [10]. The Linked Open Data (LOD) cloud is dynamic the

content of these LOD changes frequently. As mentioned previously, the existing approaches are

unable to cope with the dynamic and evolving nature of the Linked Open Data (LOD) cloud. To

utilize the best resources, it is essential to improvise an effective scheduling strategy for updating

the local data cache. However, LOD applications that consume these data need to be aware of the

changes. As the content stored locally is outdated and needs to ensure the most recent version

of the data. In the ideal case, the index needs to be updated continuously to maintain up-to-date.

However, in the real world scenario, the LOD applications must deal with the limitation of the

computational resources. These limitations imply to prioritize which data sources need to be up-

dated. Our work is motivated by the need for efficient query processing in the Triplestore [39].

These considerations drive our research:

(1) Access Workload: The performance of the Triplestore is a major challenge in real-world

practical application. The workload exhibits considerable access skew, for example, the product

description in the online store exhibits natural skew as most of the items are popular and frequently

accessed than others [40].

(2) Overhead in caching: The major problem of cache is high overhead due to the proactive

fetching [41, 42]. For example, cache policy such as LRU encounters 25% overhead on every

record access [33].

There are numerous applications that are related to the change detection and notification ser-

vices such as [43], which estimate the change frequency of the web and to improve the incre-

mental web crawler. Identified solution strategies such as HTTP Meta-data Monitoring [25] uses

the header timestamps to detect the change in the data. Another solution strategy to estimate the

change is Dynamic Linked Data Observatory (DYLDO) [44] which is fetching the entire con-

tent and determining locally. Hence, the existing solution strategies are unable to cope with the

scalability and dynamics of the LOD cloud in an effective way.

There are various implementations that looked into the characteristics of the LOD cloud. Some
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have conducted the structural analysis in order to obtain the characteristics of the data [45]. In liter-

ature, there are various works that have investigated on the characteristics of LOD and estimation

of the change. Researchers in [46,47] have estimated the change frequency of data to improve the

web crawlers, web caches and to help the data mining tasks. Other works are related to change in

content of a RDF documents that is crawled for the period of 24 weeks. According to the author

Etag and Last-modified HTTP header were applied to typically indicate the change. There is a

variety of existing works related to the change detection of the query results on dynamic data sets.

Among them the most prominent work on the query caching is [11], but the working implemen-

tations are rare. Currently, there is a limited research that focuses on the impact of the cache on

LOD. Most of the available work is rich in database literature where query cache occurs; however

cache with the SPARQL engine is not considered relevant [48].

Since, LOD cloud is a global information space and it is structurally connect data items. The

distributed web based nature of data motivates many application to keep local copies of the data.

Due to the dynamic nature of the linked data many applications need to keep updating the local

copy of the data. The main problem is when to perform the updates. To solve this problem re-

searchers have investigated scheduling update strategies to periodically update the LOD caches.

We also investigate update strategies that are proposed in the literature for updating linked data

caches. Another worth mentioning work by Magnus Knuth et al. [26] discusses the problem of

scheduling refresh queries for large number of registered SPARQL queries. They have investi-

gated various scheduling strategies and compared them experimentally. The main contribution of

their work is an empirical evaluation on the real world SPARQL queries.

The issues related to the exploitation and maintenance of local views received considerable

attention in the research community over recent years. Most of the maintenance algorithms pro-

posed in the literature are based on eager (or deferred) maintenance. Eager maintenance protocols

update the view periodically whenever a change occurs in the cloud. Colby et al. [49] proposed

deferred view maintenance to reduce the view downtime and perform incremental maintenance

to keep the local views up-to-date. However, all these algorithms divide the maintenance task

into smaller steps, which is not as effective as combining the small maintenance task to improve

the efficiency of the overall maintenance process. Data warehouses have also used a lazy mainte-
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nance [50] policy that delays maintenance until downtime rather than the peak query time. Also

worth mentioning are the maintenance policies for stream monitoring that examine the problem

to schedule multiple continuous queries. They are able to manage incoming data streams using

deferred maintenance for updating local data caches. However, their policies mainly focus on ETL

(Extract, Transform, and Load) operations and they have difficulties in managing latency and ac-

curacy when a large-scale fusion of linked datasets is given.

Semantic caching was originally proposed for Database Management System (DBMS) [51]

to reduce the overhead when retrieving data over a network. The idea is to maintain has been ex-

tended to previously issued queries to facilitate future requests. Nowadays, the semantic caching

technique triplestores [11]. Godfrey et al. [52] proposed a notion of semantic overlap and intro-

duced a caching approach that utilized client-server systems. To extend this idea, Dar et al. [51]

proposed a semantic region-based caching and introduced a distance metric to update the cache

where the far regions are discarded from the cache. However, these approaches can only handle

SELECT SPARQL queries. Martin et al. [11] proposed an idea to apply cache on the SPARQL

processor. The benefit of this work is to cache both the triple query result and the application re-

sult. However, this work does not consider identical and similar queries for cache replacement. To

extend this work, Shu et al. [53] proposed a content-aware approach that utilized query contain-

ment to estimate whether the queries can be answered from the caches. The containment checking

approach produces a lot of overhead, therefore this approach is not widely utilized by the Semantic

Web community. Yang et al. [54] proposed an approach to decompose the query into basic graph

patterns and cache intermediate results. But they do not consider cache replacement to maintain

the freshness of the cache. In summary, only a few works have been reported that deal with the

problems related to view maintenance. Moreover, the existing solutions are unable to provide a

proactive maintenance policy therefore reducing query time.

There is a need of user-friendly techniques to represent, query, and visualize the linked data.

Healthcare organization such as World Health Organization (WHO), publish health related data

online. However, most of the data are either available in Excel or PDF format by the portal. On the

other hand, linked data provides an efficient way to publish the data and alleviate many challenges.

Figure 1.3, shows the typical architecture of LOD based application which provides the flex-
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ibility and usability where the data consumer such an expert is able to explore and visualize the

data. Whenever the change occurs in the sources the scheduling strategies should keep the local

copy of the data up-to-date. The main core of the architecture is the service and the model layer

where the external sources are converted into the RDF triples and stored in the triplestore. As

the data keep on changing the effective change estimation is needed to update the local copies of

the data considering the limitation on the bandwidth. The purpose of this work is to evaluate the

effectiveness of these scheduling strategies.

In contrast with the above-mentioned approaches, this thesis presents change-aware schedul-

ing for effectively updating LOD cache. In contrast to existing approaches [23, 24], our novel

scheduling utilized a change metric together with a weight function that assigns more importance

to recent changes in the dataset. Moreover, our proposed update policy incorporates the previous

estimation of changes and establishes when the local data cache needs to be updated. The motiva-

tion behind the change-aware scheduling approach is to maintain the local data cache up-to-date

for faster querying and processing. In order to achieve these goals, this study was undertaken with

the following objectives (i) to select the change metric that quantifies the changes for the LOD

cloud (ii) to select scheduling that assigns a preference in order to visit LOD sources (iii) to keep

the local data cache up-to-date by replacing it with changed items.
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Figure 1.3: Typical Workflow Diagram of Medical LOD application from Querying, Conversion
and Visualization
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1.3 Problem Statement

The proliferation of semantic big data has resulted in a large amount of content published over

the Linked Open Data (LOD) cloud. Semantic Web applications consume these data by issuing

SPARQL queries. The problem with querying the LOD cloud is its high search latency and slow

performance of retrieving data from its repositories. The rapid expansion of LOD use in academia

and industry evidences the efficient retrieval of data as one of its major challenges. Although ev-

ery LOD cloud supports SPARQL queries to access data from its publicly available interfaces, a

central problem is the lack of trust regarding these endpoints due to network instability and la-

tency. Therefore, the typical solution is to dump the data locally and maintain endpoints to process

these data. The data stored at the local endpoints are not up-to-date and require constant updates,

therefore, accurately hosting the endpoints requires expensive infrastructure support. Whenever

there is public data available, data consumers want to query it, and nothing is more compelling

than querying the vast amount of the Linked Data. Recently, Linked Data has emerged as one of

the best practices to represent and connect these repositories, also allowing the exchange of in-

formation in an interoperable manner. Linked Data not only supports the integration of multiple

data from diverse sources but also provides a way to query these datasets. With over 800 million

triples are currently stored in DBpedia10, the search of the specific resources has never been this

high before [11].

In spite of the increased performance of SPARQL endpoints the main problem remains due to

the low availability of these endpoints as on average the downtime of SPARQL endpoints is more

than 2 days each month [55]. A survey conducted on 427 public SPARQL endpoints registered on

the DataHub shows the low efficiency of these endpoints with availability rate above 90% [55].

Oftentimes, SPARQL endpoints are not processed the specific workload as efficiently. The major

challenge faced by querying the SPARQL endpoint on account of the inherently distributed nature

of Linked Data is its high search latency and lack of tools to connect SPARQL endpoints. Access-

ing Linked Data cloud at query time is prohibited due to high latency in searching the content and

limited capability of tools to connect to these databases. Therefore, the performance of retrieving

data from Linked Data repositories is one of the major challenges. Although the Linked Data cloud

10https://www.dbpedia.org/
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supports SPARQL queries to access data from its publicly available interfaces, a central problem

is the lack of trust regarding these endpoints due to network instability and latency. Therefore, the

typical solution is to dump the data locally and maintain endpoints to process these data. The data

stored at the local endpoints are not up-to-date and require constant updates, therefore, accurately

hosting the endpoints requires expensive infrastructure support [56].

Existing research shows that the SPARQL server with high demands is often hard to host and

which is further complicated as the endpoints are publicly hosted due to the unpredictable work-

loads [57]. The current de-facto way of querying the SPARQL endpoint is to utilize the HTTP

that is implemented on top. The client sent the request through these endpoints and the server

returns the request. Due to the massive data involved servers need to execute a significant amount

of work [58]. The SPARQL query processing is different than the regular HTTP processing as the

query-based partitioning of resources occurs. Therefore, regular HTTP caching strategies can not

be fully applied to the Linked Data scenario. In the recent past, many efforts have been made to

improve the performance of effectively querying Linked Data [59, 60], as compared to querying

a triple stored in a relational database, querying a triplestore is still slower by 20% [11]. To cir-

cumvent the problem of effectively querying Linked Data [61, 62], caching is the most popular

technique to reduce query time by serving the requests from a cache. The idea of query caching is

to reuse the previously issued queries. In the distributed setting the benefits of caching are more

evident, as the previously issued queries are stored on the remote source. The caching will im-

mediately improve the robustness of the system where the remote resources are not available due

to the network insatiability. Existing caching approaches consider caching of the entire query re-

sult which means that similar queries can not be served from cache. These research questions are

individually tackled in this thesis as follows.

1. Access Patterns. How to identify the access patterns of similar structure queries to identify

the common access strategies? At the same time, numerous research have been conducted

on LOD [63,64], but little work addresses the problem of discerning Linked Data access pat-

terns. Recently, query logs are increasingly used to harvest query results from available RDF

data repositories. These logs are useful to identify the previously issued queries. To evaluate

the access patterns, we have contributed to the notion of Linked Data query similarity. As
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a vast amount of data, especially in Biomedical research [63, 65], are being published as

Linked Data. Being able to analyze these data is essential for creating new knowledge and

decision making. Many of the current LOD based analytic applications require continuous

access to these data sets. The problem with continuous access is that it requires a lot of com-

putational resources which makes it unfeasible to perform in system peak time. In order to

utilize the best resources, improvised scheduling is required to maintain the freshness of the

local data cache. As cache has limited space, it is important to fill it with valuable content

by replacing unnecessary content. To reduce this overhead cost, modern database systems

maintain a cache of previously searched content. The challenge with Linked Data is that

databases are constantly evolving and cached content quickly becomes outdated.

2. Query prefetching. How can we assist data consumers to efficiently retrieve the data from

LOD and prefetches the additional facts related to the query? As discussed earlier, the LOD

patterns have been addressed briefly in the existing literature. Therefore, there have been

few efforts aiming to retrieve information related to the LOD [39, 66–68]. Query prefetch-

ing aims at discovering interesting related information based on the user request. There

exist a number of projects that include implements the query prefetching for retrieving the

data [69]. The main benefit of query prefetching is to increase the cache hit rate [70]. The

idea behind query prefetching is to retrieve the results of the queries as they are requested

by the user. The problem of identifying the subsequent queries is quite challenging, if the

results of the queries are prefetched the user is served from the cache. This immediately

corresponds to the reduce the result of the response time as more queries are served from

prefetching the result of previously issued queries.

3. Cache Replacement. What are the current obstacles in replacing the cached content and

how can they be alleviated? The volume of Semantic Big Data is unprecedented and keep

on evolving. In recent years, many efforts have been devoted to the problem of effectively re-

place the cache in order to reduce the query time by serving the request from the cache [71].

As the cache is limited, therefore it is important to fill it with valuable content. Currently, a

lot of existing research is replacing the content based on time. To the extent of our knowl-

edge, we believe, there is very limited work addressing the problem of efficiently replac-
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ing the cached content. Data on the LOD frequently changes and applications relying on

the local copies need constant update their cache. Therefore, instead of visiting all LOD

sources, a maintenance policy helps to know when data from the LOD cloud need to be

updated [23, 30].

The solution to the problems and challenges is to adopt client-side caching as it is a domain-

independent approach that does not require underlying knowledge of the LOD. Typically, the

queries issued by the end-user are repetitive and follow similar patterns that only differ in a specific

element. The major challenge of this task is to find similar queries, as it is possible that two queries

are structurally similar but may differ in content. To tackle this problem, we propose the use of a

bottom-up matching approach to find similar queries. For the structural similarity, we first compute

the distance between the triple patterns and prefetch the results of similar queries to be placed in

the cache. A cache has limited space, therefore it is advantageous to replace it with frequently-

accessed data. In this work, our cache replacement utilizes exponential smoothing forecasting to

calculate the frequency of the accessed data and replace content based on access frequencies. More

specifically, we propose a full-record replacement strategy, in which at every new query the hit

frequency of accessed triples is calculated using exponential smoothing, and the cache is replaced

with the highest access queries. The motivation behind adaptive cache replacement is to improve

the querying efficiency and reduce the burden on the SPARQL endpoint. Repeated queries are

cached locally, and the results of these queries are immediately answered to the user. Our approach

optimizes the results of predicted potential queries and less-valuable queries are replaced from the

cache. Our approach is based on the idea that the clients who processed similar queries are likely to

process similar queries in the future. The aim is to search and gather content possibly requested at

the future queries by identifying the concepts of the previously issued queries. The main benefit is

to reduce the transmission overhead and improve the hit rate and query time by retrieving contents

for future queries at once. We prefetch all contents that were used to answer the queries since those

queries are more likely to be requested by the same user in the future. For cache replacement, we

serve each query according to the estimated frequency, the query with the highest frequencies are

kept in the cache. Figure 1.4 illustrates the overall flow of the proposed approach. When a client

sends a new query the cache manager first check if an identical query has been cached. In this
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case, the results are immediately sent to the client. In case of the cache miss, new queries are

sent to the query prefetching where similar queries are suggested and the result of these queries

are retrieved from the SPARQL endpoints. As an offline process, the result of a similar query is

placed in the cache for future access queries. The cache replacement process is triggered when the

cache is full and it runs on a separate thread that does not affect the query answering process. The

cache replacement is based on the frequency, the higher accessed queries are placed in the cache.

1.4 Key Contributions

The goal of this research is to provide a methodological framework for utilizing cache to query

Linked Open Data (LOD) cloud. In particular, the main objectives of this research is to: develop

a change metric that is utilized by the scheduling to update the local data caches, formulate the

approach to cater to structural and content-wise changes in the LOD cloud, prepare methodology to

handle change detection, change collection a change formulation and finally establish the criteria

when the LOD cache need to be updated. We have prioritized the recent changes using a weight

function, that assigns importance to the recent changes. We have considered a behavior change of

LOD as an essential factor and utilized the weight function to assign importance to recent changes.

Our cache replacement incorporates the previous estimation and establishes when the local data

cache needs to be upgraded.

When a user sends a query to the available endpoint, the system will check in case of the pre-

vious cache result. In case of similar queries, the request is immediately returned from the cache

module. After recording the query, the offline process starts to group similar structure queries. The

result of frequently access queries is placed in the cache. As cache has a limited size, therefore,

cache replacement is executed when the number of cache queries is reached, and based on the

frequency of the accessed data it replaces the content of the cache. We proposed a frequency-

based cache replacement policy to update the cache. The query record will keep track of the

accessed queries and send for offline analysis to calculate the access frequencies by using expo-

nential smoothing. As compared to the existing approaches [23, 24], our proposed approach has

the flexibility to incorporate other change metric [72]. In this approach, we have considered the be-

havior change of LOD as an essential factor and utilized the weight function to assign importance
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to recent changes.

