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Abstract 

Trust is the measure of willingness to believe in a user based on its competence 

and behavior within a specific context at a given time. Based on the active 

users’ trusts on the recommenders, the Trust-Aware Recommender System 

(TARS) suggests the worthwhile information to the users. TARS has superior 

rating prediction coverage than the traditional recommender system by taking 

advantages of the trust’s transitive property. 

The conventional TARS model suffers from several problems. Firstly, it is 

not optimized. This is because the structure of the dynamic trust model is 

unknown. The computational complexity of the conventional TARS model can 

be exponentially more expensive by achieving similar rating predication 

accuracy and rating prediction coverage. The rating prediction coverage of the 

conventional TARS model can also be significantly worse by achieving similar 

rating predication accuracy. Secondly, the conventional TARS model is only 

effective with the explicit trust statements, which means all the users should 

explicitly point out their opinions on other users. Since the explicit trusts need 

extra user effort, they are not always available in the practical recommender 

systems.  

This work first verifies that the trust network used in TARS has the small-

world topology. Its small-worldness is independent of its dynamics. Taking 

advantages of the small-world properties of the trust network, this work 

optimizes the conventional TARS model to achieve the maximum rating 

prediction accuracy and the maximum rating prediction coverage with the 

minimum computational complexity. Secondly, this work improves the 

conventional TARS model to predict the ratings without the explicit trust 

statements. This is achieved by generating the implicit trust networks for TARS 

by the easy available trust sensitive information. Specifically, this work uses the 

user similarities to get the implicit trusts. By verifying the small-worldness of 

the implicit trust network, this work applies the small-worldness of the implicit 
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trust network in the rating prediction mechanism of the improved TARS model. 

The simulation results show that the improved implicit trust based TARS model 

has high rating prediction accuracy and high rating prediction coverage. 
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Chapter 1 

Introduction 

1.1 Improved trust-aware recommender system 

The Trust-Aware Recommender System (TARS) is the recommender system 

that suggests the worthwhile information to the users on the basis of trust. Trust 

is the measure of willingness to believe in a user based on its competence (e.g. 

goodness, strength, ability) and behavior within a specific context at a given 

time. It is a directional relationship from the trustor – the user that evaluates its 

trust on the target user – to the trustee – the user that is the target of the trust 

evaluation.  

TARS has recently been proposed for use since it is able to solve the well-

known data sparseness problem of the collaborative filtering (CF) [1, 2]. This is 

because trust is transitive: it means, if A trusts B and B trusts C, A will trust C 

to some extend, so even if there is no direct trust between the active users and 

the recommenders, the active users can build up some indirect trust 

relationships with the recommenders via the trust propagations. This contributes 

to the high rating prediction coverage of TARS. Moreover, the rating prediction 

accuracy of TARS is no worse than the classical CF [1].  

The conventional TARS model [1-7] has some shortcomings. Firstly, it is not 

optimized: its computational complexity can be exponentially more expensive 

by achieving similar rating predication accuracy and rating prediction coverage, 

and its rating prediction coverage can be significantly worse by achieving 

similar rating predication accuracy. Secondly, the conventional TARS models 

focus on using the explicit trust. That is, the trust should be explicitly pointed 

out by the users. For examples, the model in [3] requires the users to add those 

whose ratings they have consistently found to be valuable in their web of trust. 

The users’ trusts on those who are in their web of trust are assigned as 1, and 
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the users’ trusts on other users are assigned as 0. These explicit trust statements 

are then used as the inputs of TARS with the ratings on the items to predict the 

ratings.  

This work motives to optimize the conventional TARS model as well as 

improve the conventional TARS models to predict ratings without the explicit 

trust statements. The reason that the conventional TARS model is not optimized 

is that the structure of the trust network is unknown. The trust network is highly 

dynamic: any user can join at any time by stating its trust on any existing user 

of the trust network. This irregular growth leads to the complex structure of the 

trust network. This work first verifies the small-worldness of the trust network 

and takes the advantages of the properties of small-world network to optimize 

the conventional TARS model. Furthermore, since the explicit trust statements 

are not always available in the practical recommender systems, this work uses 

other cheap and easy available trust sensitive information to generate the 

implicit trust for TARS.  

The contributions of this work are mainly in three aspects:  

--This work verifies that the trust network is the small-world network, and its 

small-worldness is independent of dynamics. It is shown that the nodes of the 

trust network are highly clustered, while the distance between two randomly 

selected nodes is short. This can facilitate the usage of the trust network in 

various trust-aware applications. 

--This work optimizes the conventional TARS model to achieve the 

maximum rating prediction accuracy and the maximum rating prediction 

coverage with the minimum computational complexity. This is achieved by 

optimizing the conventional TARS model to use the small-worldness of the 

trust networks.  

--This work improves the conventional TARS model to predict the ratings 

without the explicit trust statements. The easy available user similarity 

information is used to generate the implicit trust for TARS. Based on the small-
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worldness of the implicit trust network, this work improves the conventional 

TARS model by predicting ratings only with the ratings. The improved model 

has high rating prediction accuracy and reasonable rating prediction coverage, 

which is much higher than the traditional recommender systems.  

1.2 Thesis outline 

Below is a summary of the rest of the thesis: 

Chapter 2: Related works. This chapter introduces the related works of the 

trust-aware recommender systems.  

Chapter 3: Small-world topology of trust networks. This chapter verifies the 

small-worldness of the trust network, which is independent of its dynamics.  

Chapter 4: Improved TARS using explicit trust networks. This chapter 

optimizes the conventional TARS model by using the small-worldness of the 

trust network.  

Chapter 5: Improved TARS using implicit trust networks. This chapter 

generates the implicit trust network by the user similarity, and improves the 

conventional TARS model by the small-worldness of the implicit trust network.  

Chapter 6: Conclusions and future works. This chapter summarizes the main 

contributions of this work and discusses the future research directions for the 

work presented in this thesis. 
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Chapter 2 

Related works 

2.1 Using trust in recommender system 

Collaborative Filtering (CF) [34, 35, 36, 37] collects opinions from users in the 

form of ratings on items. The recommendations produced are based only on the 

opinions of users similar to the current user (neighbours). The advantage over 

content-based RS is that the algorithm doesn't need a representation of the items 

in terms of features but it is based only on the judgments of the user 

community. 

Collaborative Filtering stresses the concept of community, where every user 

contributes with her ratings to the overall performances of the system [38, 39, 

40]. The traditional input to a CF algorithm is a matrix in which rows represents 

users and columns items. The entry at each element of the matrix is the user's 

rating of that item. CF performs three steps: 

 It compares the current user's ratings against every other user's ratings. CF 

computes a similarity value for every other user, where 1 means totally 

similar and -1 totally dissimilar. Usually the similarity measure is the 

Pearson correlation coefficient, but any other could be used [7]. The 

coefficient is computable only if there are items in common rated by both 

users. If this situation does not occur (as it is often the case), two users are 

not comparable. 

 Based on the ratings of the most similar users (neighbours), it predicts the 

rating the current user would give to every item she has not yet rated. 

 It suggests to the user the items with highest predicted rating.  

The standard CF schema is simple but very effective, however it has some 

weaknesses. The CF algorithm is typical of a lazy, instance based learning 

algorithm. Such algorithms suffer can be computationally very expensive at 
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query time, since they need search all the user profiles to find the best set of 

neighbours. This problem means that current RS cannot scale to large 

environments with millions of users and billions of items (for example, the 

envisioned Semantic Web [1]). This is also a very slow step, in the sense it can 

takes from some seconds up to some minutes to find neighbours of one user. 

For this reason, it is not feasible to do it when a recommendation request is 

made by the user and hence this should be done periodically offline. However 

this means that recommendations are not always up to date and that user ratings 

do not take effect immediately.  

User similarity [41, 42, 43] is computable only against few users. The first 

step suffers another problem. In order to be able to create good quality 

recommendations, RSs should be able to compare the current user against every 

other user with the goal of selecting the best neighbours with the more relevant 

item ratings. This step is mandatory and its accuracy affects the overall system 

accuracy: failing in finding “good" neighbours will lead to poor quality 

recommendations. However, since the ratings matrix is usually very sparse 

because users tend to rate few of the millions of items, it is often the case that 

two user don't share the minimum number of items rated in commons required 

by user similarity metrics for computing similarity. For this reason, the system 

is forced to choose neighbours in the small portion of comparable users and is 

probably going to miss other non-comparable but relevant users. Usually this 

does not happen for users with hundreds of ratings but for users with few 

ratings. However it can be argued that it is more important (and hard) for an RS 

to provide a good recommendation to a user with few ratings in order to invite 

her to provide more ratings and keep using the system than to a user with many 

ratings that is probably already using the system regularly.  

Easy attacks by malicious insiders [44, 45, 46]. Recommender Systems are 

often used in e-commerce sites (for example, in Amazon.com). In those 

contexts, being able to influence recommendations could be very attractive: 

imagine if someone could \force" Amazon.com to always recommend the book 
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she wrote. However, subverting standard CF techniques is very easy [10]. The 

simplest attack is the copy-profile attack: the attacker can copy the ratings of 

target user and the system will think the attacker is the most similar user to 

target user. In this way every additional item the attacker rates highly will 

probably be recommended to the target user. Since currently RSs are mainly 

centralized servers, creating a “fake" identity is a time-consuming activity and 

hence these attacks are not currently heavily carried on and studied. However 

we believe that, as soon as the publishing of ratings and opinions becomes more 

decentralized (for example, with SemanticWeb formats such as RVW [2] or 

FOAF [3]), these types of attacks will become more and more an issue. 

Basically, creating such attacks will become as widespread as spam is today, or 

at least as easy. 

To solve the problems of the conventional CF, a number of researches [1, 6, 

7, 8, 9] have focused on extending the recommender system with the trust-

awareness. 

2.2 Conventional TARS model 

To solve the problems of the conventional CF, a number of researches [1, 6-9, 

55-78] have focused on extending the recommender system with the trust-

awareness. Among these works, the TARS model proposed by Massa and 

Avesani [1, 2, 10, 11] is the most popular one. In addition, their model has 

already been used in a practical application named Moleskiing.it [12]. Due to its 

popularity, their TARS model is used as the basis of analysis in this research. 

The conventional TARS model specifically refers to their model in this 

research. 

The architecture of TARS [1] is shown in Fig. 1. The inputs are the trust 

matrix and the rating matrix. The output is the predicted ratings on the items for 

different users. The trust matrix is the collection of the trust relations between 

the users of the recommender system. Each element of the trust matrix describes 

the trust between two users. The rating matrix records the users’ ratings on the 
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items. Each element of the rating matrix is the rating given by a user on a 

particular item.  

 

 

Fig. 1. Trust-aware recommender system architecture  

 

Table 1 Notations used in the TARS 

Symbol Explanation 

i  Item 

a  Active user 

u  Recommender 

ar  Average rating of the active user 

ur  Average rating of the recommender 

,u ir  Recommender’s rating on the item 

,a uw  Active user’s weight to the recommender 

,a ip  Predicted rating for the active user on the item 
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The rating prediction mechanism of the conventional TARS model is similar 

as that of CF. The difference is that CF weights each recommendation based on 

the active user’s similarity with the recommender, while TARS weights each 

recommendation based on the active user’s trust on the recommender:  

, ,
1

,

,
1

( )
k

a u u i u
u

a i a k

a u
u

w r r
p r

w






 




. 

(1) 

,a uw is calculated as:  

max ,
,

max

1a u
a u

d d
w

d

 
 , 

(2) 

where maxd is the maximum allowable propagation distance (MAPD) between 

users of the recommender system. The value of MAPD is preset by the 

administrator of TARS. ,a ud is the active user a’s trust propagation distance to 

the recommender u. In TARS, the trust propagation distance refers to the 

number of hops in the shortest trust propagation path from the trustor to the 

trustee.  