1.4.1 Dynamic Change Model

The LOD is constantly evolving and the applications using the LOD may face several issues such

as outdated data. Therefore, we have proposed a change model to capture the changes and update

the local data caches. As compared to the existing approaches, we explore the notion of the pri-

oritization regions for change detection with the aim of optimal accuracy for the efficient use of

the computational resources. Our model captures the information of both changed resources and

triples in linked datasets.

1.4.2 Structure and Content based Query Similarity

In the LOD cloud, most often users request similar resources and the queries are almost similar.

The aim of a query similarity is to compute structure similarity based on the distance score. For

the structure similarity, we proposed to utilize the bottom-up query matching approach to detect

changes between triple patterns occurring in consecutive queries.

1.4.3 Query Augmentation for Exploratory Query Prefetching

Instead of issuing similar queries, our approach is based on prefetching. We proposed exploratory

prefetching to retrieve additional content related to central concepts. The aim of the query prefetch-

ing is to reduce transmission overhead and retrieve useful information for the future information

need. Therefore, our prefetching retrieves additional data related to future queries. The goal of this

phase is to reduce the overhead of similar queries run over KBs.

1.4.4 Frequency-based Cache Replacement

The cache replacement aims to replace the less valuable cache items. However most of the ex-

isting approaches produce additional overheads while replacing the cache contents. We proposed

frequency-based cache replacement that scan the access log to replace the cache. Exponential

Smoothing (SE) is applied to rank each query according to the estimated frequency, highest ac-

cessed frequency are kept in cache. Thus, our work benefit the triplestore in replacing the cache.
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Figure 1.4: Idea Diagram of the Proposed Research Studies with Chapters Mapping
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1.5 Thesis Organization

This dissertation is organized into chapters as following.

• Chapter 1: Introduction. Chapter 1 provides the brief introduction of the research work

on utilizing caching to query LOD cloud. Therefore, instead of running repeated queries,

results are provided from the local views thus improving overall response time. It focuses

on the problems in the areas, the goals to achieve these problems, and finally the objectives

achieved in this research work.

• Chapter 2: Background and Related Work. A background detail is provided in this chap-

ter about dynamic optimization of cache replacement in querying LOD cloud. Finally, it

provides a comparison of these systems with the proposed system of the research thesis to

reflect the limitations of current systems addressed by the proposed system.

• Chapter 3: Change Detection for Evolution Analysis. A proposed solution in the form

of the change metric is provided to deal with the structure and content-wise changes in the

LOD cloud. The main benefit of this change metric is that instead of issuing the similar

structure queries this metric will keep the similar structure queries in the cache and serves

the answer from its local cache.

• Chapter 4: Prefetching and Cache Replacement. we propose a proactive maintenance

policy to update the local view by issuing the maintenance jobs during system idle time. It

achieves the desired query performance by doing the maintenance ahead of query evalua-

tion time. This module works as an optimizer to accelerate the overall query processing by

prefetching the data and storing it in the cache for future queries. Our maintenance policy

postpones the update until the system has a freecycle. Therefore, the result of these similar

structure queries is placed in cache to increase hit rates, while alleviating the burden on the

querying endpoints.

• Chapter 5: Evaluation and Results. The results and evaluation of different techniques used

in the proposed framework are highlighted in this chapter. We have evaluated the effective-

ness of our approach based on the precision and recall using a real dataset.
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• Chapter 6: Conclusion and Future Directions. This chapter concludes the thesis and also

provides future directions in this research area. The main contribution of the thesis is also

highlighted in this chapter.



Chapter 2
Background and Related Work

2.1 Semantic Web Foundations

According to Tim Berners Lee, the semantic Web is an extension of the current Web in which

information is given in a well-defined format, that enables the computer and the people to work in

cooperation. Based on the vision, the semantic web is considered as the next step in Web evolution

that enables the machine to process and transform the data in a variety of ways. The traditional

World Wide Web (WWW) is a global information space that provides links to documents. These

Webs consist of a graph structure that includes the Web pages connected with the hyperlinks.

Most of the Web page content is published in Hypertext Markup Language (HTML). The special

way to referencing other documents by indicating with the HTML tag < a > which provides the

relationship with the other document of Web.

The Semantic Web is an extension of the traditional Web that facilitates the linking of the doc-

uments [73]. As described by Tim Berners-Lee [4], the Semantic Web enables the machine in such

a way that data can be searched, interpreted, and reused. Linked Data is another important concept

in the Semantic Web, enabling the machine to browse the Web of data, such as DBpedia1. Linked

Data is collaboratively built from the Web corpus to represent knowledge in a structured format

that greatly facilitates the sharing of information around the world. Linked Data describes the inter-

connection of Web pagesURLs(Uniform Resource Locator). Therefore, facilitating the linking of

the data from diverse sources. The Semantic Web is mainly composed of, Knowledge Bases (KBs)

such as Freebase [74], DBpedia [75] and Yago [76]. These KBs represent data as Linked Data ac-

cording to a predefined schema, known as Resource Description Framework (RDF). The RDF is

considered the standard representation for Linked Data, where relationships are represented in the

1https://wiki.dbpedia.org/

21
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Figure 2.1: Showing the Research Taxonomy of the Proposed Work
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form of triples, i.e., (subject, predicate, and an object).

SPARQL2 is a widely used standard query language to retrieve and manipulate data that are

stored in RDF format. SPARQL is a structured query language standardized by the W3C for

querying RDF triplestores3. A SPARQL query can be further decomposed into Basic Graph Pat-

terns (BGPs) and the results are represented as a hierarchical tree. The syntax of the SPARQL

query contains different and disjoint query types such as SELECT, CONSTRUCT, ASK, and DE-

SCRIBE. The Linked Data cloud also provides a SPARQL endpoint for their datasets. However,

querying SPARQL endpoints is cumbersome due to network instability often the connection to

these endpoints is temporarily lost, affecting query performance. These endpoints do not provide

any information about dataset modification. Therefore, long-running data analytic applications

must resubmit queries for keeping the local data cache up-to-date.

The benefit of the Semantic Web is that it provides data which is understandable by the ma-

chine as it can be reused and interoperable in many different Web sources. Moreover, it facilitates

the discovery of the Web in a better way supports the knowledge of exchange between users.

Clearly, the web is made of many documents, and metadata of the given Web document is the data

that is used to describe the document. This includes the title of the document, the date of the docu-

ment, and also the authors of the documents. It is not possible for automated agents to process all

these data in a uniform way, therefore some metadata standard is required and this standard is used

to describe the data. However, this metadata information is not displayed in the Web browsers. The

overall flow of the research taxonomy is shown in Figure 2.1.

An increasing amount of the statistical data is published on the Linked Open Data (LOD)

cloud. Getting insights from the data in more intuitive ways are becoming important. Systems

for the Semantic Questions Answering (SQA) plays a vital role to connect with linked open data

and provides an intuitive interface by translating natural languages queries into SPARQL syntax.

Statistical data need more advanced querying methods to empowers non-experts users to draw their

own conclusions. Semantic question answering is extremely important in the following application

involving Linked Data to access public data sources.

— Healthcare and Life Sciences (HCLS): Statistical data in the form of the RDF data cubes

2https://www.w3.org/TR/sparql11-overview/
3http://www.w3.org/TR/rdf-sparql-query/
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influences decisions in a domain such as health care and life sciences. Many clinical datasets are

often composed of the numerical observations as well as statistical information such as clinical

trial data which is often composed of patient attribute [63, 77, 78].

— Biomedical Question Answering: In biomedical, workers want to express their informa-

tion needs in natural language. BIOASQ [79] encourages the participant to adopt semantic in-

dexing as a mean to combine the information from the multiple sources of different types such

as biomedical articles and ontologies. But, this system typically lacks supports for the RDF data

Cubes, where clinical data represented in the form of multi-dimensional data [80].

We have motivated the need of the semantic question answering, where statistical data in the

form of the RDF data cubes. However, there exist some important challenges that need to be

tackled by the Semantic questioning answering system, including the following:

— Lack of processing RDF cubes by SQA systems: One of the major limitations of SQA

system is a lack of processing of the statistical data in the form of the RDF data cute. Statistical

data is different than other data and can not be queried by the existing linked open data querying

approaches. However, the current SQA system provide translating natural language into SPARQL,

which is a native language to query the RDF knowledge bases [81–83]

— Enabling Access Over Statistical Data: Current query federation approaches enables the

integration of the multiple data sources but they do not consider the methods to access the statisti-

cal data while maintaining the good performance [79].

Although, there are a number of benefits to publishing data in multi-dimensional, such as

statistics in Linked Open Data (LOD) cloud using LOD publishing principles. First, the data be-

come web addressable and allow a consumer to annotate and link the data. Secondly, data can

be flexible and combined with the other data using Linked data technology. Finally, data can be

reusable and access by using the SPARQL, one of the example is linkedspending4, which contains

government spending from all over the world as linked data [84].

4http://linkedspending.aksw.org/

http://linkedspending.aksw.org/
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2.1.1 Resource Description Framework (RDF)

The Resource Description Framework (RDF)5 is a basic building block for supporting the Seman-

tic Web and it is used to establish the model for providing the information about the Linked Open

Data resources. The basic rule for publishing the resources on the internet consist of representing

the resources using the URIs and provide detailed information when looking up URIs [20]. The

RDF is capable of proving the basic facts of any resource such as exchanging and reusing the

structured metadata, as it supports the interoperability among the applications. The RDF allows to

model facts and statements about the entities as:

RDF := (s, p,o)ε(U)∗ (U)∗ (U ∪L) (2.1)

In Eq. 2.1, where U belongs to the URIs(HTTP) and L is the literals which can either be the

string and the s, p,o is commonly named as the sub ject, predicate, and ob ject. In the RDF, the

resource is standard for metadata as it offers a way of specifying anything which in the RDF is

called the resource. A resource, therefore, describe by the RDF expressions as could be a Web

page, real-world object, or anything. The property is a resource that is used to describe a specific

aspect such as the attribute or relation of a given resource. Finally, the statement is used to describe

the RDF statement of the resources as the property value can be a string or literals such as <

sub ject > has property < predicate >, whose value is < ob ject >. These statements are used to

express the knowledge in a simplified way. Figure 2.2 shows the example of the RDF document in

the XML deceleration and the XML declaration is followed by the < rd f : RDF > that indicates

that this is an RDF document. The < rd f : Description > contains the elements that describe the

resource. Therefore, the resources being described in this document is identified as an artist as

RDF provides a predefined value to describe the particular resources.

The main goal of the RDF is to provide data in a way that machines can interpret. However, this

information is often serialized in a way that it can be loaded triple store to further process. There

are many serialization formats and XML is considered as a default format [85]. Additionally, an

XML document can be cumbersome to parse due to the increasing size and especially if the user

is trying to get the basic summary. Thus, there are several alternatives format have been proposed
5https://www.w3.org/RDF/
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1 <?xml v e r s i o n =” 1 . 0 ”?>
2 <r d f :RDF
3 xmlns : r d f =” h t t p : / / www. w3 . org /1999/02 /22− r d f−syn t ax−ns # ”
4 xmlns : s i =” h t t p s : / / www. w3schoo l s . com / r d f / ”>
5 <r d f : D e s c r i p t i o n
6 r d f : a b o u t =” h t t p : / / www. r e c s h o p . f a k e / cd / Empire B u r l e s q u e ”>
7 <cd : a r t i s t >Bob Dylan </ cd : a r t i s t >
8 <cd : c o u n t r y>USA</ cd : c o u n t r y>
9 <cd : company>Columbia </ cd : company>

10 <cd : p r i c e >10.90</ cd : p r i c e>
11 <cd : year >1985</ cd : year>
12 </ r d f : D e s c r i p t i o n >
13 </ r d f : RDF>

Figure 2.2: Example of RDF Document

such as N-Triple format [86]. In this format, a triple is separated with the white space, and each

line of the syntax is terminated with the full stop. Where the end of each line indicates the end of

the statement. This format is widely used as it is easy to add new facts in the corresponding line.

2.1.2 SPARQL Query Language

The SPARQL Protocol and RDF Query Language (SPARQL)6 s considered as a structured query

language standardized by the W3C for querying RDF triple stores7. and it is considered as a graph-

matching query language. SPARQL can be used to access diverse data sources where the data is

stored as RDF. The result of the queries issued in the SPARQL can be the result set of RDF graphs.

The result of the SPARQL consists of a pattern that contains the RDF terms as sub ject, predicate,

and ob ject. The query result is matched with the given dataset and these terms are obtained from

the matching process, however, to extract the values from the endpoints, SELECT is widely used.

The syntax of SPARQL consists of the five main parts: (i) prefix declaration that define the

URI, (ii) dataset clause that considered the datasets which the query will run and provide the

results, (iii) query forms which considered what type of the queries will run most common are

SELECT , CONST RUCT , ASK and DESCRIBE, (iv) Query clause that specifies that binds the

data to the against the query, (v) and finally solution modifier that projects the ordering of the

result. A brief description of these query forms are given below:

6https://www.w3.org/TR/sparql11-overview/
7http://www.w3.org/TR/rdf-sparql-query/
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1 # PREFIX DECLARATIONS
2 PREFIX : <h t t p : / / d b p e d i a . o rg / r e s o u r c e />
3 PREFIX d b p e d i a 2 : <h t t p : / / d b p e d i a . o rg / p r o p e r t y />
4 PREFIX d b p e d i a : <h t t p : / / d b p e d i a . o rg />
5 # DATASET CLAUSE
6 FROM <d b p e d i a : <h t t p : / / d b p e d i a . o rg />
7 # RESULT CLAUSE
8 SELECT ? p h i l o s o p h e r 1 ? p h i l o s o p h e r 2
9 # QUERY CLAUSE

10 WHERE {
11 ? p h i l o s o p h e r 1 f o a f : name ” Auguste Comte ” .
12 ? p h i l o s o p h e r 1 ? r e l a t i o n s h i p W i t h : P a r i s .
13 } UNION {
14 ? p h i l o s o p h e r 2 dbo : i n f l u e n c e d ? p h i l o s o p h e r 1 .
15 # SOLUTION MODIFIER
16 OPTIONAL {
17 ? p h i l o s o p h e r 2 f o a f : givenName ” Jean−B a p t i s t e S a y ”
18 }
19 }

Figure 2.3: Showing the Example of a SPARQL Query

SELECT A SELECT is widely used to find out the bindings of the query patterns. This

statement is widely used in RDF if in case of no bindings the result set of the SELECT statements

is empty. SELECT statements followed by the ∗ give all the results of the variables in both the

RDF graph. The result set is in the boolean either true or false.

ASK This statement is commonly used with SELECT queries in a special case where no

bindings are returned. By issuing the ASK statement the querying engine will determine all the

query patterns. The difference with the SELECT statement is that this will not require to contain

any variable. The benefits of this query are that it will not incur high network traffic as it accesses

offline whether the statements are incurred in the triple patterns or not.

CONSTRUCT When building an application, the user might require to retrieve some infor-

mation from queried data to allow a more effective way to query from other data. CONST RUCT

statement composes entire RDF graphs as a result and discovered the bindings, but as compared

with the ASK statement CONST RUCT request many not contain any variables.

DESCRIBE The SPARQL DESCRIBE statement does not return resources matched by the

query patterns but describe those resources. Sometimes, the query client wants to know the struc-

ture of the RDF, this statement is helpful in discovering the information and bind the result.
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Here is the brief example of the SPARQL query illustrated in Figure. 2.3. The query pattern

contains SELECT statement that limits the projection to the certain variables used in the query

such as ?philosopher1 and ?philosopher2. This query used the UNION and OPT IONAL as basic

operations for modifying the content of the SPARQL query. The first line defines the prefix of

the particular resource and the dataset clause is defined by the SELECT which determines the

execution of the query. The result clause states that what kind of data should be returned by the

query, in our example the result of the Dbpedia resources with term ?philosopher is returned by

the query. The query clause matches the graph patterns and finally the solution modifier that limit

the number of results from the query. In order to reduce the retrieved results without restricting the

scope of the query, the LIMIT keyword is used.