As shown in the prediction mechanism of the conventional TARS model, 

MAPD is the fundamental parameter for the rating prediction. However, 

existing works of TARS did not propose any mechanism to set MAPD. They 

just randomly choose some value for this extremely important parameter. For 

example, in [1], the authors randomly set the value of MAPD as 1, 2, 3 and 4 to 

conduct different experiments of TARS. They did not verify whether these 

values are the suitable values. And they did not consider the relationship 

between the value of MAPD and the scale of TARS. On one hand, if the value 

of MAPD is set too small, TARS might lose some valuable recommendations. 

On the other hand, the computational complexity of constructing trust networks 

for TARS is max( )dO k , in which k is the number of trusts stated per user, 

and maxd is the value of MAPD, so if the value of MAPD is set too big, the 
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computational complexity of TARS increases exponentially. Intuitively, the 

optimized value of MAPD for TARS should have some relationship with the 

topology of the trust network. This work therefore analyzes the characteristics 

of the trust network and optimizes the conventional TARS model based on the 

topology of the trust network.  
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Chapter 3 

Small-world topology of trust networks 

The trust network has been widely used in many applications [1], such as the 

recommender system [2, 3] and the security mechanism [4]. Despite of its 

popularity, little is known about its topology. This is because the trust network 

is highly dynamic: a user can join at anytime by stating its trust on any existing 

user. This irregular growth leads to the complex structure of the trust network. 

In essence, the topology of the trust network is the important information to 

optimize its usage in the trust-aware applications, so it is essential to make clear 

its structure. Since some complex networks, such as the World Wide Web [5] 

and the e-mail network [6], have been verified to have the small-world 

topology, some works assume that the trust network also has the small-world 

nature. These works include, for instance, the trust-based security mechanism 

[7], the trust-based multiagent system [8] and the trust network modeling [9].  

Though the trust network has been assumed to have the small-world topology 

by the existing works, to the best of my knowledge, no one has proved its small-

worldness experimentally or theoretically. By analyzing the trust networks 

extracted from five public released datasets, this work contribute to verify that 

the trust network has the small-world topology: on one hand, the nodes of the 

trust network are highly clustered, which is similar to the regular network; on 

the other hand, the distance between two randomly selected nodes is short, 

which is similar to the random network. Further analysis shows that the small-

worldness of the trust network is independent of its dynamics.  

3.1 Introduction of small-world networks 

The small-world network is a kind of network between the regular network and 

the random network. The regular network is highly clustered yet has long 

distance between two randomly selected nodes. The random network is not 
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clustered yet has short distances between nodes. The small-world network is 

defined as the network that has [13]: (1) large clustering coefficient, which is 

much larger than that of its corresponding random network, and (2) short 

average path length, which is almost as short as that of its corresponding 

random network, in which a network’s corresponding random network refers to 

the random network that has the same number of nodes and same number of 

edges per node as this network. The relationship between the regular network, 

the random network and the small-world network is summarized in Fig. 2. The 

explanations of the notations used in this chapter are listed in Table 2.  

 

Highly clustered;Highly clustered;
Long distance btw. nodesLong distance btw. nodes

Highly clustered;Highly clustered;
Short distance btw. nodesShort distance btw. nodes

Not clustered;Not clustered;
Short distance btw. nodesShort distance btw. nodes

Regular
Network

Small-world
Network

Random 
Network

Highly clustered;Highly clustered;
Long distance btw. nodesLong distance btw. nodes

Highly clustered;Highly clustered;
Short distance btw. nodesShort distance btw. nodes

Not clustered;Not clustered;
Short distance btw. nodesShort distance btw. nodes

Regular
Network

Small-world
Network

Random 
Network

 

Fig. 2. Comparison between the regular network, the random network and the 

small-world network 

 

Table 2 Notations used in the small-worldness verification 

Symbol Explanation 

n  Size of the network 

k  Average degree of the nodes in the network 

ik  Degree of node i  

iC  Clustering coefficient of node i  

C  Clustering coefficient of the network 
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RC  Clustering coefficient of the random network 

L  Average path length of the network 

RL  Average path length of the random network 

 

The clustering coefficient represents the cliquishness of a typical 

neighborhood [13], i.e., how close the node and its neighbors are to be a 

complete network. The clustering coefficient of a network is the mean of the 

clustering coefficient of each node, in which the clustering coefficient of a node 

is the fraction of the allowable edges and the edges that actually exist between 

the neighbors of this node [13]: 

1 1

1 1 (number of connected neighbor pairs)

( 1)

n n

i
i i i i

C C
n n k k 

 
  . 

(3) 

 

 

Fig. 3. A network with 4 nodes and 7 edges 

 

The network shown in Fig. 3 is used as an example to explain the calculation 

of equation 

 (1). Node A has 3 neighbors, i.e. B , C and D , so at most 6 edges can exist 

between A ’s neighbors. Four edges actually exist in A ’s 

neighborhood: BC , CB , CD and DB . So AC = 4/6 = 2/3, and similarly BC = 1/2, 
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CC = 1/2 and DC = 2/3. The clustering coefficient of the network is: C = 

( AC + BC + CC + DC )/4 = 7/12. 

The clustering coefficient of a random network with n nodes and k edges per 

node is calculated as [13]:  

R k
C

n
 . 

(4) 

The average path length L is defined as the number of edges in the shortest 

path between two nodes, averaged over all pairs of nodes [13]. The average path 

length of a random network with n nodes and k edges per node is calculated as 

[13]:  

ln( )

ln( )
R n

L
k

 . 
(5) 

3.2 Experimental verifications on the small-worldness of 

trust networks 

This work experimentally verifies the small-worldness of the trust networks 

using data extracted from the real applications. The experimental verification 

methodology is used since it is the most popular way to verify the small-world 

topology of various networks [13-18].  