LOD cloud also provides SPARQL endpoint for their datasets. However, querying SPARQL

endpoints is troublesome due to network instability, and the connection to these endpoints can

be temporarily lost, which affects the query efficiency. These endpoints do not provide any in-

formation about dataset modification. Therefore, long-running applications that use a cache must

resubmit the queries to keep the local data cache up-to-date. In order to query the RDF SPARQL

endpoints are available. LOD cloud also provides a SPARQL endpoint for their datasets. However,

querying SPARQL endpoints has problems due to network instability he connection to these end

points can be temporarily lost, which affects query efficiency. These endpoints do not provide any

information about dataset modification. Therefore, long-running applications that use cache must

resubmit the queries for keeping local data cache up-to-date. The decomposition of the SPARQL

query is a recursive process and to find a similar query, there is a need to find the distance between

the patterns as shown in the Equation 2.2.

d (PQ1,PQ2) = d
(
PBGP,P′BGP

)
+d
(
PUNION ,P′UNION

)
(2.2)

Where PQ1 and PQ2 denotes the two queries are structurally the same by calculating the

basic patterns between them. Graph Edit Distance (GED) [87] is normally applied to measure the

structural similarity between the SPARQL queries. Although, the GED is computationally very

expensive, and the structural similarity is not enough. It is possible that two SPARQL queries are

structurally the same but differ in the result.
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2.1.3 The Ontology Web Language

The Web Ontology Language (OWL)8 is considered as a standard ontology language for the Se-

mantic Web. However, OWL is more expressive than RDF and utilized the core RDF vocabu-

lary. In the Linked Data context, these terms assist in grasping the full semantics of RDF docu-

ments [88, 89]. The OWL identifies the key properties of the RDF and provides a key overview of

the entities. The main purpose of OWL is to give support to the content of information instead of

just presenting information to humans. The OWL ontology is the RDF graph that contains the set

of the triples but it can be written in a different syntax form. The meaning comes from the RDF

graph. The information in OWL is gathered into ontologies which are stored as a document.

2.1.4 Linked Open Data: Principles and Best Practices

The LOD approach represents more expressive semantics when referencing resources from the

Semantic Web. The World Wide Web combines all technologies to create, link, and consume hy-

pertext documents. These documents are machine-readable records. As described by Tim Berners-

Lee [4], the Semantic Web enables the machine in such a way that data can be searched, inter-

preted, and reused. Linked Open Data (LOD) is another important concept in the Semantic Web,

enabling the machine to browse the web, such as DBpedia9. LOD refer to the best practices and

principles by which the Semantic Web Standards such as RDF and SPARQL can be effectively

deployed on the Web. The main purpose of LOD is to provide easy access to structured data.

Therefore, LOD provides a method for publishing and connecting the structured data on the web

using the standard protocols and these data are continuously evolving [4, 90]. Thus, the following

are the four main key features of LOD.

• LOD provides the Uniform Resource Identifier (URI) for referencing the entities.

• LOD allows accessing those URI using the HTTP so that the user may consume these enti-

ties.

• LOD utilizes the standards for presenting the information about the entities and these are

8https://www.w3.org/TR/owl-ref/
9https://wiki.dbpedia.org/
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consumed by using their URI.

• LOD interlink with related datasets by using the URI, so it becomes more useful through

semantic queries.

Hence, the URI and HTTP is the most fundamental way of identifying and accessing the

LOD. The main goal is to make the data machine-readable so that agents can retrieve, parse, and

interpret the information. However, the HTML document only rendering the page. But in the case

of the LOD, it provides more complex reasoning to infer the relationships between them. There are

several projects established in the context of LOD. For example, Freebase [74], DBpedia [75, 75]

and Yago [76] which is is collaboratively built from web corpus and represents knowledge in

structured form. With the current evolution of the Semantic Web 3.0, the LOD enables data to be

linked between sources, as shown in Fig. 2.4. The LOD cloud contains almost 570 datasets from

different domains that are interlinked with each other.

Massive amounts of data are being produced and currently available in life sciences. However,

these data are unstructured and difficult to integrate. Therefore, the Linked Data paradigm is cur-

rently suitable for publishing and connecting life science datasets to improve access and use. The

Linked Data cloud contains almost 570 datasets [91] from different domains that are interlinked

with each other as shown in Figure 2.4. A considerable portion of Linked Data is comprised of

life sciences data, significant contributors include the MEDLINE 10, Bio2RDF [92] and Drug-

Bank 11. MEDLINE is an American national medicine bibliographic database that contains more

than twenty-four million references to journal related to bio-medicine. Bio2RDF is built over the

Semantic Web to provide biological databases interlinked with life science data. DrugBank con-

tains data related to Bioinformatics and cheminformatics with comprehensive target information.

These databases contain the protein sequences that are linked to the drug entries that target the

protein data [46, 78].

10https://www.ncbi.nlm.nih.gov/pubmed
11https://www.drugbank.ca/
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Figure 2.4: Showing the LOD diagram containing interlinked data from multiple domains.
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2.2 Evolution of Linked Open Data

LOD is highly dynamic, contents get added or removed. As an application using the dynamic

LOD, the highly dynamic nature incurs problems such as broken links or outdated data [93, 94].

These issues are related to the dataset dynamics [95], which investigates the approaches that detect

changes in LOD and explore the new path towards exploration and design of query related to the

dynamic data. However, the LOD community currently lacks a high-quality platform to maintain

the snapshots of the data over a period of time. There is only a domain-specific platform to store

the data of weekly monitoring of LOD datasets, among the most popular is DyLDO (Dynamic

Linked Data Observatory) [1], which focus on monitoring the evolution of the LOD sources. The

example of the snapshot of DYLDO is shown in the Table2.1, where Xt represents as a set of

triples captured at a point in t and the set of all the snapshots captured at different points in time t

is denoted as X = {Xt1 ,Xt2 ,Xt3 , ....,XtN ,} where N represents the total number of snapshots.

To analyze the LOD dynamics, Umbrich et al. [95] proposed a Multicrawler framework that

extracts the LOD documents from the sources, there framework extracted the LOD documents on

weekly basis resulting in 650,000 RDF documents. Similarly, Kafer et al. [1] utilize the breadth-

first crawling utilizing the 220 URIs to extract the document from the DataHub12 repository. After

extracting those documents Kafer et al. then monitored these documents to see the dynamics of the

LOD. However, after the analysis of the Umbrich et al. and Kafer et al., they noticed that almost

65% of documents did not change and half of the documents had a change frequency not more

than 3 months. Similarly, Dividino et al. [96] monitored the dynamics of the LOD over 19 months

and concluded that half of the LOD sources are highly dynamic. Based on these findings, Nishioka

et al. [23], Dividino et al. [24], and Kafer et al. [1] proposed a scheduling strategy to keep the LOD

data up-to-date based on the change rate.

2.2.1 Accuracy of the Index Model

Nowadays, RDF data is ubiquitous and thanks to the linked data movement where billions of data

available online. The basic principles behind the linked data is to model, interlink and publish at

ease. The evolution of these data are scale-free and requirements are not handled by the centralized

12https://datahub.io/
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Table 2.1: Showing the example of the snapshots of Linked Data Cloud
Xt1 : a snapshot at time t1

Subject Predicate Object
db:Pierre Peloso db:location db:Green Village
db:Pierre Peloso db:works db:Green University
db:Green Village db:population 264324

Xt2 : a snapshot at time t2
db:Pierre Peloso db:location db:Green Village
db:Pierre Peloso db:works db:Green University
db:Pierre Peloso foaf:knows db:Mark Thomas
db:Green Village db:population 224123

Xt3 : a snapshot at time t3
db:Pierre Peloso db:location db:Green Village
db:Pierre Peloso db:works db:Green University
db:Green Village db:population 264324

environment. Although, most of the data are published in distributed way and consumers are using

RDF and HTTP to integrate into the existing applications. However, growing of these sources post

significance challenges such as the accuracy of the index model over evolving data. The main

reason of the inaccurate view of the indices are mainly due to the decentralized nature of the

linked data publishing. However, indices are used to fast lookup of the data. Since, the growth

of the linked data post significance challenges on the index structures as outdated indices are

often provide the wrong information. However, more bandwidth are utilized when maintaining

the indices updates. Thus, the major problem is archiving polities is the scalability problem when

managing the evolving RDF data [97–99].

Large scale data applications are widely used on the cloud environment. The major challenge

when managing the Big Data is to provide a fast and reliable query executions. Similarly, key-value

store needs to effectively determine the existence of the elements without having exhaustively

search. The indexing technique that are proven to be work on the traditional system are not able

to work on the big data systems. The approaches that keeps the full index in a memory will face

a hug difficulty when dealing with the large datasets. Due to the lots of the addition and deletion

it is not feasible to maintain logical structure in memory as the amount of the data grows whole

index need to be sorted causing the disk access problem.
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In general, we argue with the current indexing scheme to deal with the large evolving data.

The existing solution strategies need a strong scalable approach to ever deal with the increasing

amount of the data and strong space efficiency in term of maintain the indices. The query search

performance is another desirable factor that need to be considered during the scale-up process.

Similar, query accuracy to provide to provide reliable results are missing in the existing solutions.

Hence, there is a need of the strong element location and deletion capability to allow recycle of

the unused space is needed for the big data.

In the field of big data indexing. The main approaches of the big data are categorized in the

clustered and non-clustered indexing. In the big data computing, Apache Hadoop [100] is well-

known big data processing platform that utilized the MapReduce programming model and HDFS

for storage. However, it lacks to provide the efficient response and researchers have proposed an

indexing frameworks in an non-invasive way i.e., they do not require to change the core part of

underlying framework. However, Mapreduce programming model do not performs well on the

traditional data systems. HadoopDB [101], which is the effort to integrate the traditional relational

database system on the top of the Hadoop. Due to the high complexity in HadoopDB, the idea of

such iteration is not well acknowledged. Hadoop++ [102] provides the more efficient solution to

introduced the Trojan indexing which introduce the concepts of the data sorting similar of database

cracking [103]. Although Hadoop++ increases the search performance of the Hadoop framework

but it also suffers from the two main problems. Although, the index creation time of the Hadoop++

is very expensive as compared to the Hadoop built-in full scan. To deal with the index creation

process HAIL [104], utilized the data replication features to increase the number of the indexes.

Although the number of the indexes depend on the replication factor, this scheme also suffers for

the large datasets due to no independent solution from data replication.

To overcome the problems exists in the clustered based approaches, non-clustered based ap-

proaches have been proposed. These approaches are categorized as tree-based, hashing and bitmap

indexes. Unlike clustered based non-clustered approaches are effective in term of the query exe-

cution and data retrieval [105]. This approach is fast in term of creating the indexes and computa-

tional cost is less i.e., B-Tree is more feasible on growing datasets [106]. Similarly, Apache Lucene

implements inverted indexes to retrieve the data [107]. However, Apache Lucene requires signif-
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icant size in the memory for high volume of big data. Similarly, wise selection of the indexing

model reduces the overhead.

Most of the index support the specific task for the application. Technical, linked data consist

of the N-Quads 13, which consist of the (s, p,o,c), which corresponds to the subject, predicate,

object and context. Let Gt represent the LOD snapshot that consists of all the NQuads taken in

time t. The set of all the snapshot is denoted as G = {Gt1 ,Gt2 ,Gt3 , ....,GtN ,}, where N represents

the number of the snapshots. Hence, a quad (s, p,o,c) ε Gt consist of the RDF triples along with

the context, where the quad was retrieved. In most of the cases index model do not store all the

information but rather a specific information in the NQuads. To define the abstract model we have

a LOD over a data set R of (s, p,o,c) and D is a derived set which constitute the restriction of the

quads to the smaller set of the tuples. Most of the index model define a key elements κ which is

used for lookup the elements from the data. These key elements are used for the selection function

σ : κ → ρ(D) to select the data items from the index. Hence, the abstract index data model is

defined as a tuple which consist of the (D, κ,σ ), where D is a data items and σ is the key elements

that is used to lookup the items and finally the selection function σ that is used to retrieve the data

items from the index [108–110].

2.2.2 Overview of the Change Detection approaches

The LOD are constantly evolving and the applications using these data face severe The LOD is

constantly evolving and the applications using these data face severe challenges such as addition

and deletion of the data and broken links problem [93]. To overcome these issues, detection of

the changes in LOD is a main crucial step [111]. As the data evolve continuously the detection

of the changes should also be performed at regular intervals [112, 113]. The use of a different

kind of change information supports different types of scenarios. In the case of structural inter-

link, maintenance requires information of LOD to maintain the structurally broken links that are

not accessible. Similarly, in the case of the semantic interlink maintenance require information

on the resources that are changed during the evolution. Finally, the synchronization of the local

copies requires information on the addition and deletion of the triples. Research in [111,114] have

13https://www.w3.org/TR/n-quads/
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identified that the majority of the LOD cloud is static in nature as no changes occur frequently,

while some of the resources are more frequently changed than others. The notion of region [115]

based change behavior is also an active research area that utilizes the regions where the changes

are more frequent.

2.2.3 Using Provenance Information to Detect Changes in LOD

The LOD cloud changes frequently and applications require constant prefetching to keep the local

data caches up-to-date. The main technique of detecting the changes in LOD sources is the use of

HTTP header information such as Last-Modified field that shows when the resources have been

changed in the past. The use of provenance information supports the decision process of deter-

mining which sources from the LOD need to be updated. Provenance information captures such as

changes in the author, its timestamp, and software agent requesting for some changes [116]. The

most intuitive way of detecting the changes in the LOD is to exploit the HTTP header information.

According to the LOD principles, the resources are modeled using the HTTP and the SPARQL

endpoints are available for particular URI to respond to the request from the agent. Usually, this

information makes the use of the HTTP protocol that contains the provenance information about

particular resources such as owner, creation time, and date. However, the information that contains

the HTTP headers may be inaccurate or wrong [117]. Therefore application relies on this informa-

tion are likely to draw the wrong conclusions. As LOD evolves over time, therefore graph change

as information is added and removed to ensure the quality or freshness of these sources needs to

be periodically updated. The naive solution for detecting the changes in the resources of LOD is

to download the LOD resources and compare them [2, 3].

The LOD cloud is composed of various data servers that enable data access via the HTTP

protocol. When the user request is sent to the server an HTTP GET message is received [35,118].

The main body of the message consists of headers that contain the code along with the message

body. The individual message contains the numeric codes and the header line. Kjernsmo et al., [48]

investigate the HTTP header information that examines the availability of the resources in the LOD

cloud. The header fields gave the information to the server to process further access to the resource

requested by the URI. Following are the message body of the response:
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• Content-Language This language describes the size of the entity-body in a decimal number.

• Content-Type This indicates the media type of the resource sent.

• Content-MD5 mainly for the end-to-end message integrity check.

• Data It represents the date and time at which the message is originated from the sever.

• Expires it shows the detail of the stale response.

• Last-Modified Shows the date and time at which the resources from the LOD was last mod-

ified.

There is various work published in the existing literature that shows the characteristics of the

LOD cloud. The main purpose of this research is to perform the structural analysis of the LOD

cloud in order to obtain the characteristics of the data [45,119]. In addition, there is a related work

that shows the best guideline and model to publish the LOD [95]. However, this work does not con-

sider the dynamics of the LOD cloud. Ding et al., [120] perform the experiments to crawl the 300

million triples from LOD and perform the analysis to extract the last-modified time from the LOD.

The result of their experiments also shows that the LOD keeps on evolving, which indicates that

the content is added and removed periodically. Monitoring tools [121] also provide information

about the availability of LOD. DSNotify [93] and Semantic Pingback [122] are often considered

generic frameworks. DSNotify uses the time blocking technique to detect and fix broken links

between resources. Semantic Pingback uses a notification to establish new links. However, both of

these frameworks are mainly focused on static resources. The main problem of these frameworks

is that their main focus mainly on static resources. Dividino et al. [24, 35] investigated the avail-

ability of the last-modified field in the HTTP header and revealed that only 7% of the documents

provide the correct information about the last change.

2.2.4 Capture the Dynamics of LOD

Most of the existing work provides the characteristics of the LOD but does not consider the dy-

namics of the cloud, how it evolved over the period of time. Recent investigations have shown that

data published in the LOD cloud is updated frequently. Therefore, local copies become outdated.
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The dynamic function helps to capture the evolution of the LOD sources in order to check for the

changes. The LOD applications need to permanently visit the sources in a brief interval. State-

of-the-art metrics [123] mainly quantifies the changes between the two datasets, but they do not

consider the evolution of the LOD sources. Data on the LOD cloud changes frequently and appli-

cations replying to that data need to constantly update the cache. Instead of visiting all the sources

a good scheduling strategy only visits the changed sources and updates the local caches. So far,

only a limited work addressing the scheduling of the LOD source up-to-date. The most well know

scheduling strategy to maintain the indices of the LOD documents such as the PageRank algorithm

and metrics for quantifying the changes of LOD sources [124].

In order to analyze the dynamics of the LOD, Umbrich, et al., [9] mentioned that changed had

a frequency of more than 3 months. Dynamic Linked Data Observatory (DYLDO) [1] is a moni-

toring framework for a Linked Data source, which monitors the changes based on the collection of

the regular crawl on LOD sources. The authors give insights about the availability of documents.

In the DYLDO study, they utilized the HTTP header information to detect the change. The study

of the evolution of the Web and its dynamics are first studied by Bray et al., [125]. Therefore,

based on the large collection of the documents authors discovered that the changed behavior of the

Web is closely related to a Poisson distribution [126–128].

In summary, a variety of the existing work that is focused on change detection [129] only fo-

cuses on the structural analysis of the Linked Data cloud in order to obtain the characteristics of the

data [18,45] most prominently on the query caching [11,48,95], but the working implementations

are rare.

2.3 Preservation of Linked Open Data

On the Semantic Web, a large amount of work on managing and preservation of LOD has been

quite diverse. Many surveys have been published which highlights the foundations, challenges, and

opportunities of managing LOD cloud [115,130]. A number of works have dealt with issues related

to query LOD. Linked Open Data (LOD) changes over time and it creates a need to maintain the

history of the datasets [131]. Hence, preservation of the archive has been an active area related to

LOD. Similarly, in the area of data analytic, there is an ongoing demand to maintain the history
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of the datasets. Therefore, such archives are important to look up the data at a certain point. With

the continuous evolution of the LOD, archiving has been an issue for RDF [132]. A recent survey

on archiving the LOD [131] suggested the improvement of versioning capabilities of the existing

approaches. Currently, there is no solution exist to query between different versions of the RDF

datasets.

2.3.1 Existing RDF Archiving system

RDF storage systems utilize the indexing approaches to reduce the query run time. The existing

archiving systems are typically based on the relational or document storage such as RDF-3x [133]

is based on the clustered B+ Tree to maintain the indexes. Hexastore [134] is another RDF storage

system that is based on the idea of indexing the RDF data in a multiple index framework and

utilize the dictionary encoding to compress the common triple components. Triplebit [135], a fast

and compact system for large-scale storage of RDF data based on the two-dimensional storage

matrix including the design of the bit matrix storage structure and compression for storing the

huge RDF graphs. K2-Triples [136] is another RDF storage technique that utilizes indexing of the

K2-tree structure as it allows SPARQL queries on the memory without decompression. The result

of this storage outperforms the traditional query processing system. Another RDF storage system

RDFCSA [137] that utilize the compact self-index that store the data with its index. This system

results in less storage space as compared to the raw storage but allows the pattern based search on

it. HDT [138] is another binary RDF representation system of real-world RDF data that is based

on the set of metrics called Header Dictionary Triples (HDT) that organized all the identifiers in

the RDF graph and provide a dictionary to provide the catalog of the RDF terms.

The preservation of the Linked Open Data (LOD) emerges as a novel research area to assure

the quality of datasets over time. However, many issues arise when archiving the evolving data.

The main efforts addressing the challenging of RDF archiving are categorized into three main

storage strategies: Independent Copies (IC), Change-based (CB) and time stamp-based (TB) ap-

proaches [131]. The IC approach manage each version as a different and isolated dataset. But this

approach often faces scalability issues as information may b duplicated on each version of the

RDF datasets. Therefore, querying over the IC can be cumbersome due to the processing efforts.
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Currently, SemVersion [2] utilize the IC approach to manage different versions of ontologies,

however, the implementation details of their system are still unknown. To address the scalability

issues, CB approach only store the changesets between different versions. The query mediator of

CB requires the additional computational cost to process the changed sets. Cassidy et al. [139]

proposed a version control for RDF triple stores. The implementation is based on the Redland

python that provides the wrapper called record to store addition and deletion from the triple store.

Im et al. [144] proposed a framework for RDF version management in relational databases, as it

stores the original and delta version. However, this approach is not effective in terms of storage

overheads and slow query performance. R&WBase [140] is another CB that build on the princi-

ples of the distributed version control. Here the triples are stored in Quad-store and reducing the

number of stored triples in a single graph. Graube et al. [141] introduce a novel way of dealing

with version control for LOD, it represents R43ples as an approach using named graphs to store

different version of changesets as separate named graphs. In time stamp-based (TB) approaches,

Hauptman et al. [145] introduce a delta based storage approach based on the temporal validly of the

facts. The implementation of this approach is based on the Sesame [146] and Blazegraph [147].

However, this approach response is slower than the CB based approaches, but storage is better

than CB. X-RDF-3X [148] is an extension of RDF-3X [133] that enable versioning support using

the TB approach. Their system supports the storage of creation and deletion of the triples, where

SPARQL queries retrieve the triples at the given time. RDF-TX [142] is an in-memory query en-

gine that is based on the B+Trees that outperforms other systems and store the changesets using

the timestamp-based approach. v-RDFCSA [143] provide version based queries on top of com-

pressed RDF archives. The results suggest that v-RDFCSA reduces a space up to 35 times over the

state-of-the-art systems. A similar storage platform Dydra [149] is an RDF graph storage service

that stores and retrieves the content from the versioned RDF.

2.4 The use of Caching in Semantic Web Applications

The performance of the triplestores is one of the major obstacles for deploying the large-scale

development of semantic technologies [58,150]. In the recent past, many efforts have been made to

improve the performance of effectively querying LOD [59,60], however, as compared to querying
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a triple stored in a relational database, querying a triplestore is still usually slower by 20% [11].

In recent years, many efforts have been made to circumvent the problem of effectively querying

LOD [61,62], among these, caching is the most popular technique to reduce query time by serving

the requests from a cache. Therefore, the success of the Semantic Web application for storing

and retrieving the RDF is gaining importance. But traditional RDF systems lack optimization for

query processing and also lack the indexing structure for speeding the access of triples [151,152].

The idea of query caching is to reuse the previously issued queries. For example, a possible query

is to retrieve all papers about the ’Semantic Web’ written by the researchers of the Kyung Hee

University, South Korea. So, the processing of these queries can be done more effectively if we

already know the results of the paper about the ’Semantic Web’, we can save the computational

cost of computing the join. In the distributed setting the benefits of caching is more evident, as

the previously issued queries are stored on the remote source instead of running all the queries the

result is immediately sent from the cache. The caching will immediately improve the robustness

of the system where the remote resources are not available due to the network insatiability. Most

of the caching approaches utilize Syntactic query caching to reduce the network cost and utilize

when to avoid the complete information of the result as the information is already available in the

cache [151]. In order to reduce the system check whether the object is already available in the

cache. Another approach is Semantic query caching when processing the new query, the system

determines whether the useful results present in the cache, in case the system did not find any

results the query is evaluated in the common way [153].

2.4.1 Query suggestion

Recently, query suggestion has been introduced into SPARQL processing. It plays a Recently,

query suggestion has been introduced into SPARQL processing. It plays a vital role in improv-

ing the overall processing of the query. The suggestion is made based on the mining of similar

queries from logs. Graph Edit Distance (GED) [87] is normally applied to measure the structural

similarity between SPARQL queries. However, GED is very computationally expensive, and the

use of structure similarity is insufficient. It is possible that two SPARQL queries are the same but

differ in their result. To overcome this drawback, Shu et al. [53] proposed a content-aware ap-
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proach that utilized query containment to estimate whether the queries can be answered from the

caches. However, this approach is not widely utilized by the semantic web community since the

containment checking approach produces very significant overhead. Lorey et al. [156] proposed

a query augmentation approach to alter SPARQL queries to detect frequently recurring patterns.

The benefit of their approach is to answer the query from the cache without accessing the LOD.

However, the major limitation is that it considers only the queries requested by the same agent and

the hit rate of the template-based approach is only 39% [157]. In contrast to the aforementioned

query suggestion methods, our approach considers both content-wise and structural similarities

based on a simple distance score, which results in higher hit rates, shorter query time, and less

spatial overhead.

2.4.2 Semantic caching

Semantic caching was originally proposed for the Database Management System (DBMS) [11,

51] and the purpose of the DBMS is to reduce the overhead of retrieving data from the cloud.

Godfrey et al. [52] proposed the notion of semantic overlaps and introduced a caching approach

that utilized client-server systems. To extend this idea, Dar et al. [51] proposed a semantic region-

based caching technique and introduced a distance metric to update the cache such that the cold

(e.g., less frequently access) regions are removed from the cache. Martin et al. [11] propose to

selectively invalidate cache objects on updates of the knowledge base by identifying the affected

query results. However, their work does not consider query similarity for cache replacement. Yang

et al. [54] proposed server-side caching to decompose the query into the basic graph patterns and

cache their intermediate results. To prefetch similar-structured queries, Lehman et al. [5] proposed

a supervised machine learning approach that performed analysis on the user’s previously issued

queries. Their approach filters the range of possible answers and utilizes a learning technique to

ensure that no prior knowledge of the underlying schema of LOD is required. Nishioka et. al [23]

proposed a periodic crawling strategy that predicts whether the change occurs in RDF triples.

However, Lehman et al. [5] and Nishioka et. al [23] did not consider the system overhead as their

performance measure. Recently, a proactive policy for maintaining local cache is proposed by

Chun et al. [154] that alleviates the expensive job of copying the LOD at idle time. In summary,
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only a few works have been reported to deal with the problems related to the semantic caching

for SPARQL queries. We propose a client-side adaptive strategy to utilize caching for SPARQL

query processing. The goal of our research is to keep track of the access queries and evicts the less

valuable content from the cache in an overhead-efficient way and regardless of system idle time.

2.5 Summary

In this chapter, first, we studied semantic web foundations in which information is given in a

well-defined format, that enables the computer and people to work in cooperation. In literature,

various works have investigated the characteristics of LOD and estimation of the change. Since the

LOD cloud is a global information space and it structurally connects data items. The distributed

web-based nature of data motivates many applications to keep local copies of the data. Due to the

dynamic nature of the linked data many applications need to keep updating the local copy of the

data. The main problem is when to perform the updates. Most of the existing work discusses the

problem of scheduling refresh queries for a large number of registered SPARQL queries. They

have investigated various scheduling strategies and compared them experimentally. The main con-

tribution of their work is an empirical evaluation of the real-world SPARQL queries. We identified

the limitations that the healthcare organizations are publishing data publicly, but consuming data

is difficult due to the rapid growth of the linked data cloud. Most of the applications that are con-

suming linked data suffer from challenges such as change estimation and accuracy of the index for

keeping the data fresh for visualization.



Chapter 3
Change Detection for Evolution Analysis

3.1 Overview

In this section, we present our proposed approach to estimate the change in the linked data together

with the general update policy when a data source should be fetched. First, we discuss the change

metric for the linked data sources. To prioritize the recent changes that occur in the Linked Data,

we have proposed an algorithm assigns weight to the recent changes that occurred in the linked

data.

The overall logic of our proposed approach is shown in Fig. 3.1. The proposed approach con-

sists of a change metric that identifies the addition and deletion of triples and thus quantifies the

evolution of the LOD sources. In most of the cases, the application requires only the latest changes

AACP algorithm utilizing a weight function to give importance to the recent changes. Based on

the previous estimation, our proposed update policy called PASU keeps the local data cache up-to-

date. PASU also assigns a preference score to the highly dynamic sources. Our proposed method

helps the application to identify the changes and update the local copies of the LOD. The following

are the steps involved in our proposed approach:

• First, we have applied the change metric ∆ on previously captured triples at point t. ∆ maps

the addition and deletion of the triples with the real number.

• Second, the LOD sources continue to evolve and the rate of change is not explicitly known.

Thus, it is insufficient to apply only ∆. Therefore, we have utilized Dynamic Characterizing

Sets (DCS) that identify the changes in the triple-level in each snapshot. An example of

DCS is shown in Table 3.1.

• So far, we are able to quantify the changes using the proposed change metric. To prioritize

47
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Figure 3.1: Overall Architecture of the Proposed Method.

the recent changes higher than the older changes, we have applied a weight function to the

overall flow of the algorithm, as shown in Algorithm 1.

• Finally, we introduce the novel scheduling policy called PASU, which determines the order

in which the Linked Data sources should be fetched. The overall flow of the algorithm is

shown in Algorithm 2.

3.2 Change Metric

Due to the continuous evolution of Linked Data, local views have become outdated. We proposed

a change metric that quantifies the evolution of Linked Data. The main benefit of using the change

metric is to alleviate the expensive job of copying the whole data instead of only updating local

views with the changed items. We utilized the Dynamic characteristic Set (DCS), which identifies

the addition and deletion of the items in the Linked Data cloud. Typically, queries issued by the

end-user are repetitive and follow similar patterns that only differ in a specific element. Therefore,

we use a bottom-up matching approach to find similar queries. For the structurally similar queries,

we first compute the distance between the patterns, then the results of these queries are placed in
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Figure 3.2: Integrate the Change Rate Function to Quantify the Evolution of Data

a cache for future access. To improve the efficiency of our system, we schedule the view main-

tenance as a low priority job that combines the multiple tasks into one larger job and executes it

when the system is in an idle state.

We propose a change metric to quantify the evolution of the Linked Data Cloud. Change

metric utilize the Dynamic Characteristics Sets (DCS) [39], a scheme abstraction that classifies

the Linked Data on the basis of the properties of subjects and objects. Moreover, DCS captures

the inherent structure and relationships of the Linked Data cloud. The DCS is a combination of

properties and types that are used to describe the content in Linked Data. A change at any level of

Linked Data implies a change in the mapping of the properties and type.

The change metric quantifies the evolution of Linked Data. Jaccard distance is widely used

to measure the difference between the dataset, such as the addition and deletion of the items.

The difference is represented as ∆(Xt2 ,Xt1) ≥ 0. Our assumption is that the change rate of all the

snapshot X captured at time t is given by the function c(Xt) . As shown in Eq. 3.1, we can integrate

the change rate function to quantify the evolution of the LOD sources as shown in Fig. 3.2.

∆(Xt2 ,Xt1) =
∫ t2

t1
c(Xt)dt (3.1)

The rate of change c(Xt) is not explicitly known and our formulation for the change rate is
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Table 3.1: Rate of change in snapshots using DCS
Snapshot Xt1 Snapshot Xt2 Status
DCS1 =
{foaf:Person,
foaf: knows}

DCS1 =
{foaf:Person,
foaf: knows}

Unchanged

DCS2 =
{foaf:name,
foaf: knows, dbpe-
dia:project/media}

Deleted

DCS2a =
{foaf:name,
foaf: knows, dbpe-
dia:project/social}

New

DCS2b =
{foaf:name,
foaf: knows, dbpe-
dia:internProject}

New

based on the idea of a Characteristics Set (CS) [158]. To estimate the change, we have proposed

the Dynamic Characteristics Set (DCS). The DCS is a combination of properties and types that

are used to describe the content in LOD. A change in any level of Linked Data implies a change

in the mapping of the properties and type.

3.2.1 Dynamic Characteristic Set (DCS)

Let Xt represent the LOD snapshot captured at time t, which consist of subject s, predicate p, and

object o, where P are the set of the properties in Xt , and T is the set of the type. The DCS is an

element of the powerset over P and T , and it can be represented as DCS ∈P(P∪T ). Any change

in the DCS shows that the new content in the LOD has been added or removed. The addition of a

new item in the DCS means that the properties that are used in the LOD have not been observed

before. Similarly, the deletion of the properties from the DCS shows that the term is no longer

used. An example of the DCS is shown in Table 3.1.

Example 3.1. To explain the changes in the LOD cloud, consider the snapshots of LOD

captures at time t as shown in Table 3.1. The changes are illustrated by DCS1, DCS2 , DCS2a

and DCS2b. The changes in DCS1 = {foaf:Person, foaf: knows} captured at Xt1 and DCS1 =
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{foaf:Person, foaf: knows} captured at Xt2 remain unchanged across snapshots. From the later

version of the snapshot DCS2 was deleted, and new combinations of DCS2a and DCS2b were ob-

served. Thus, DCS2 is no longer used in the LOD.

3.2.2 Prioritize Recent Changes

So far, we are able to quantify the changes in the LOD, and it is important to prioritize the changes

that tend to be less important as time passes; therefore, a change metric should strengthen the

recent changes and weaken the older changes. Intuitively, we consider the index update scenario

in which the recent changes are more important than older changes. To achieve this goal, we have

extended our proposed change metric and incorporate a weight function to assign importance to

recent changes. We have modified the change metric and proposed the AACP algorithm to assign

importance to recent changes. Suppose Xt is a set of triples, c(Xt) is a change rate of the LOD

dataset and w(t) is a function that assign weight as mentioned in Eq. 3.2

∆(Xt2 ,Xt1) =
∫ t2

t1
w(t).c(Xt)dt (3.2)

In the proposed Algorithm 1, we take the last modified date as input and assign the weight

based on the recent changes. The weight function of the item can be written as a function of its

age [159], where the particular age of the LOD is the time when the last time the LOD was updated.

To identify the correct present time of an item in the LOD the proposed weighted function satisfies

the following properties:

• w(Xt , ti) = 1 when ti = t and 0 6 w(Xt , ti) for all t > ti.