3.2.1 Experimental setup 

The properties of five trust networks are examined to verify the small-

worldness. These trust networks are extracted from five public released datasets 

respectively. These datasets are the Epinions dataset, the Kaitiaki dataset, the 

Squeakfoundation dataset, the Robots dataset and the Advogato dataset. These 
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datasets are chosen since they are all the public available datasets when this 

research began. They are available at trustlet.org1.  

Epinions consists of 49288 users and 487183 trust statements. The data is 

extracted from epinions.com 2  from November to December of 2003. 

Epinions.com is a recommender system that recommends items based on other 

users’ ratings. In addition to the ratings on the items, the users are required to 

explicitly express their trust on other users. The trustor evaluates its trust on the 

trustee as 1 if the trustor consistently finds the ratings given by the trustee are 

valuable, otherwise, the trustor evaluates its trust on the trustee as 0.  

Advogato consists of 5412 users and 54012 trust statements. The data is 

extracted from advogato.org 3  on June 1, 2009. Advogato.org is an online 

community site dedicated to free software development. On advogato.com users 

can certify each other as several levels: Observer, Apprentice, Journeyer or 

Master [19]. Masters are supposed to be excellent programmers who work full 

time on free software, Journeyers contribute significantly, but not necessarily 

full-time, Apprentices contribute in some way, but are still acquiring the skills 

needed to make more significant contributions, and observers are users without 

trust certification. These certifications are regarded as the trust statements of 

Advogato.  

Kaitiaki consists of 64 users and 154 trust statements. The data is extracted 

from kaitiaki.org4 on September 1, 2008. The trust statements of Kaitiaki are 

weighted at four different levels: Kaitiro, Te Hunga Manuhiri, Te Hunga 

Käinga, Te Komiti Whakahaere. Squeakfoundation consists of 461 users and 

                                                      

1 http://www.trustlet.org/wiki/Datasets 

2 http://www.epinions.com/ 

3 http://www.advogato.org/ 

4 http://www.kaitiaki.co.nz/ 



 

 15

2697 trust statements. The data is extracted from squeak.org5 on November 1, 

2008. The trust statements of Squeakfoundation are weighted at three different 

levels: Apprentice, Journeyer, and Master. Robots consists of 1646 users and 

3456 trust statements. The data is extracted from robots.net6 on March 1, 2009. 

The trust statements of Robots are weighted at three different levels: 

Apprentice, Journeyer, and Master. Kaitiaki.org, squeak.org and robots.net are 

all web community sites which use the same software which powers the 

Advogato web community site, mod virgule. These three datasets are much 

smaller than the Advogato dataset.  

The characteristics of the explored trust networks are summarized in Table 3. 

All users involved in these trust networks act as the trustors, the trustees or 

both.  

 

Table 3 Description of the trust networks used in this research 

 Number of nodes Number of edges per node 

Epinions 49288 9.88 

Kaitiaki 64 2.41 

Squeakfoundation 461 5.85 

Robots 1646 2.1 

Advogato 5412 9.98 

 

                                                      

5 http://www.squeak.org/Foundation/ 

6 http://robots.net/ 
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3.2.2 Experimental results 

Experiments are held on the above trust networks to verify their small-

worldness.   

Firstly, this work verifies that the trust networks have large clustering 

coefficients. Using equation (3) and equation (4), the clustering coefficients of 

the explored five trust networks and their corresponding random networks are 

evaluated, which are summarized in Table 4. The detailed distributions of the 

explored trust networks’ clustering coefficients are given in Fig. 4. It shows that: 

though the clustering coefficients of some users are small (near 0), those of the 

majority users are greater than 0.1. A portion of the clustering coefficients even 

equals to 1. This means the neighbors of some users are fully connected. This is 

very different from the random network. The comparison between the clustering 

coefficients of the trust networks and those of their corresponding random 

networks clearly shows that: the trust network has much larger (higher order of 

magnitude) clustering coefficients than its corresponding random network. This 

satisfies the first condition of the small-world network’s definition. 

 

Table 4 Clustering coefficients of the trust networks and their corresponding 

random networks 

 n  k  C  RC  

Epinions 49288 9.88 0.217 2 410  

Kaitiaki 64 2.41 0.24 3.77 210  

Squeakfoundation 461 5.85 0.44 1.27 210  

Robots 1646 2.1 0.22 1.28 310  

Advogato 5412 9.98 0.23 1.84 310  
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Fig. 4. Distribution of the trust networks’ clustering coefficients 

 

Secondly, this work verifies that trust networks have short average path 

lengths. For large networks, measuring all-pair distances is computational 

expensive, so an accepted procedure is to measure it over a random sample of 

nodes [20]. The average path lengths for the larger networks (Epinions and 

Advogato) in Table 3 are measured on a random sample of 5%. The average 

path lengths for the smaller networks (Kaitiaki, Squeakfoundation and Robots) 

in Table 3 are measured on all pairs of nodes. The distributions of the five trust 

networks’ average path lengths are given in Fig. 5. It shows that the trust 

networks have very small number of direct trusts, i.e., where the path length 

equals to 1. By propagating trust, users can build up their trust relationships 

with others within several hops. Another important observation is that very 

small number of the trust propagations has long distance, e.g. the probabilities 

that the path lengths are longer than 8 hops (if any) are less than 1%. The path 

lengths of most trust propagations are from 2 hops to 6 hops. In more details: 

(1) the maximum path length of Epinions is 11 hops, and its average path length 

is 3.96 hops; (2) the maximum path length of Kaitiaki is 5 hops, and its average 

path length is 2.16 hops; (3) the maximum path length of Squeakfoundation is 6 
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hops, and its average path length is 2.85 hops; (4) the maximum path length of 

Robots is 11 hops, and its average path length is 3.94 hops; (5) the maximum 

path length of Advogato is 9 hops, and its average path length is 3.8 hops.  
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Fig. 5. Distribution of the trust networks’ path lengths 

 