• The weight of the item is monotone non-increasing as time increases.

As shown in Algorithm 1, our first step is to compute the age, determine which items were

updated, and assign weight based on the recently changed item. So far, we have constructed the

change metric and also able to identify the recent changes using the AACP algorithm. In the next

section, we propose an updated policy that utilizes a change metric when conducting updates,

keeping the Linked Data cache up-to-date.
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Algorithm 1: Application-Aware Change Prioritization (AACP)

1 Weight Function w(Xt , t) � Assign weight to recent changes
Input : A timestamp t of Linked Data item Xt

Output: Assign weight to the recent change items
2 for ti← Xi do
3 // Compute age of the LOD items
4 if t is the timestamp of the record then
5 t = tp; � If tp is a present time of the item update
6 Age = tp− tlast ; � Compute the age of the item
7 else
8 end
9 end

10 if ti 6= Xi then
11 // Set condition on weight
12 f (Xt , ti) = 1 ; when tp � present time satisfied
13 0 6 f (Xi, ti) ; ∀ t 6 tp

14 else
15 end
16 // return the most recent changes
17 return w(Xi, ti);

3.3 Scheduling Update of Linked Data

An update strategy aims for driving the data sources based on the preference. In an An update

strategy aims for driving the data sources based on the preference. In an ideal case, [23], an update

strategy only visits the source that has been changed.

3.3.1 Preference-Aware Source Update (PASU) Algorithm

We have proposed our update policy called Preference-Aware Source Update (PASU), which visits

the LOD sources based on the preference score. Most of the LOD applications pre-fetch data and

store it in its cache. However, a preference score is required to determine important sources. In

our case, the preference scores could be sorted in ascending and descending order, and the update

function uses this information for cache replacement. The size of the cache is limited; therefore,

cache replacement is a problem of identifying a recently changed item and replacing the local data

cache. Based on the high dynamics, sources will be updated at the highest priority. The preference
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assigns the score based on the history of the sources. We have utilized the change metric as an

aggregation of absolute changes. The preference score is computed as shown below:

fPASU(X) = ∑
i=0

∆(Xtlastupdate−1 ,Xtlastupdate)

tlastupdate(X)− tlastupdate(X)−1
(3.3)

In Eq 3.7, tlastupdate is a function that returns the time when LOD was last updated. Similarly,

the function is recursive, as tlastupdate−1 returns the time prior to the last update and ∆ quantifies

amount of the changes between the two snapshots. The scheduling strategy indicates a point at

which the LOD source should be fetched. However, it is possible to retrieve the sources in their

order of their assigned preference. Our proposed update strategy construct history of data source

for their respective update plan. PASU assigns the preference score to the LOD sources. Based on

the score, the update function assign visits the resources that need to be fetched.

The overall flow of the proposed algorithm is shown in Algorithm 2. The input of the algorithm

is data source Xt , and then time when the data source was last updated. The proposed scheduling

approach assigns preference to each data source based on the previous estimation. Information

about the recently changed items are provide by the AACP algorithm. Based on this information,

the PASU updates the local data cache. PASU utilized a two phase update policy. In the first phase,

PASU quantifies the changes using the Jaccard distance and update from most to least dynamic

sources e.g. addition and deletion of triples as discussed in Example 3. We have applied the Jaccard

distance; the results out-performs others metrics [72].

Example 3.2. Quantify the change using the Jaccard distance. Consider the datasets XDataset =

{Xt1,Xt2,Xt3}, where Xt1,Xt2,andXt3 represent the snapshots at three different point in time as

shown in the Table 2.1. To quantify the changes, 4-metrics determine the difference in the snap-

shots such as addition and deletion of the triples [160].

PASU utilized the Jaccard distance, which maps the changes to a real number. The Jaccard

distance between the set of triples can be calculated as follows:

4(Xt1,Xt2) = 1− |Xt1∩Xt2|
|Xt1∪Xt2|

= 1− 14
18

= 0.22 (3.4)

Example 3.3. Calculating the last update time of RDF Triples. In this example, we consider
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Algorithm 2: Preference Aware Source Update (PASU)
Input : Data source X and time t
Output: Preference (X , t)

1 for c← ti do
2 // Update from the most dynamic sources
3 if fdynamics ≥ Xt then
4 updatecache← tp;
5 else
6 end
7 end
8 // Check that the recent changes occur in the LOD sources
9 if f (Xi, ti) recent changes then

10 updatecache← ti+1 ;
11 else
12 return f (Xi,Kmax) = update(Xi);
13 end

the fact that the data is coming from three different cloud sources: identi.ca, data.gov.uk, and

ontologycentral.com. We have retrieved the data at two different time, on January 5th, 2018 and

March 10th, 2018 as represented in Eq. 3.5 and 3.6.

(3.5)

(3.6)

Considering that the application maintaining the local data caches was updated on January 5th,

2018, the source of the data has been updated and we want to gain the update on the local copy.

Our proposed scheduling will assign preference and fetch the sources to keep the local data cache

up-to-date.
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Algorithm 3: Change-Aware Maintenance Policy (CAMP)
Input : Query Q, Job Scheduler H
Output: The entire maintenance process P
// Creation of the maintenance process

1 V q = createView(Q)
2 for (i = 0; i≤Maintenance; i++) do
3 P = MaintenancePolicy(Q,Views(V q))

// Update from the most dynamic sources
4 updatecache← Jr;
5 Jr = P.release(JobScheduler)
6 end
// Check that the recent changes occur in the LOD sources

7 if f (Xi, ti) recent changes then
8 updatecache← ti+1 ;
9 else

10 return f (Xi,Kmax) = update(Xi);
11 end

3.3.2 Change-Aware Maintenance Policy (CAMP) Algorithm

To update the view, for each transaction, a maintenance task is created and accumulated in the task

queue. The traditional policy is to update each job one by one regardless of the time consumption.

However, in our approach, we combine each small task into a larger maintenance job. The main-

tenance job will be executed only once. Our maintenance manager eliminates redundant update

tasks. Therefore, reducing the size of the update stream. The maintenance job begins when the

system has a freecycle. We hide the maintenance process from incoming queries to improve the

performance of response time. We use CAMP [23,39] to determine when a local view needs to be

updated. CAMP identifies the highly dynamic sources in the Linked Data that are frequently up-

dated and captures these changes to updates the local views. CAMP visits the data sources based

on a preference score. Highly dynamic sources should be fetched at a high priority. The preference

score is based on the history of the sources. The preference score is computed as shown in Eq 3.7:

fPASU(X) = ∑
i=0

∆(Xtlastupdate−1 ,Xtlastupdate)

tlastupdate(X)− tlastupdate(X)−1
(3.7)

In Eq 3.7, tlastupdate is a function that returns the time when Linked Data was last updated. This

function is recursive, as tlastupdate−1 returns the time before the last update, and ∆ quantifies the



CHAPTER 3. CHANGE DETECTION FOR EVOLUTION ANALYSIS 56

amount of the changes such as addition and deletion of items. The maintenance policy indicates

when the Linked Data source should be fetched. However, it is possible to retrieve the sources

in the order of their assigned preference. The overall flow of the proposed algorithm is shown in

Algorithm 3. The CAMP algorithm first generates the view for the incoming queries as shown in

Line 1. As an input parameter, CAMP takes a query model Q and job scheduler, which indicates

the time to schedule the resources. CAMP also chooses the appropriate policy to facilitate the

performance of the maintenance policy P. The maintenance manager releases a policy Jr to update

the local views before the query evaluation in Line 6 and 7 in a maximum execution time Kmax.

When a query is registered with the system the maintenance manager creates a view and selects

the appropriate policy to keep the view up-to-date. These policies invoke the job scheduler to

select the relevant stream data and store the appropriate results in the view. A maintenance policy

P consists of the sequence of the job needed to update the local views. To be able to keep track

of all the views this module maintains hash tables of each view along with the maintenance tasks.

To keep track of which version of the data is needed by the views, this module keeps track of

the status of the maintenance task. The maintenance of each job is scheduled as a low priority

background job and the maintenance manager combines multiple tasks to schedule as a larger job

to be executed when the system is in an idle state. When a maintenance job is completed, the

manager removes the job from the list and releases the remaining pending tasks. Similarly, in the

query execution phase, we first check whether the views used by the query contain any pending

maintenance jobs. In case of a pending task, the query requests the manager to perform the task to

update the local views. This process is similar to on-demand maintenance, where the query waits

until the maintenance process is completed.

3.4 Summary

The Web of Data continuously growing at an alarming rate and there is a need for a flexible way

to query. Public endpoints are available to query, but the major problem is poor availability under

high querying loads. Existing change detection approaches only focus on the structure similarity,

whereas our approach introduces a distance-based query similarity metric, which considers both

content-wise and structural similarities for more accurate comparison between queries. It is ad-
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vantageous to maintain a local cache for efficient querying and processing. Due to the continuous

evolution of the LOD cloud, local copies have become outdated. In order to utilize the best re-

sources, improvised scheduling is required to maintain the freshness of the local data cache. We

have proposed an approach to efficiently capture the changes and update the cache. Our proposed

approach, called application-aware change prioritization (AACP), consists of a change metric that

quantifies the changes in LOD, and a weight function that assigns importance to recent changes.

We have also proposed a mechanism to update policies, called preference-aware source update

(PASU), which incorporates the previous estimation of changes and establishes when the local

data cache needs to be updated. To reduce the overhead cost, modern database systems maintain a

cache of previously searched content. The challenge with Linked Data is that databases are con-

stantly evolving and cached content quickly becomes outdated. To overcome this challenge, we

propose a Change-Aware Maintenance Policy (CAMP) for updating cached content.



Chapter 4
Prefetching and Cache Replacement

4.1 Overview

We proposed an offline analysis to identify similar structure queries. The result of the previously

issued queries is extracted from the log. By using query matching, we prefetch the results of similar

queries and place them in a cache for future access. This approach lowers the burden on SPARQL

endpoints. To find a similar query, we compute the Levenshtein Distance between two queries,

normalized by the size of the query strings. We define the Distance Score as:

DistanceScore =
Levenshtein(Q1,Q2)

max(|Q1,Q2|)
(4.1)

In equation 4.6, we define the distance score to match the triple patterns. The overall distance

of the triple pattern is calculated by aggregating the individual score of the subject, predicate, and

an object. Only the structure base similarity is not sufficient to return a search result, as it only

relies on the ordering of symbols. It is possible that two queries represent the same structure of

order, but share a different content. We utilize the distance function score to determine the query

matching. The query distance between the two graphs is the minimum number of edit operations,

such as addition, deletion, and insertion, to transform one graph into another. However, the cost is

determined by the distance between triple patterns ∆(T1,T2). Complete matching is only possible

in the case of bipartite graphs, where Basic Graph Patterns (BGP) occur with the same number

as for the triple patterns. A maximum matching is determined in polynomial time. We utilize the

Hungarian method [10] to obtain the individual triple patterns with the assignment of minimum

cost. Therefore, the higher cost of triple matching is set to ∆(T1,T2) > 1 which is considered the

infinite cost, where there is no matching between the BGP elements. The score derived from the

58
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complete matching is defined as:

∆(BGP1,BGP2) =
∑(Triplei,Triple j ∈MT )∆(Triplei,Triple j)

MT
(4.2)

As shown in equation 4.2, MT assigns the cost to triples. In the case that MT is finite, there is a

valid triple pattern matching scenario exists and if MT is infinite, no such scenario exists. However,

real-world queries are more complex than the basic graph patterns, therefore, we use a bottom-up

approach to derive the minimum cost between BGP. We continue to check the alignment of query

patterns, in the case of no alignment, then the matching has an infinite cost. In the case of maximal

matching, two BGPs can be matched if they are aligned, and matching with finite cost can be

established between all of the patterns.

4.2 Query similarity

The existing approach [11] relies on the structural similarity of the query for improving the per-

formance of the triple stores. We argue that the structural similarity is based on the ordering of the

symbols and it is not sufficient as two queries may represent the same structure of ordering but

share a different content.

To overcome this drawback of existing methods, we propose a query similarity metric that con-

siders both content-wise and structure similarity. Consider the two queries illustrated in Fig. 4.1.

Two queries Q1 and Q2 have a similar-structured if the ordering of their symbols is the same. To

determine the similarity between two query patterns, we first compute the Levenshtein distance

between their query patterns. Where the Line number 6,7 and 8 shows the triple patterns exits in

the query. Here, the most similar triple patterns can be determined by computing the minimum

distance between the ∆(s1,s2), ∆(p1, p2), and ∆(o1,o2). The composition of the SPARQL query

contains a number of different patterns. To find the similarity between queries, we need to de-

compose the SPARQL queries into subgraph patterns. The triple pattern distance is the minimum

number of edit operations, such as addition, deletion, and insertion, to transform one graph to

another. We introduce three functions AND, UNION, and OPT IONAL. These patterns take the

input graph and decomposed it into three sets of non-empty patterns. As an example, consider
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1 # PREFIX DECLARATIONS
2 PREFIX :< h t t p : / / d b p e d i a . o rg / r e s o u r c e />
3 PREFIX d b p e d i a 2 :< h t t p : / / d b p e d i a . o rg / p r o p e r t y />
4 PREFIX d b p e d i a :< h t t p : / / d b p e d i a . o rg />
5 SELECT ? c i t y ? i n f l u e n c e
6 WHERE {
7 ? c i t y 1 r d f s : l a b e l ” P a r i s ” .
8 ? p e r s o n ? r e l a t i o n s h i p W i t h : c i t y 1 .
9 : Auguste Comte f o a f : givenName ” Auguste ” .

10 }

Figure 4.1: Example of a SPARQL Query with BGP1

1 # PREFIX DECLARATIONS
2 PREFIX :< h t t p : / / d b p e d i a . o rg / r e s o u r c e />
3 PREFIX d b p e d i a 2 :< h t t p : / / d b p e d i a . o rg / p r o p e r t y />
4 PREFIX d b p e d i a :< h t t p : / / d b p e d i a . o rg />
5 SELECT ? c i t y ? i n f l u e n c e
6 WHERE {
7 : Auguste Comte f o a f : surname ” Comte ” .
8 ? c i t y 2 r d f s : l a b e l ” M o n t p e l l i e r ” .
9 ? Auguste Comte ? a s s o c i a t i o n : c i t y 2 .

10 }

Figure 4.2: Example of a SPARQL Query with BGP2

the SPARQL query in Fig. 4.2 that contains the following graph patterns represented as QAND,

QOPT IONAL, and QUNION and if no such triple patterns exist the result is /0.

(4.3)

QUNION = {QAND,QOPT IONAL} (4.4)

More formally, we defined a QueryDecomposition to deduce whether the decomposition of

query patterns exits, as shown in equation (4.5).

(4.5)



CHAPTER 4. PREFETCHING AND CACHE REPLACEMENT 61

To calculate the similarity between two query patterns, we use the Levenshtein distance that

is a string metric for assessing the difference between the two sequences. For example, the Lev-

enshtein distance [72] of the two similar-structured queries is in the range of [0,1]. The overall

distance of the triple pattern is calculated by aggregating the individual score of the subjects, pred-

icates, and objects. The general formula for the distance score is defined as:

(4.6)

By using this distance score in equation (4.6), we can determine the matching between the

triples. Consider the triple matching between the two Basic Graph Patterns (BGP) as shown in Fig-

ure 4.1 and Figure 4.2. Here the most similar patterns for L6, L7, L8 in BGP1 are L7, L8, L6 in BGP2,

respectively e.g., L represents the Line number correspond to Figure 4.1 and Figure 4.2. For ex-

ample, the minimum value for the edit distance is calculated as aggregating the individual distance

score of subject, predicate and an object as follows: ∆(L6BGP1,L7BGP2) = (0+ 0+ 4
16) = 0.75.

Complete matching is only possible in the case of bipartite graphs, where triples occur with

the same number as for the triples patterns. Maximum matching can be determined in polyno-

mial time. The matching of the triple is a computationally expensive process and existing ap-

proaches [53, 161] do not consider the cost while performing the matching between two queries.

In contrast, we use a cost threshold to cut off too expensive matching and utilize the classical al-

gorithm called Hungarian Method [160] to solve the maximum matching of triples with minimum

cost. This algorithm computes an optimal solution in a finite time. More specifically, we consider

only the contents of which the minimum matching cost does not exceed one. Thus, the maximum

matching of the triples {(L6BGP1,L7BGP2),(L7BGP1,L8BGP2)} has a cost 0.75+∞

2 , which shows that

these BGP1 and BGP2 are unfit to match with each other.