Using equation (5), the average path lengths of the explored five trust 

networks’ corresponding random networks are evaluated, which are 

summarized in Table 5. Comparing the average path lengths of the trust 

networks with those of their corresponding random networks, it is obvious that 

the trust networks have similar (the same order of magnitude) average path 

lengths as their corresponding random networks. This satisfies the second 

condition of the small-world network’s definition. 
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Table 5 Average path lengths of the trust networks and their corresponding 

random networks 

 n  k  L  RL  

Epinions 49288 9.88 3.96 4.71 

Kaitiaki 64 2.41 2.16 4.73 

Squeakfoundation 461 5.85 2.85 3.47 

Robots 1646 2.1 3.94 9.98 

Advogato 5412 9.98 3.80 3.74 

 

3.2.3 Analysis on the small-worldness of trust networks 

Using the above characteristics on the clustering coefficient and the average 

path length, this work compares the trust networks with some well-known 

small-world networks documented in the literatures: the World Wide Web [5], 

the human language network [13], the e-mail network [6], the human brain 

network [14, 15], the film actors network [11], the power grid network [11], and 

the C. elegans network [11]. The characteristics of these networks and those of 

their corresponding random networks are shown in Table 6. Based on Table 6, a 

further comparison between the small-world characteristics of the trust 

networks and these networks is presented in Fig. 6. The axes of Fig. 6 represent 

the ratios of the selected networks and their corresponding random networks. 

Note that most small-world networks are concentrated around where the 

average path length ratio equals to 1. This means that the selected networks 

have similar average path length as their corresponding random networks. In 

addition, the clustering coefficient ratios of most networks are greater than 10. 

This means that the selected networks have much larger clustering coefficients 

than their corresponding random networks. The comparisons of Table 6 and 

Fig. 6 clearly show that the trust networks have the same properties as other 
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well-known small-world networks: they are highly clustered yet have small 

average path lengths. This work therefore draws the conclusion that the trust 

networks are the small-world networks.  

 

Table 6 Small-world characteristics of some well-known small-world networks 

 n  k  C  RC  L  RL  

World Wide Web 153127 19 0.156 1.2 310  4.06 4.048 

Human language 460902 70.79 0.437 1.55 410  2.67 3.06 

E-mail network 56969 2.95 0.03 4.82 510  4.95 10.1 

Human brain  90 4.5 0.53 0.05 2.49 2.99 

Film actors 225226 61 0.79 2.7 410  3.65 2.99 

Power grid  4941 2.67 0.8 5 310  18.7 12.4 

C. elegans 282 14 0.28 0.05 2.65 2.25 
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Fig. 6. Small-world characteristics of the trust networks and some well-known 

small-world networks 

 

 

Fig. 7. Explanations of the small-worldness of the trust networ 

 

The small-worldness of the trust network results from the existence of some 

long range edges which connects different subgroups of the trust network, as 

shown in Fig. 7. These long range edges act as the short-cut between users. 



 

 22

Because of these “short-cuts”, the users in one group can easily reach the users 

of another groups, this contributes to the short trust distances between users. For 

the regular network, since there is not such long-range edge, its average path 

length is long. For the random network, since there exists a number of long-

range edges, its average path length is also short, similar as the small-world 

network.   

3.3 The small-worldness of dynamic trust networks 

The experiments in Chapter 3.2 verify the small-worldness of the trust network. 

The method this work uses is the one used in the small-world verification of all 

other networks: to show the small-worldness of a network, the conventional 

method verifies that the network has large clustering coefficient and small 

average path length. The verifications are held on the data extracted from the 

objective network. The experimental data used for the verifications are the static 

data, i.e., they only reflect of the status of the network at one moment. So the 

conventional method only verifies the small-worldness of the static network. 

However, since some networks, such as the trust networks, are dynamically 

changing, further verifications should be held on the small-worldness of the 

networks in dynamics. This work achieves this by verifying the small-worldness 

of the dynamic trust network via verifying its scale-freeness. The scale-free 

network is a kind of network whose degree distribution decays as a power law 

[17]. It is one kind of the small-world network [16, 17]. Many large-scale 

complex networks are scale-free [18]. The relationship between the small-world 

network and the scale-free network is given in Fig. 8, in which the broad-scale 

network is characterized by a degree distribution that has a power law regime 

followed by a sharp cutoff and the single-scale network is characterized by a 

degree distribution with a fast decaying tail [16]. 
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Fig. 8. Relationship between the small-world network and the scale-free 

network 

 

The scale-freeness of a network ensures that this network still has the scale-

free structure in dynamics. This is because the scale-free structure of such 

network is independent of its scale [19]. There are some highly connected nodes 

in the scale-free network, dominating the connectivity. Unlike the random 

networks, the probability with which a new node connects to the existing nodes 

is not uniform in the scale-free network. There is a higher probability that it will 

be linked to a node that already has a large number of connections [19]. This 

contributes to the network’s continuous scale-freeness when the network 

changes. 

Since the scale-free network is a kind of the small-world network, if we can 

verify that the trust network is the scale-free network by the static network data, 

we can draw the conclusion that the trust network is the small-world network. 

Moreover, since the scale-freeness of the network is independent of its 

dynamics, we can further make the conclusion that the dynamically changing 

trust network is the small-world network. This verification method only uses the 

static trust network data. Extra data that describe the status of the trust networks 

in dynamics are not needed.  

In addition to its ability in verifying the small-worldness of the dynamic trust 

networks, verifying the scale-freeness is computational less expensive. The 
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conventional method needs to calculate the clustering coefficient and the 

average path length of the trust network respectively. The clustering coefficient 

of a network is the mean of the clustering coefficient of each node, in which the 

clustering coefficient of a node is the fraction of the allowable edges and the 

edges that actually exist between the neighbors of this node [10]. To calculate 

the clustering coefficient, the conventional method needs to make clear the 

connections between all pairs of nodes in each node’s neighborhood. The 

average path length is the number of edges in the shortest path between two 

nodes, averaged over all pairs of nodes [10]. To calculate the average path 

length, the conventional method needs to make clear the trust propagation 

distance between any two nodes of the trust networks. However, to verify the 

scale-freeness of the trust network, we only need to calculate the degree 

distributions of each node. That is, we only need to know the direct trust 

between the nodes of the trust network, while we do not need to know the trust 

propagation relationships between these nodes. 