4.3 Idea of Query Prefetching

Whenever there is a public data available, data consumers wants to query it, and nothing is more

compelling than querying the vast amount of Linked Data. Recently, Linked Data has emerged as
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one of the best practices to represent and connect these repositories, also allowing the exchange of

information in an interoperable manner. Linked Data not only supports the integration of multiple

data from diverse sources but also provide a way to query these datasets. With over 800 million

triples are currently stored in DBpedia1, the search of the specific resources has never been this

high before [11].

Despite the increased performance of SPARQL endpoints, the main problem remains due to

the low availability of these endpoints as on average the downtime of SPARQL endpoints is more

than 2 days each month [55]. A survey conducted on 427 public SPARQL endpoints registered on

the DataHub shows the low efficiency of these endpoints with availability rate above 90% [55].

Oftentimes, SPARQL endpoints are not processed the specific workload as efficiently. The major

challenge faced by querying the SPARQL endpoint on account of the inherently distributed nature

of Linked Data is its high search latency and lack of tools to connect SPARQL endpoints. Access-

ing Linked Data cloud at query time is prohibited due to high latency in searching the content and

limited capability of tools to connect to these databases. Therefore, the performance of retrieving

data from Linked Data repositories is one of the major challenges. Although the Linked Data cloud

supports SPARQL queries to access data from its publicly available interfaces, a central problem

is the lack of trust regarding these endpoints due to network instability and latency. Therefore, the

typical solution is to dump the data locally and maintain endpoints to process these data. The data

stored at the local endpoints are not up-to-date and require constant updates, therefore, accurately

hosting the endpoints requires expensive infrastructure support [56].

Existing research shows that the SPARQL server with high demands is often hard to host and

which is further complicated as the endpoints are publicly hosted due to the unpredictable work-

loads [57]. The current de-facto way of querying the SPARQL endpoint is to utilize the HTTP

that is implemented on top. The client sent the request through these endpoints and the server

returns the request. Due to the massive data involved servers need to execute a significant amount

of work [58]. The SPARQL query processing is different than the regular HTTP processing as the

query-based partitioning of resources occurs. Therefore, regular HTTP caching strategies can not

be fully applied to the Linked Data scenario. In the recent past, many efforts have been made to

1https://www.dbpedia.org/
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Figure 4.3: Work Flow of Query Prefetching and Cache Replacement
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improve the performance of effectively querying Linked Data [59, 60], as compared to querying

a triple stored in a relational database, querying a triplestore is still slower by 20% [11]. To cir-

cumvent the problem of effectively querying Linked Data [61, 62], caching is the most popular

technique to reduce query time by serving the requests from a cache. The idea of query caching is

to reuse the previously issued queries. In the distributed setting the benefits of caching are more

evident, as the previously issued queries are stored on the remote source. The caching will imme-

diately improve the robustness of the system where the remote resources are not available due to

the network insatiability. Existing caching approaches consider caching of the entire query result

which means that similar queries can not be served from cache.

Our idea is based on the idea that the clients who processed similar queries are likely to process

similar queries in the future. The aim is to search and gather content possibly requested at the future

queries by identifying the concepts of the previously issued queries. The main benefit is to reduce

the transmission overhead and improve the hit rate and query time by retrieving contents for future

queries at once. We prefetch all contents that were used to answer the queries since those queries

are more likely to be requested by the same user in the future. For cache replacement, we serve

each query according to the estimated frequency, the query with the highest frequencies are kept

in the cache. Figure 4.3 illustrates the overall flow of the proposed approach. When a client sends

a new query the cache manager first check if an identical query has been cached. In this case, the

results are immediately sent to the client. In case of the cache miss, new queries are sent to the

query prefetching where similar queries are suggested and the result of these queries are retrieved

from the SPARQL endpoints. As an offline process, the result of a similar query is placed in the

cache for future access queries. The cache replacement process is triggered when the cache is

full and it runs on a separate thread that does not affect the query answering process. The cache

replacement is based on the frequency, the higher accessed queries are placed in the cache.

Similar queries occur frequently in real-world SPARQL query logs. This has also been re-

ported previously [69]. The query prefetching approach is suitable for alleviating the burden on

SPARQL endpoints by extracting the results of subsequent queries. In the common keyword-based

search engines, the user is often not aware of the most suitable keyword to optimally extract infor-

mation from the resource. In several iterations, the user is more likely to formulate their keyword
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Dist1 Dist2 Dist3 Distn

Cluster 2

Cluster 3

Query Cluster

Query
Similarity

Distance Calculation

TQ= {Q1,Q2,..Qn} Dist1

Dist2

Dist3

Cluster1

Template

Figure 4.4: Showing the Example of Query Cluster of Similar-Structured Queries

1 PREFIX : <h t t p : / / d b p e d i a . o rg / r e s o u r c e />
2 PREFIX dbo : <h t t p : / / d b p e d i a . o rg / o n t o l o g y />
3 PREFIX f o a f : <h t t p : / / xmlns . com / f o a f /0 .1 / >
4 SELECT ? p ? o ? b i r t h P l a c e ? i n f l u e n c e
5 WHERE {
6 : Auguste Comte dbo : b i r t h P l a c e ? b i r t h p l a c e .
7 ? b i r t h p l a c e dbo : c o u n t r y : F r a nc e .
8 : Auguste Comte dbo : i n f l u e n c e B y ? i n f l u e n c e .
9 ? Auguste Comte ? p ? o .

10 }

Figure 4.5: Example of a SPARQL Query Prefteching

to find the correct answer. Similarly, in a LOD user might query for additional details based on the

initial results, after making incremental changes to the initial queries.

4.3.1 Finding Structure Similar Queries

To identify the similar-structured queries, we propose a query cluster. Consider TQ =

{Q1,Q2, ..,Qn} be the set of the SPARQL queries with corresponding query patterns

{PQ1,PQ2, ..,PQn}. A query cluster is defined based on the pairwise matching with three con-

straints between the triple patterns such as ∆(si,s j)≤ 1, ∆(pi, p j)≤ 1, and ∆(oi,o j)≤ 1.

Given this definition, the query cluster only derived the query using parameter ∆max = 0 that

can only be derived if the two queries are identical. Therefore, a query cluster consists of those

query patterns that are structurally the same, based on the corresponding mapping mvΘ(PQ1)×

(PQ2). To represent the query patterns as a feature, we first cluster queries based on the content-
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p o

rdf:type dbo:person
dbo:birthDate 1798-01-19

dbo:idea :Positivism
dbo:influenced :KarlMarx

1

Figure 4.6: Showing the Result of the Query

wise and structural similarities as shown in Figure 4.4 and distances between each pair of queries

are computed by adopting the k-medoids algorithm [162]. We use this algorithm to cluster the

training data of the query. This algorithm chooses the data points and allows us to utilize the

distance function. To calculate the query distance, we utilize the distance score in equation (4.6)

and define the similarity score of the query cluster as shown in the equation (4.7).

SimilarityScore(TQ,Qc) =
1

1+Distancescore(TQ,Qc)
(4.7)

Furthermore, we introduce an exploratory prefetching. More specifically, we identify a query

cluster that previously issued queries belong to and construct a query template using all queries

in the cluster. Then, we prefetch all contents that were used to answer the queries in the template

since those queries are more likely to be requested by the same user in the future. This prefetching

is completed by issuing one single query which includes all queries in the template. For example,

we modified the content of the queries previously issued in Figure 4.1 and retrieve all relevant

contents that are useful for future queries as shown in the Figure 4.1. This query retrieves the

additional information based on the central concept, instead of issuing the many similar-structured

queries, prefetching retrieve all the relevant information by issuing a single query.

For extracting the additional information for the specific resource, we propose an Algorithm 4

called central Concept Fetching (CCF) to generate the central concept. In the CCF algorithm, we

first discovered the frequency of the subjects in all query patterns in Line 7 and aggregate whether

the subject is already included in the S.Count. We further increase the count of the subject and add

to S.Count in Line 11 and analyzed all the triple patterns. This algorithm will analyze all the triple

and give a good indication of a common theme in all the SPARQL queries.
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Algorithm 4: Central Concept Fetching (CCF)
Input : TQ = {Q1,Q2, ..,Qn}
Output: Occurrence of most frequent subject

1 S.Count← 0

2 foreach Qp ∈ T condition do
3 S←Θ(PQi)
4 while S 6= 0 do
5 foreach Qp ∈ S do
6 if Θ(PQi)> 1 then
7 S← S∪Θ(PQi)
8 else
9 (S, P, O)←Θ(PQi)

10 if S ∈ S.Count then
11 S.Count.increasecount(S)
12 else
13 S.Count.put(S,1)
14 end

15 end
16 end
17 end
18 return getHighestCount();

4.4 Adaptive Cache Replacement (ACR) Algorithm

We propose an offline process for cache replacement to calculate the access frequency. Logging

every record produces the most accurate result, however, it is computationally expensive. Existing

approach [33] utilize forward scanning to identify record access with a time slice [tn, tn+1].

performance, as it requires scanning and storage of the entire record. Moreover, the forward

scanning approach requires a significant amount of time to classify the record. To optimize this

process, we maintain partial records within a specific time period. We parallelize this task by split-

ting the logs into n consecutive periods and use a hash function to store the frequency estimation

for each query as shown in Figure 4.7. Where Q1 represents the query and R1 denotes the results

of the query. The estimation of the record is calculated by equation (4.8) and this algorithm ranks

each query by its access frequencies. The storage of the access log is placed in a separate hash

table. When each of the parallel executions finishes, the results of the most highly accessed fre-
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Q1, (R1,E1,tpre_1) 

Q2, (R2,E2,tpre_2) 

…….

Qn, (Rn,En,tpre_n) 

Q1, R1

…….

Q2, R2

Qn, Rn

Records
(Hashmap)

Cache
(Hashmap)

R3

Log

tn

R1

R2

R4
R5

Forward Scanning (at time tn)

Figure 4.7: Showing Working Example of the ACR Algorithm Maintaining Cache and Query
Access Frequency

quencies are returned immediately, and infrequently accessed queries are removed from the cache.

The overall flow of ACR is described in Algorithm 5, which explains the details of updating the

cache by analyzing the access logs. The ACR algorithm takes previously access logs to calculate

the access frequencies and provide the list of the updated cache triple, where LAt represents the

last access time of the triple and CAt represents the current access time. ACR algorithm scans the

records and updates the frequency. In the case of a cache miss, the algorithm first checks for the

case of a record in the cache and updates the LAt . Based on the access frequency ACR decides

whether the new triples need to be added to the cache.

We have calculated the frequency of the data access using the exponential smoothing tech-

nique [163]. This method is widely utilized to predict economic data in financial applications. The

traditional approach [10] contains all the accessed queries in the cache. In our work, ACR serves

each query according to the estimated frequency, the query with the highest frequencies are kept

in the cache for future access. The general formula of exponential smoothing is as follows:

Et = α ∗ xt +(1−α)∗Et−1 (4.8)

As shown in equation (4.8), where Et represents on exponentially moving average of access

frequencies up to time t and xt represents an access frequency observed at time t in discrete time

with the smoothing constant α ∈ (0,1). The high value of α gives significance to the new obser-

vations. By using the equation (4.8), we satisfies our requirement of selecting the highly accessed

queries. We further modified equation (4.8) to represent the time of the last hit. In equation (4.9),
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Algorithm 5: Adaptive Cache Replacement (ACR)
Input : Query Log Q, Job Scheduler H
Output: List of added cache triples

1 tlatest ← max(LAt ,CAt);
2 tearliest ← min(LAt ,CAt);
3 Records← getRecords(tlatest , tearliest);
4 Function: Modi f iedForwardAlgo(Q,H);
5 if newTriples in Records then
6 max(estimation,cachedTripples);
7 Calculate(Frequency,LAt);
8 update(Frequency,LAt);
9 Remove = Leastaccessedtriples;

10 else
11 Triples not in Records;
12 Calculate(Frequency,LAt);
13 Add(newAccessTriples;
14 end
15 return addnewAccessTriples ;

tprev represents the time of the last query hit and Xtprev represents the frequency estimate of the pre-

vious query at tprev. For example, assume that α = 0.05, t = 12, tprev = 3, xt = 0.6, and xtprev = 0.5.

The value of Et is calculated by Et = 0.05∗0.6+0.05(1−0.05)12−3 ∗0.5 = 0.046.

Et = αxt +α(1−α)t−tprevxtprev (4.9)

In case of the queries that are not similar to the previous ones stored in the cache, the result

of these queries is served from the LOD and ACR algorithm store the access frequencies by using

equation (4.9). When the cache becomes full, replacement is based on the access score; the top

queries are kept in cache and less-frequent queries are removed from the cache.

4.5 Summary

In this chapter, we proposed a client-side caching that works as a proxy between the querying

agent and the SPARQL endpoint. To accelerate the querying answering process, our approach can

either be deployed within the SPARQL endpoint or querying agent to eliminate the burden on

these endpoints. We propose an exploratory prefetching to retrieve contents possibly requested at
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the future queries by identifying the concepts of the previously issued queries and issuing a single

query for all required contents. Its benefit is to reduce the transmission overhead and improve the

hit rate and query time by retrieving contents for future queries at once. For cache replacement, we

proposed an exponential smoothing forecasting method to replace the less valuable cache content.

We propose a frequency-based cache replacement method to rank each query according to its

estimated access frequency. The most frequently accessed queries are kept in the cache. Thus,

our work benefits the triple stores in replacing the cache. We also propose an Adaptive Cache

Replacement strategy (ACR) that aims to accelerate the overall query processing of the LOD

cloud. ACR alleviates the burden on SPARQL endpoints by identifying subsequent queries learned

from the client’s historical query patterns and caching the result of these queries.



Chapter 5
Evaluation and Results

To validate the proposed model, we performed extensive experiments on real-world datasets. The

major goal of the experiment is to examine the hit rates and overhead comparison of the proposed

approach with the current state-of-the-art cache replacement approaches.

5.1 Experimental Results related to Change Detection for Evolution

Analysis

This section is devoted to analysis and comparison with other approaches. We first describe the

setup of our experimentation, dataset details, analysis of dynamic sources, and comparison with

the existing approaches. Our experimental procedure follows the work of Dividino et al. [24],

however, we have evaluated the effectivity to get further insights related to runtime overhead of

our proposed approach, and the results outperform as compared to other approaches. We have used

precision and recall to check the effectiveness of our proposed approach.

Precision =
∑ |Xc,t

⋂
X
′
c,t |

∑X ′t |X
′
c,t |

(5.1)

Recall =
∑ |Xc,t

⋂
X
′
c,t |

∑X ′t |Xc,t |
(5.2)

5.1.1 Experimental Setup

The comprehensive quality of our approach is conducted using real-world datasets. We applied

our proposed approach to real Linked Datasets. All the experiments were performed on a 4x AMD

A8-7650K Radeon R7, 64bit Ubuntu 16.04.2 LTS, and OpenLink Virtuoso Server 07.10 with 16

71
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GB RAM.

In our experiment, we used the DYLDO1 and BTC2 datasets. Both of these datasets are serial-

ized in the N-Quad format. To parse both of the datasets, we used NxParser3. We have calculated

the dynamic score of both datasets as shown in Table 5.3 and Table 5.4. The following are the

details of both datasets.

DYLDO. As the first dataset, we use DYLDO [1,44], which is composed of 149 weekly crawls.

DYLDO contains various well known sources such as dbpedia.org, identi.ca, and dbtropes.org.

On average, the size of DYLDO of every snapshot is approximately 1.35 GB (for three years, it is

approximately 36 GB). From the original dataset, we parse the dataset and extract the triples from

each snapshot. The total number of data sources varies in each snapshot.

BTC. This data was collected from the Multi-crawler framework [164] collected for the Billion

Triple Challenge4. The dataset was crawled from January 2014 to July 2014. The size of the dataset

varies in each crawl. In our experiment, we evaluated our approach on three different snapshots.

The size of the first snapshot is 3.7GB (46 GB unzipped), the second is 3.7GB (59GB unzipped)

and the third snapshot size is 2.1GB (44GB unzipped). We observed that most of the changes

(73%) occur in a data source with more than 10.8 million triples.

Table 5.3: Dynamic score of the DYLDO sources

PLD
Dynamic
Score

AACP Score

Identi.ca 58.99 19.65
loc.gov 46.63 14.33
Linkedct.org 51.69 21.36
Dbpedia.org 53.63 19.86
Dbtropes.org 66.90 28.80
Neuinfo.org 41.30 10.96

1http://swse.deri.org/dyldo/data/
2http://km.aifb.kit.edu/projects/btc-2014/
3https://www.w3.org/2001/sw/wiki/NxParser
4http://km.aifb.kit.edu/projects/btc-2014/
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Table 5.4: Dynamic score of the BTC sources

PLD
Dynamic
Score

AACP Score

ontologycentral.com 54.30 21.30
bio2rdf.org 49.63 19.30
data.gov.uk 68.30 30.15
dataincubator.org 57.56 25.63
freebase.com 34.39 18.53
berkeleybop.org 31.10 17.63

The content in both of the datasets is subjected to frequent changes. From the available snap-

shots, we have selected the top five PLD from both of the datasets as shown in Table 5.1 and

Table 5.2. Both of the sources evolved. We have categorized both the datasets. In each of the snap-

shots, we have calculated the average addition and deletion of the statements. We have applied the

dynamic function on the most frequently changed sources. To identify the most recent changes,

we have applied the AACP algorithm as shown in the Table 5.3 and Table 5.4. In the next section,

we perform analysis to identify the most dynamic sources.

5.1.2 Analysis of the Dynamic Sources

Due to the heterogeneous nature of the Linked Data sources, we expect dynamic behavior in time.

Some sources evolved while other sources did not change. Similarly, we expected a wide range of

changed behavior in the period from 2014-05-12 to 2015-02-05. Some of the sources have evolved

more than the other sources, as shown in Fig. 5.1, such as identi.ca (in Fig. 5.1(a), which consist

of more than 4 million triples per snapshot. Other sources, such as neuifo.org (in Fig. 5.1(f)) are

very small and consist of 10,000 triples per snapshot.

From all of the snapshots of DYLDO, we have computed the dynamic function over a period of

time. The dynamic function will measure the change in the source that has gone through i.e., addi-

tion, and deletion of triples. Linked Data sources, in particular loc.gov (in Fig. 5.1(b)), linkedct.org

(in Fig. 5.1(c)) and dbtropes.org (in Fig. 5.1(d)), show a higher change rate over the considered

period of time, whereas neuinfo.org (in fig Fig. 5.1(f)) shows a lower change rate. We observed
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(b) loc.gov
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(c) linkedct.org
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Figure 1: Jaccard distance plots for the DYLDO dataset.
Figure 5.1: Jaccard Distance Plots for the DYLDO Dataset.

small peaks in identi.ca (in Fig. 5.1(a)), where the changes occurred only in the early period of

time and then the sources remained almost constant. Our dynamic function also suggests that the

sources linkedct.org (in fig Fig. 5.1(c)) and dbtropes.org (in Fig. 5.1(e)) shows higher change rates

in the latest period of time.

A similar trend has been noticed in the BTC datasets, as shown in the Fig. 5.2. Sources such as

ontologycentral.com (in Fig. 5.2(a)) show a decreasing change rate, which later start increasing.

The sources data.gov.uk (in Fig. 5.2(c)) and dataincubator.org (in Fig. 5.2(d)) are highly dynamic

and their change rates are higher than other sources. Some of the sources changed recently, i.e.,

data.gov.uk (in Fig. 5.2(c)) and dataincubator.org (in Fig. 5.2(d)), showing higher change rates. We

have summarized the dynamic score and the AACP score, as shown in Table 5.3 and Table 5.4.

According to our results, the source Dbtrobes.org (in Fig. 5.1(e)) showed the highest dynamic

score of 66.90 and AACP score of 28.80. Some of the sources were dynamic, e.g., data.gov.uk (in
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Figure 1: Jaccard distance plots for the BTC dataset.
Figure 5.2: Jaccard Distance Plots for the BTC Dataset.

Fig. 5.2(c)), with 68.30 and an AACP sore of 30.15.

5.1.3 Comparison with existing approaches

In this section, we briefly discuss the existing update approaches. We have evaluated our approach

in two different scenarios. In the single setup scenario, we utilized the quality of the updates

performed for a single iterative update. We also noticed the runtime overhead while executing the

updates. In the iterative setup, the quality of the update was measured over a long period of time.

We have utilized precision and recall as our metrics.

5.1.3.1 Age

Most of the update strategies use Age, as it is featured to capture the age of the data source.

Based on the age the preference is assigned to fetch the sources. Age is an important feature that
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illustrates when the data source was last visited and updated [36].

fage(Xt,c) = ti− tlast(Xt,c) (5.3)

As shown in Eq. 5.9, age is used by the scheduling strategies to fetch the data source c in time

ti, whereas, tlast is the last update time.

5.1.3.2 PageRank

This updates the sources from highest to lowest priority of the Linked Data sources [165]. PageR-

ank is represented as:

fPageRank(Xt,c) = PR(Xc,tlastupdate) (5.4)

5.1.3.3 Size

The size shows the number of the triples provided by the data source. Most of the update function

prioritizes the sources based on the size of the data item, e.g., it updates from largest to smallest

datasource [37]. The formula for size is as follows:

fsize(c,Xti) = |Xc,tlastupdate | (5.5)

5.1.3.4 ChangeRatio

The ChangeRatio provides how many changed items in the Linked Data sources have changed

from the last known time period [166].

fChangeRatio = |Xc,tlastupdate |+ |Xc,tlastupdate | (5.6)
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Table 5.5: Evaluating the effectivity of the update strategies

Update
Strategies

Total
Query
Execution

Irrelevant Relevant
Effectivity
(%)

Runtime
(sec)

PageRank 32,690 30,650 2,040 6.24 800
Size 28,521 16,448 12,073 42.3 650
Age 29,128 10,523 18,605 63.9 500
ChangeRatio

29,550 9,800 19,750 66.8 320

ChangeRate 29,560 4,500 25,060 84.7 120
PASU 29,565 1,900 27,756 93.5 32

5.1.3.5 ChangeRate

This update function quantifies the change by comparing the two snapshots. The ChangeRate of

the Linked Data can be represented as ∆, which quantifies the changes between two datasets or the

distance between two data sources. The scheduling strategies based on the ChangeRate quantifies

the evolution of the Linked Data over the period of time [26]. It is represented as follows:

fChangeRate =
j

∑
i=0

∆
(
Xi,Xti−1

)
ti− ti−1

(5.7)

We have evaluated the effectiveness of our approach in two different setups, e.g., single and

iterative setup. In the single setup, we have considered the effectiveness of our approach for a

single update. We have compared our approach with the state-of-the-art approach in the iterative

scenario considering the update of the local data cache over a longer time. Moreover, we have

discussed the runtime overhead comparison in Table 5.5.

5.1.4 Performance Evaluation

In this performance evaluation, we performed two different setups. In the single-step scenario,

we utilized the quality of the updates performed by the update strategies for a single update, i.e.,

starting from the accurate copy of the sources. The goal of the iterative setup was to estimate the

accuracy, i.e., how good is the updated policy for maintaining an accurate local data cache.
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Figure 1: Single setup: Comparison with other state-of-the-art strategies.
Figure 5.3: Single Setup: Comparison with Other state-of-the-art Strategies.

5.1.4.1 Single Setup

First, we started with the perfectly up-to-date cache and then assumed the change occurred at

time ti. We have evaluated how the existing and proposed strategies update the local copy of

the sources, as shown in Fig. 5.3. Although in both of the datasets our proposed dynamic function

based strategy out-performed ChangeRate, ChangeRatio, Age, Size, and PageRank, all these strate-

gies showed a uniform loss of quality. After a single update, we have achieved 88% (F-measure)

accuracy.

We observed that our approach only executes the relevant data updates with less drop and

delay. All the other strategies execute a massive amount of overhead, resulting in a low effectivity.

To obtain further insights regarding the runtime overhead of the proposed approach, we have
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extended our previous evaluation results [19]. We utilized the Linked SPARQL Queries (LSQ)5

[167] that was extracted from the access log of a public SPARQL endpoint. We selected LSQ

because it matches our current structure of the DYLDO and BTC datasets. In Table 5.5, we have

summarized the result of the update strategies. The effectivity and the runtime overhead were set

as the key metrics. We have calculated the effectivity as follows:

E f f ectivity(%) =
Rrelevantquery

Ttotalexecution
(5.8)

Since irrelevant executions create unnecessary load, among all the strategies, PageRank is the

least effective with only 6.24% (32,690 vs. 2,040) and a longer runtime overhead as compared

to all other strategies. The strategies PageRank, Size, and Age showed the worst results. These

strategies executed irrelevant queries and could not detect all the changes. In contrast, ChangeR-

atio and ChangeRate executed less irrelevant queries but the runtime overhead was high. PASU

outperforms other approaches with an effectivity of 93.6% .

5.1.4.2 Iterative Setup

In this setup, we compared our approach with the state-of-the-art approach called TLR. We as-

sumed that the data is fetched at a fixed point in time t. We denote the size of the dataset that is

fetched from the source by |Xc,t |, which contains a number of triples in a dataset at context c. We

aim to measure how well the update policies perform in terms of maintaining an accurate local

copy at times ti+1, ti+2....ti+n.

A comparison of the proposed and the existing approaches in the iterative setup is shown

in Fig 5.4. We have analyzed that our approach outperforms the baseline approach called Triple

Linear Regression (TLR) [23]. In the iterative setup, we look at the precision and recall of both

approaches. We noticed a drop in the quality of the TLR approach along with the iteration. In the

first iteration, the TLR approach achieves 0.903 precision and drops along with three iterations by

0.871. We noticed a better precision score in our proposed approach. Our precision score in the

first iteration was 0.903 and dropped along with the iteration by 0.891. Similar trends exist in the

recall score. The recall drops from 0.901 to 0.871 along with iterations. In our proposed approach,

5http://aksw.github.io/LSQ/
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Figure 1: Iterative Setup: Comparison with the Triple Linear Regression (TLR) approach in the DYLDO
and BTC datasets.

Figure 5.4: Iterative Setup: Comparison with Other state-of-the-art Strategies.

the recall score was 0.916 and the drop was 0.881, but it is less affected by the dynamic nature of

the Linked Data cloud.

The proposed approach is reported to outperform in the single and iterative setups. We also

compared the effectiveness of our approach with other state-of-the-art approaches. In the single

setup, we have evaluated the quality of the updates of the local data cache based on precision

and recall, and our approach achieved 88% (F-measure) accuracy and precision and recall from

0.883 to 0.890 and from 0.884 to 0.894, respectively. To check the effectiveness of our proposed

approach, we have observed less runtime overhead, and the proposed scheduling strategy outper-

forms with effectivity of 93.6%. In the iterative setup, we have evaluated the quality of the updates

performing over a longer period of time. We noticed a drop in the quality of existing as compared

to our approach. The effect of the dynamic nature of LOD on our proposed approach is minimum
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and it can be utilized in practical application scenarios of LOD.

5.2 Experimental Results related to Prefetching and Cache Replace-

ment

This section is devoted to showing the effectiveness of the proposed approach. We performed an

evaluation on real-world datasets. The major goal of the experiment is to examine the hit rates and

overhead comparison of the proposed approach with the current state-of-the-art cache replacement

approaches.

5.2.1 Experimental setup

We conducted the experiments on an OpenLink Virtuoso Server 07.10 with a 4x AMD A8-7650K

Radeon R7 graphics card, 64bit Ubuntu 16.04.2 LTS, and 32 GB of RAM. We utilized the DBpe-

dia3.6 and Linked Geo Data (LGD) query logs provided by the USEWOD 2014 challenge6. The

query log contains a number of requests received by the SPARQL endpoint. The log is formatted in

the form of the Apache common log format and contains the information about the query session

that is used to retrieve the data from the endpoint. It is possible that in a single query session, two

queries are issued by the same user over time. The requests included in the DBpedia3.6 query logs

include the timestamp. The query log contains IP address, timestamp, query and userID. The valid

queries were extracted from the query logs and the syntax of the query was checked according to

the SPARQL1.1 specification.

The DBpedia3.6 dataset contain the structure information extracted from the WIKIpedia and

published over the LOD cloud. This dataset is obtained directly from the USEWOD query logs

for DBpedia 2013, 2014 and 2015 as shown in the Table 5.6. The DBpedia3.6 KBs contain 3.0M

entities about the general knowledge. We first extracted the textual information from the log to get

the previously issued queries then parse each query using Apache Jena7.

The Linked Geo Data (LGD) dataset holds the geographic sensor information mainly related

to the OpenStreetMap and it is currently available as RDF format. We utilized the LGD 2013

6http://usewod.org/usewod2014.html
7https://jena.apache.org/
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Table 5.6: Showing the size of the query logs used in our evaluation
Source Total queries Valid queries Unique queries
DBpedia 2013 28,423,201 27,563,105 12,326,855
DBpedia 2014 4,132,742 3,708,727 1,517,002
DBpedia 2015 31,345,875 30,245,552 3,258,671
LGD 2013 1,721,770 1,512,785 247,731
LGD 2014 1,730,770 1,513,895 517,530
Total 67,354,358 64,544,064 17,867,789

and 2014 that consist of more than 10 billion triples. From the available LGD query logs, our

evaluation contain repetitive and unique queries.

In both datasets, the majority of the queries are the SELECT queries in the DBpedia, and

LinkedGeodata logs and within these SELECT queries, we identified the occurrences of BGPS, as

in Figure 5.5, which shows SELECT, CONSTRUCT, DESCRIBE and ASK. Most of the queries

in both datasets are SELECT queries (95% in DBpedia and 89.3% in LinkedGeoData) and the

most widely used features are ASK (4.4% in DBpedia and 8.4% in LinkedGeoData) followed by

CONSTRUCT (1.2% in DBpedia and 2.3 % in LinkedGeoData).

Figure 5.6 shows the impact of the unique query account for the query execution. Our aim

is to ascertain the impact of the unique and frequently executed queries on the overall execution.

We analyzed the execution using the DBpedia and LGD query logs. In DBpedia, 70% of the

unique queries account for 30% of the overall executions, which shows that most of the execution

instances involved the frequently accessed queries. Similarly, the impact of the unique queries on

the overall execution is low, as almost 90% unique queries account for the 20% of the total query

executions.
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(a)

(b)

Figure 5.5: Showing the Patterns of the Queries in (a) DBpedia and (b) LinkedGeoData
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Figure 5.6: The Lorenz Curve for the Impact of a Unique Query on Query Execution

5.2.2 Comparison with Existing Approaches

In this evaluation, we compare ACR with existing approaches, such as LRU (Least Recently

Used) [168], LFU (Least Frequently Used) [32], and SQC (SPARQL Query Caching) [11] and

measure the efficiency in terms of average hit rate and space overhead.

5.2.2.1 Least Recently Used (LRU)

We evaluate the impact of existing cache replacement algorithms to improve the performance

in terms of hit rates and overhead. Therefore, we compare ACR with three well-known cache

replacement approach, Least Recently Used (LRU) is applied to remove the items from the cache

in order to provide space for the new item. This approach is simple to implement, especially when

the objects are uniform.
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5.2.2.2 Least Frequently Used (LFU)

The Least Frequently Used (LFU) resources are removed from the cache and the cache item is

replaced with a new resource. However, LFU does not consider the size of the objects and CPU

memory utilization.

5.2.2.3 SPARQL Query Caching (SQC)

PARQL Query Caching (SQC) [11] improves the performance of triple stores by the selective

invalidation of cache objects. This approach eliminates the cache objects that do not contain the

predefined timestamp.

Figure 5.7: Hit Rate Achieved by Varying the Size of the Cache as Compared to Existing Ap-
proaches
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5.2.3 Performance Evaluation

Figure 5.7 shows the hit rates achieved by the existing approaches. This experiment feeds the ac-

cess logs of 3M to the ACR algorithm, whose job is to rank the access frequencies of the queries

based on the exponential smoothing technique. It is noted that ACR outperforms existing ap-

proaches. However, the LFU technique remains accurate for a cache with a small size. The choice

of the α effects the performance of the hit rate. We have set the value to 0.05 due to the higher

accuracy of the results obtained, as the optimal value of α is almost certainly inversely propor-

tional to the size of the cache, and perhaps related to the size of the database. If the cache is

smaller, α should probably be larger as shown in Figure 5.9. Upon varying the size of the cache,

our proposed approach outperform the other approaches, as shown in Figure 5.8. On average, our

approach outperforms existing approaches in terms of higher hit rates, up to (80.65%).

Figure 5.8: Hit Rate Achieved by Varying the Size of the Triples as Compared to Existing Ap-
proaches.
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Figure 5.9: Hit Rate Achieved by Varying the Parameters of Exponential Smoothing

Figure 5.10 depicts the space overhead used by the cache replacement algorithms for vary-

ing data set sizes. We measure the maximum space consumption of each approach based on the

maximum number of records that each algorithm stores. It is observed that existing approaches

consume more space to maintain the records. Figure 5.10 shows the time overhead average of the

proposed ACR technique compared with state-of-the-art solutions. The existing solutions take a

long time; on average the hit checking time of our approach takes (280 ms), which is almost 10

times better than other approaches.