The degree distributions of the trust networks shown in Table 3 are examined 

to verify their small-worldness via the scale-freeness. The trust is asymmetrical, 

i.e., if A trusts B, B does not necessarily need to trust A. So the trust network is 

the directed network. This work therefore distinguishes the indegree distribution 

and the outdegree distribution of the trust networks. The degree distributions of 

the explored five trust networks are presented in Fig. 9 ~ Fig. 18. Note that 

some parts of axes in the figures are marked as 0(0.1). This is because the 

indegree or outdegree of some nodes equals to 0, but 0 is not a valid value for 

the logarithm. To show the degree distributions of these nodes, this work uses 

0.1 to approximately substitute 0 when calculating the logarithm of the degrees.  

It is clearly shown in the experimental results that the nodes’ indegree 

distribution and outdegree distribution both follow the power-law in each trust 

network. That is, the degree distributions follow the rule ( )P k k  , in 

which ( )P k is the probability that a randomly selected node has exactly k edges, 

and is the power of the degree distributions. The powers of the explored trust 
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networks’ degree distributions are further listed in Table 7, in 

which in and out represent the power of the indegree distribution and the power 

of the outdegree distribution respectively in Fig. 9 ~ Fig. 18. This work 

therefore makes the conclusion that the trust networks are the scale-free 

networks according to the definition of the scale-free networks. This work 

makes the further conclusion that the dynamic trust networks are the small-

world networks. 
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Fig. 9. Indegree distribution of Epinions 
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Fig. 10. Outdegree distribution of Epinions  
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Fig. 11. Indegree distribution of Advogato 
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Fig. 12. Outdegree distribution of Advogato 
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Fig. 13. Indegree distribution of Robots  
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Fig. 14. Outdegree distribution of Robots  
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Fig. 15. Indegree distribution of Squeakfoundation  
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Fig. 16. Outdegree distribution of Squeakfoundation  
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Fig. 17. Indegree distribution of Kaitiaki  
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Fig. 18. Outdegree distribution of Kaitiaki  

 

Table 7 Indegree distribution and outdegree distribution of the trust networks 

 n  k  
in  out  

Epinions 49288 9.88 1.53 1.6 

Kaitiaki 64 2.41 0.92 0.64 

Squeakfoundation 461 5.85 1.93 0.79 

Robots 1646 2.1 1.93 1.23 

Advogato 5412 9.98 1.29 1.28 
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Chapter 4 

Improved TARS using explicit trust 

networks 

Despite of its high rating prediction accuracy and high rating prediction 

coverage, the conventional TARS model suffers from the problem that it is not 

optimized: its computational complexity can be exponentially more expensive 

by achieving similar rating predication accuracy and rating prediction coverage, 

and its rating prediction coverage can be significantly worse by achieving 

similar rating predication accuracy. This chapter proposes a novel TARS model 

which can effectively overcome the weakness of the conventional TARS model. 

This is achieved by leveraging the verified small-worldness of trust networks. 

Experimental results clearly show that: the proposed model is superior to the 

conventional one since it is able to achieve the maximum rating prediction 

accuracy and the maximum rating prediction coverage with the minimum 

computational complexity 

4.1 The proposed TARS model 

For different sized TARS, it is hard to directly point out the value of MAPD 

between two randomly selected users. However, since the trust network of 

TARS is the small-world network, it is easy to get the approximate average trust 

propagation distance between two randomly selected users of the trust network: 

it is similar to the average path length of the trust network’s corresponding 

random network. We only need to know the size and the average degrees of the 

trust network. Since the value of MAPD is unknown and the average path 

length of the trust network is the only available information about the distance 

between two users, the proposed rating prediction algorithm heuristically 

chooses the average path length of the trust network as the value of MAPD for 
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TARS. The details of the rating prediction algorithm of the proposed TARS 

model are shown in Table 8.  

 

Table 8 The proposed rating prediction algorithm 

Algorithm: The  proposed rating prediction algorithm 

Input: T (trust matrix), R (rating matrix) 

Parameter: a (active user), i (item), maxd (the maximum allowable propagation 

distance), n (size of the trust network), k (average degrees of the trust network). 

Output: ,a ip ( a ’s predicted rating on i ) 

Phase 1: MAPD calculation. 

Phase 2: Recommender searching. 

Phase 3: Recommender weighting. 

Phase 4: Rating calculation.  

 

The proposed TARS model consists of four phases: 

The first phase is the MAPD calculation. In this phase, the average path 

length of the trust network used in TARS is used as the value of MAPD. Due to 

small-worldness of the trust network, this value approximately equals to the 

average path length of this trust network’s corresponding random network:  

max

ln( )

ln( )
R n

d L L
k

         
 

, 
(6) 

where    represents the ceiling of selected value, e.g. L   is the ceiling of the 

average path length of the trust network. The value of RL is calculated by 

equation (5). For the Epinions data shown in Table 3, we can get 

maxd = L   
RL   = 4.71   =5 for TARS. 
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The second phase is the recommender searching. In this phase, TARS 

searches all valid recommenders based on the selected MAPD. A recommender 

is valid if (1) there is at least one trust propagation path from the active user to 

the recommender in the trust network, and (2) the trust propagation distance 

from the active user to the recommender is no longer than L   .  

The third phase is the recommender weighting. In this phase, the valid 

recommenders are weighted based on the relationship between the active users’ 

trust propagation distances to the recommenders and the selected MAPD. This 

work uses the similar weighting mechanism as the conventional TARS model, 

as shown in equation (2). The difference is that the proposed model explicitly 

points out the value of MAPD, which is calculated by equation (7). The 

weighting mechanism of the proposed model is:  

,,
,

11
R

a ua u
a u R

L dL d
w

L L

         
     

, 
(7) 

The last phase is the rating calculation. This phase predicts the ratings by 

aggregating the recommendations given by the valid recommenders. Each 

recommendation is weighted with respect to the weight of the recommender, 

which is calculated by equation (7). The aggregation mechanism used in the 

proposed model is the same as the conventional TARS model, which is also the 

one used in CF, as shown in equation (1).  

4.2 Experimental setup 

To verify the performance of the conventional TARS model and the proposed 

TARS model, this work examines of these models on the data of the Epinions 

dataset. Data from other datasets used in chapter 3.2.1 are not used to simulate 

TARS. This is because these datasets only have the trust data while the inputs of 

TARS need the trust data and the rating data simultaneously.  
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Table 9 TARS experimental data 

 Num of 

users 

Num of 

items 

Num of 

trusts 

Num of 

ratings 

Epinions_1 Trust 

Data 

45275 - 461064 - 

Rating 

Data 

31019 551392 - 8632163 

Epinions_2 Trust 

Data 

4389 - 37843 - 

Rating 

Data 

2275 36144 - 740422 

Epinions_3 Trust 

Data 

49288 - 487183 - 

Rating 

Data 

20157 139633 - 664061 

To provide more evidence on the effectiveness of the proposed method with a 

single dataset, this work extracted three sets of data from the Epinions dataset 

based on the timestamp of the trust statements and the ratings. These three sets 

of data are named as Epinions_1, Epinions_2 and Epinions_3 respectively. Each 

set of data consists of both the trust data and the rating data. Epinions_1 records 

trust statements and ratings stated by users in January 2001. Its trust data 

consists of 45275 users and 461064 trust statements. Its rating data consists of 

31019 users’ 8632163 ratings on 551392 items. Epinions_2 records trust 

statements and ratings stated by the users in the year 2002, from January to 

December. Its trust data consists of 4389 users and 37843 trust statements. Its 

rating data consists of 2275 users’ 740422 ratings on 36144 items. Epinions_3 

records trust statements and ratings stated by the users in November and 

December of 2003. Its trust data is the same as Epinions used in chapter 3.2.1. It 
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consists of 49288 users and 487183 trust statements. The rating data of 

Epinions_3 consists of 20157 users’ 664061 ratings on 139633 items. Both 

Epinions_1 and Epinions_2 are extracted from the “extended epinions dataset”7. 

Epinions_3 is extracted from the “epinions dataset” 8 . Table 9 is used to 

summarize these three sets of experimental data. Note that not all users in the 

trust data are involved in the rating data. This is because some users of the trust 

network may not give any ratings on the items. E.g. only around 40% users in 

the trust data of Epinions_3 are involved in the rating data.  

4.3 Experimental results 

This work examines TARS on three aspects to show the effectiveness of the 

proposed model. These three aspects are the rating prediction accuracy, the 

rating prediction coverage and the computational complexity.  

Using Epinions_1, Epinions_2 and Epinions_3, this work predicts ratings on 

the rated items of each rating data. Since the scale of each rating data is huge, it 

is very effort-consuming to predict ratings on all the rated items. This work 

therefore randomly selects 5% of the rating records from each rating data as the 

object of the prediction. That is, this work predicts around 400,000 ratings for 

Epinions_1, around 30,000 ratings for Epinions_2, and around 30,000 ratings 

for Epinions_3. The MAPD of the proposed rating prediction algorithm is 

calculated based on the properties of each trust network: for Epinions_1, maxd = 

ln(45275)

ln(461064 / 45275)

 
 
 

= 4.62   =5; for Epinions_2, maxd = 
ln(4389)

ln(37843/ 4389)

 
 
 

= 

3.9   =4, for Epinions_3, maxd = 
ln(49288)

ln(487183/ 49288)

 
 
 

= 4.72   =5. 

 

                                                      

7 http://www.trustlet.org/wiki/Extended_Epinions_dataset. 

8 http://www.trustlet.org/wiki/Downloaded_Epinions_dataset. 
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Table 10 MAE of TARS with different values of MAPD 

 Epinions_1 Epinions_2 Epinions _3 

maxd = 1 0.2613 0.2155 0.8136 

maxd = 2 0.2568 0.2155 0.7542 

maxd = 3 0.2576 0.2142 0.7319 

maxd = 4 0.2563 0.2139 0.7262 

maxd = 5 0.2544 0.2138 0.7253 

maxd = 6 0.2546 0.2138 0.7251 

maxd = 7 0.2548 0.2138 0.7252 

maxd = 8 0.2549 0.2138 0.7253 

maxd = 9 0.2550 0.2138 0.7254 

 

The rating prediction accuracy of TARS is measured by the error of the 

predicted ratings. Specifically, this work calculates the Mean Absolute Error 

(MAE), since it is very appropriate and useful for evaluating prediction 

accuracy in offline tests [3]. To calculate MAE, the predicted rating is 

compared with the real rating and the difference (in absolute value) is the 

prediction error, this error is then averaged over all predictions to obtain the 

overall MAE. By predicting the rating on each rated item of Epinions_1, 

Epinions_2 and Epinions_3, the MAE of TARS with respect to different values 

of MAPD is reported in Table 10, in which the bold ones are the MAEs 

calculated by using the proposed method. The experimental results show that: 