Through experimental evaluation, we found that our approach outperforms the state-of-the-

art approaches in terms of better query response time and less space overhead without losing the

cache hit rate. This shows that on average, we achieve hit rates of 80.66%, which accelerates the

querying speed by 6.34%. Specifically, our ACR technique is capable of classifying the access log

with better space efficiency as compared to LFU, LRU, and SQC.
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Figure 5.10: Space and Time Overhead of Existing as Compared to ACR
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5.3 Detailed Evaluation: Accuracy vs Performance

5.3.1 Evaluation Setup

This section describes the evaluation of our approach and comparison with other approaches. We

first describe the setup of our experimentation and dataset used. For performance evaluation we

measure the response time, maintenance cost and cache hit rates. We conducted the experiments on

OpenLink Virtuoso Server 07.10 with 4xAMD A8-7650K Radeon R7 and 64bit Ubuntu 16.04.2

LTS, and 32 GB of RAM with 7200 RPM. There are numerous datasets available in Biomedicine

that originate from different sources.

In our experimentation, we utilized two datasets, LinkedCT 8 and DYLDO 9. Both of these

datasets are serialized in triple format, we use NxParser10 to parse these datasets. For query evalu-

ation, we have utilized the queries extracted from the logs of LinkedCT and DYLDO [167]. In our

evaluation, we have utilized the queries extracted from the public available SPARQL endpoints

provided by the Linked SPARQL Queries (LSQ) 11 datasets.

The Linked Clinical Trials (LinkedCT) dataset [7] is a Linked Data representation of the open

dataset ClinicalTrials.gov. The original dataset is publisehd in XML format and the main benefit

of its linked representation is that it facilitates SPARQL queries. This dataset contains information

about governmental and privately funded clinical trials, in approximately 9.8 million triples. This

dataset also contains links to external datasets such as DBpedia and Bio2RDF.org via SPARQL

endpoints..

The Dynamic Linked Data Observatory DYLDO [1,44] monitors the evolution of Linked Data

over time. It collects snapshots of the Web of Data using 149 weekly crawls of the Linked Data

Cloud. The average size of a snapshot is about 1.35 GB. The data collected during three years adds

up to approximately 36 GB. DYLDO includes various well known sources such as DBpedia.org,

identi.ca, and DBtropes.org.

8https://www.w3.org/wiki/HCLSIG/LODD/Data
9http://swse.deri.org/dyldo/data/

10https://www.w3.org/2001/sw/wiki/NxParser
11https://aksw.github.io/LSQ/
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5.3.2 Comparison with existing approaches

We have evaluated our approach against Eager Maintenance, Time To Live (TTL), PageRank, Size,

ChangeRatio, and ChangeRate.

5.3.2.1 Eager maintenance

In eager maintenance, all the updating jobs are performed immediately after the new data arrives.

Eager maintenance updates all the materialized views immediately after the query evaluation and

each update query has to wait until view maintenance is done. The cost of the view maintenance

is normally high [169].

5.3.2.2 Time To Live (TTL)

TTL, it is a fixed threshold; the age at which the view must be refreshed. Most of the maintenance

manager use TTL to captures how old the views from the last query evaluation are. TTL is an

important feature that illustrates when the data source was last visited and updated [36].

PT T L(Xt,c) = ti− tlast(Xt,c) (5.9)

As shown in Eq. 5.9, TTL is used by the scheduling strategies to fetch the data source c in

time ti, whereas, tlast is the last update time.

5.3.2.3 PageRank (PR)

In PageRank, the updates of local views is performed on the basis of ranking of the Linked Data

sources. The ranking is calculated based on the number of incoming links and the sources are

prefetched from highest PageRank [165]. It is represented as:

PPR(Xt,c) = PR(Xchighest ,tupdate) (5.10)
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5.3.2.4 Size

In this policy, Size is determined by checking the Linked Data sources. The priority is given to the

largest datasource [37]. The formula for size is as follows:

Psize(Xt,c) = |Xcmax,tupdate | (5.11)

5.3.2.5 ChangeRatio

In this policy, ChangeRatio counts how many items were updated based on the last known time

period [166]. This metric is useful for storing the change history and number of detected changes

of the Linked Data as shown in the Eq. 5.12.

PChangeRatio = ∑
i=no.o f changes

|Xc,tlastupdate | (5.12)

5.3.2.6 ChangeRate

In this maintenance policy, the local views are updated from the sources with the most to the least

changes [26] observed at last known points. It is represented as follows:

PChangeRatio = ∆

(
Xc,tlastupdate ,Xc,tlastupdate−1

)
(5.13)

5.3.3 Performance Evaluation

To evaluate the effectiveness of CAMP, we compared our proposed approach with the state-of-

the-art approaches to find out the quality of the maintenance performed by existing strategies. We

evaluated on the basis of the maintenance cost, quality and cache hit rates.

5.3.3.1 Accuracy of Maintenance Cost

We define the maintenance cost as the time taken to perform maintenance operations. Figure 5.11

shows the maintenance cost for each policy on each dataset. Our proposed approach CAMP per-

formed the maintenance job in the background when the system was idle and enough resources
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(a) DYLDO datasets

(b) BTC datasets

Figure 5.11: Maintenance Cost: Showing the Comparison with Other state-of-the-art Approaches
on (a) LinkedCT and (b) DYLDO Datasets.
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were available. Therefore, the overhead of our proposed approach was completely hidden from

the user and measured the required system time in order to perform the offline maintenance task.

The maintenance cost was measured as a sum of the response time and total time. Our approach

produced a lower elapsed time of 5 seconds as the query does not pay for the cost of maintaining

the view. Compared with Eager Maintenance where the query has to wait until the maintenance

job is completed, the average response time was 15 seconds. However, PageRank, Size, and TTL

did not consider maintenance cost while updating the local views and these strategies performed

worst as query had to wait until the maintenance jobs were completed. Similarly, in the case of the

ChangeRatio and ChangeRate, these policies use the periodic update function that keeps on track-

ing the changed occurred in the Linked Data cloud. As these policies often run in the background

they produced high latency.

5.3.3.2 Accuracy of Maintenance Quality

In this evaluation, we utilized the quality of the updates performed by the maintenance policies

under consideration. We started with the perfect cache and assumed that a change occurs in the

cloud. Due to this change the local views become outdated. Therefore, our main goal was to check

the quality of the updates performed by the state-of-the-art strategies as shown in the Figure 5.12.

And we evaluated how the existing strategies perform to update the local views. We used the pre-

cision and recall as an evaluation metric to measure the quality of the updates results are shown in

Figure 5.12. In this setup, all the existing strategies showed a uniform loss in the quality of update.

CAMP outperformed all other strategies, achieving 91% (precision) and 89% (recall) accuracy in

the datasets. We observed that our proposed strategy only updates the relevant data sources with

less overhead and delay. Strategies like Pagerank, Size and TTL performed worst because these

strategies were executing irrelevant queries. ChangeRatio and ChangeRate only capture changed

items and their efficiency degraded with each iteration over time.

5.3.3.3 Performance of Cache Hit Rates

As cache had a limited space; it was advantageous to replace the cache with more valuable content

to improve query performance (i.e., cache hit rate). In this evaluation, we measured the perfor-
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Figure 5.12: Quality of Updates performed by the Proposed Approach on LinkedCT Dataset.
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Figure 5.13: Quality of Updates Performed by the Proposed Approach on DYLDO dataset.
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mance of query times in terms of better hit rates. We evaluated on both of the datasets LinkedCT

and DYLDO. Figure 5.14 shows the hit rates achieved by the existing approaches. We utilized

the access logs and based on the maintenance policy, each approach replaced the cache to keep

it up-to-date. CAMP replaced the cache based on the access frequency and more frequent access

queries were placed in a cache for future access. On average, CAMP achieved 82% hit rates as

compared to the eager (77%) and ChangeRate (70%). PageRank, Eager, TTL and Size performed

worst in term of cache hit rates.
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Figure 5.14: Hit Rate Achieved by Proposed Approach as Compared to Existing Approaches.
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The proposed maintenance policy utilizes a change metric together with a query similarity

measure to identify and update changed items. Most of the queries issued by the Linked Data

client are similar in structure. Therefore, instead of running the queries repeatedly, we prefetched

the results of these queries to improve cache hit rates. For the maintenance jobs, we combined

the smaller task into one job to reduce resource utilization. We compared the effectiveness of our

proposed approach to state-of-the-art approaches namely eager, TTL, PageRank, Size, ChangeRa-

tio, and ChangeRate. The proposed approach outperformed the existing policies in terms of less

maintenance cost, higher maintenance quality, and better cache hit rates.

5.4 Summary

Quite often, Linked Data applications prefetch data and place it in a cache for future access. Due

to the continuous evolution of the Linked Data Cloud, the local cache becomes outdated. In this

paper, we proposed a maintenance policy that performs the local cache update jobs before query

evaluation. The proposed maintenance policy utilizes a change metric together with a query simi-

larity measure to identify and update changed items. Most of the queries issued by the Linked Data

client are similar in structure. Therefore, instead of running the queries repeatedly, we prefetched

the results of these queries to improve cache hit rates. For the maintenance jobs, we combined

the smaller task into one job to reduce resource utilization. We compared the effectiveness of our

proposed approach to state-of-the-art approaches namely eager, TTL, PageRank, Size, ChangeRa-

tio, and ChangeRate. The proposed approach outperformed the existing policies in terms of less

maintenance cost, higher maintenance quality, and better cache hit rates. In the evaluation sec-

tion, we have performed comprehensive experiments to show the effectiveness of the proposed

approach. In the first experiments, we have evaluated the effectiveness of the proposed approach

in DYLDO and BTC datasets, we noticed that the proposed change metric able to identified the

dynamic sources as compared to the existing approaches our approach produce less overhead and

run time. Therefore, we have evaluated our approach in a single and iterative setup. Overall we

achieved an accuracy of 88%(F-measure). The goal of the second experiment is to examine the

hit rates and overhead comparison of the proposed approach. On average, our proposed approach

achieved a higher hit rate 80.65% on varying the size of the cache our approach performs better
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as compared with the other approaches. In the third experiment, we have evaluated the mainte-

nance quality and cost of the proposed approach as compared with existing approaches, overall

we achieved 91% accuracy, and strategies such as PageRank, Size, TTL performed worst while

executing the irrelevant queries and uniform loss in the quality.



Chapter 6
Conclusion and Future Work

6.1 Conclusion

This work demonstrates the importance and benefits of using caching in querying the LOD cloud.

Quite often, the LOD application pre-fetches data and maintains local copies in its cache. Due

to the highly dynamic nature of LOD, these local data caches have become outdated. There is

a need for efficient scheduling to replace the local cache. In this thesis, we have presented our

methodology to capture the changes in LOD and maintain the local data cache up-to-date. Linked

Data applications pre-fetch data and place it for future access. Due to the continuous evolution of

the Linked Data cloud, the local cache becomes outdated. The flexibility of the proposed approach

makes my work a possible building block for retrieving the data from LOD effectively.

In this thesis, we proposed a maintenance policy that performs the local cache update jobs

before query evaluation. The proposed maintenance policy utilizes a change metric together with

a query similarity measure to identify and update changed items. Most of the queries issued by the

Linked Data client are similar in structure. Therefore, instead of running the queries repeatedly,

we prefetched the results of these queries to improve cache hit rates. For the maintenance jobs,

we combined the smaller task into one job to reduce resource utilization. We compared the effec-

tiveness of our proposed approach to state-of-the-art approaches namely eager, TTL, PageRank,

Size, ChangeRatio, and ChangeRate. The proposed approach outperformed the existing policies

in terms of less maintenance cost, higher maintenance quality, and better cache hit rates. In the

future, we will investigate the benefit of our proposed approach to accelerate the query time in

real-world data analytic applications.

Our approach is based on the idea that the clients who processed similar queries are likely to

process similar queries in the future. The aim is to search and gather content possibly requested at

102
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the future queries by identifying the concepts of the previously issued queries. The main benefit is

to reduce the transmission overhead and improve the hit rate and query time by retrieving contents

for future queries at once. We prefetch all contents that were used to answer the queries since those

queries are more likely to be requested by the same user in the future. For cache replacement, we

serve each query according to the estimated frequency, the query with the highest frequencies are

kept in the cache. When a client sends a new query the cache manager first check if an identical

query has been cached. In this case, the results are immediately sent to the client. In case of the

cache miss, new queries are sent to the query prefetching where similar queries are suggested and

the result of these queries are retrieved from the SPARQL endpoints. As an offline process, the

result of a similar query is placed in the cache for future access queries. The cache replacement

process is triggered when the cache is full and it runs on a separate thread that does not affect the

query answering process. The cache replacement is based on the frequency, the higher accessed

queries are placed in the cache. The key contributions of this research are as follows:

1. Proposed a change metric to quantify the evolution of changes in Linked Data cloud. This

approach alleviates the expensive job of copying the whole data instead of only updating

local data caches with the changed items. This change metric was also utilized to find the

addition and deletion of the items in the Linked Data cloud. As we also find out that queries

issued by the agent are repetitive and follow similar patterns that only differ in a specific

item. Therefore, it is useful to store the results of similar structure queries and place them in

the cache for future access. Therefore, the structure-based similarity is are important for the

application where the assessment of the query content is important. However, the structure-

based content is not enough as it is less flexible due to the ordering of the symbols. On the

other hand, the content-based similarity is typically useful for applications such as query

suggestion and query recommendation.

2. Proposed a prefetching approach that is suitable for alleviating the burden on the SPARQL

endpoint. Instead of retrieving the results of similar queries, prefetching allows gathering the

relevant data potentially useful for future queries. Therefore, the query prefetching approach

is suitable for a search engine to optimally extract the information from the resources. The

most benefit of the query prefetching approach is the increase in the cache hit rate as most
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of the queries can be served from the cache. The results of the queries need to prefetch as

an offline process during system idle time when system traffic is low.

3. Proposed a frequency-based cache replacement method using data from the access log. Ex-

ponential smoothing is applied to rank each query according to its estimated frequency, the

most frequently accessed queries are kept in the cache. The cache replacement is the process

to keep the local data caches up-to-date. Cache replacement incorporates the previous esti-

mation and establishes when a local data cache needs to be upgraded. However, instead of

replacing, all the cache preference should be given by replacing it with the changed items.

6.2 Future Work

This research investigated a cache-based method to improve the query performance of Linked

Open Data (LOD). Future application scenarios and research endeavors include:

1. Additional Augmentation and Caching Methods: In this thesis, we proposed query aug-

mentation that is based on the template to retrieve data that is requested for future queries.

Therefore, we will investigate the machine learning approaches to examine the query logs,

and prefetching is based on the prediction where the multiple queries are issued by the

same user. For a more fine-grained analysis, shorter sequences, e.g., request pairs, could be

considered as well.

2. Linked Data Evolution: The models presented in this dissertation make a simplifying

assumption that a queried web of Linked data is dynamic in nature and contents are added,

updated, and removed. Therefore, the extension of our work includes the framework to deal

with the evolution of the Linked Data to query over a changing Web of Linked Data.

3. Linked Data Archiving: The Linked data is constantly evolving there is a need for sys-

tems that support efficiently storing and querying over evolving data. We will applied our

approach on Archiving systems such as x-RDF-3X [148], SemVersion [2], R43ples [141],

TailR [170] and Memento [171] to improve the versioning over the archiving data.
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In summary, in this thesis, we addressed multiple challenges of querying Linked Data access

through Sparql queries. Whereas existing state-of-the-art approaches focus on publishing, process-

ing, and managing LOD data, investigating and assisting user interaction with this information is

crucial for establishing its acceptance among data consumers.
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Appendix A
List of Acronyms

Acronyms

In alphabetical order:

ACR Adaptive Cache Replacement

AACP Application-Aware Change Prioritization

BGP Basic Graph Patterns

BTC Billion Triple Challenge

CB Change Based

CR Change Rate

CAMP Change-Aware Maintenance Policy

CCF Central Concept Fetching

DCS Dynamic Characterizing Sets

DBMS Database Management System

DYLDO Dynamic Linked Data Observatory

ES Exponential Smoothing

ETL Extract, Transform and Load

GED Graph Edit Distance
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HDT Header Dictionary Triples

HTML Hypertext Transfer Protocol

IC Independent Copies

KBs Knowledge Bases

LOD Linked Open Data

LRU Least Recently Used

LFU Least Frequently Used

LSQ Linked SPARQL Queries

LinkedCT Linked Clinical Trials

PASU Preference-Aware Source Update

QC Query Cluster

RDF Resource Description Framework

SQC SPARQL Query Caching

SPARQL SPARQL Protocol and RDF Query Language

TB Time-Stamp Based

TTL Time To Live

TLR Triple Linear Regression

URI Uniform Resource Identifier

WSDL Web Services Description Language

WWW World Wide Web

WOL Web Ontology Language
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