(1) If the value of MAPD is set to be smaller than the suggested value, the 

rating prediction accuracy of TARS is getting worse. (2) If the value of MAPD 

is set to be greater than the suggested value, the rating prediction accuracy of 

TARS dose not change significantly. 
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The coverage of TARS is measured by both the rating coverage and the 

recommender coverage. The rating coverage is the portion of items that TARS 

is able to predict, i.e., the portion of items that the active user can get at least 

one recommendation. However, this quantity is not always informative about 

the quality of TARS. TARS is sometimes good on the rating coverage, but only 

involve small portion of recommenders. This is because an item usually has a 

number of recommendations, so a good rating coverage does not necessarily 

imply a good coverage on the recommenders. Since to involve as many 

recommendations as possible in TARS facilities the rating prediction, this work 

introduces the term recommender coverage. The recommender coverage is the 

portion of recommenders that could be involved in TARS. The rating coverage 

and the recommender coverage of TARS by using different values of MAPD 

are reported in Table 11 and Table 12 respectively, in which the bold values are 

the coverage calculated by using the proposed method. The experimental results 

show that: (1) If the value of MAPD is set to be smaller than the suggested 

value, both the rating coverage and the recommender coverage of TARS 

decrease, in which the recommender coverage decreases significantly. (2) If the 

value of MAPD is set to be greater than the suggested value, the rating coverage 

and the recommender coverage of TARS do not change significantly. This is 

because the rating coverage and the recommender coverage are both very high, 

more than 99%, by using the suggested value of MAPD. 

 

Table 11 Recommender coverage of TARS with different MAPD 

 Epinions_1 Epinions_2 Epinions _3 

maxd = 1 12.52% 17.92% 4.10% 

maxd = 2 74.67% 87.70% 30.80% 

maxd = 3 97.84% 98.68% 75.31% 

maxd = 4 99.80% 99.85% 95.81% 
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maxd = 5 99.97% 99.98% 99.45% 

maxd = 6 100.00% 100.00% 99.91% 

maxd = 7 100.00% 100.00% 99.98% 

maxd = 8 100.00% 100.00% 100.00% 

maxd = 9 100.00% 100.00% 100.00% 

 

Table 12 Rating coverage of TARS with different MAPD 

 Epinions_1 Epinions_2 Epinions _3 

maxd = 1 85.41% 91.94% 63.45% 

maxd = 2 99.29% 99.70% 96.52% 

maxd = 3 99.94% 100.00% 99.83% 

maxd = 4 99.98% 100.00% 100.00% 

maxd = 5 100.00% 100.00% 100.00% 

maxd = 6 100.00% 100.00% 100.00% 

maxd = 7 100.00% 100.00% 100.00% 

maxd = 8 100.00% 100.00% 100.00% 

maxd = 9 100.00% 100.00% 100.00% 

 

The computational complexity of constructing the trust network for TARS 

is max( )dO k , in which k is the number of edges per node in the trust network, 

and maxd is the value of MAPD. Therefore, if the value of MAPD is set to be 

smaller than the suggested value, the computational complexity of constructing 
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trust networks for TARS is exponentially less expensive. On the other hand, if 

the value of MAPD is set to be greater than the suggested value, the 

computational complexity of constructing trust networks for TARS is 

exponentially more expensive. 

To sum up, though setting the value of MAPD smaller than the suggested 

value is computational less expensive, the accuracy and the coverage of TARS 

are worse; while setting the value of MAPD greater than the suggested value 

leads to similar accuracy and similar coverage of TARS, but it is computational 

exponentially more expensive. This work therefore draws the conclusion 

that L   is a suitable value of MAPD for TARS. This verifies the effectiveness 

of the proposed method.  

Note that L   is only similar to the average trust propagation distance 

between two randomly selected users of the trust network, but the experiments 

show that L   is a appropriate value of MAPD for TARS. This is because it is 

the average trust propagation distance between all pairs of users that L   is 

similar to. However, not all users are recommenders. Further analysis on the 

distribution of the average path length between the trustors and the 

recommenders, which is shown in Fig. 19, shows that: compared with the 

distribution of the average path length between all pairs of users in the trust 

network, as shown in Fig. 20, the average path length between the trustors and 

recommenders are much smaller than that between all pairs of users, and the 

maximum distance between the trustors and the recommenders are always 

shorter than that between all pairs of users. This indicates that compared with 

the non-recommenders or the non-active recommenders, the recommenders tend 

to have shorter distances with the trustors. This contributes to the effectiveness 

of the method by setting L   as the value of MAPD for TARS.  
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Fig. 19. Distribution of the path lengths from trustors to recommenders  

 

 

Fig. 20. Distribution of the path lengths between all pairs of nodes  
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Based on the analysis given in Chapter 3.3, the trust network has the scale-

free structure, which is one structure of the small-world network. The structure 

of the scale-free network is shown in Fig. 21. According to the properties of the 

scale-free network, most nodes of the trust network have a few connections with 

other nodes, while a few nodes of the trust network have a large number of 

connections with other nodes, dominating the connectivity of the trust network. 

In addition, the trust network will continuously have the scale-free structure 

because of the continuous scale-freeness of the scale-free network. This 

contributes to the continuous effectiveness of using average path length of the 

trust network as MATD. 

 

 

Fig. 21. Structure of the scale-free network  
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Chapter 5 

Improved TARS using implicit trust 

networks  

Existing works of TARS [1-7] focus on using the explicit trust. That is, the trust 

should be explicitly pointed out by the users. The limitation of this is that it is 

sometimes time consuming or expensive to get the explicit trust. This is because 

the explicit trust needs extra user efforts: users need to specifically point out 

their personal opinions on the trustees. What’s more, in most practical 

recommender systems, these explicit trust statements are not available. This 

chapter proposes to improve the existing TARS model by using the implicit 

trust network: instead of using the effort-consuming explicit trust in TARS, 

other cheap and easy available trust sensitive information is used to generate the 

implicit trust for TARS. In particular, this work generates the implicit trust 

based on the user similarity. By comparing two users’ ratings on their co-rated 

items, it is easy to get their similarity, as did in the conventional CF. This does 

not need extra human efforts on labeling the trust statements. The implicit trust 

is propagated among users and the implicit trust network is therefore 

constructed for TARS to achieve higher rating prediction coverage.  

5.1 Building implicit trust networks for TARS 

Since the explicit trust is not always available in the practical recommender 

systems, this work improves the conventional TARS by using the implicit trust 

network. The trust statement is regarded as implicit if it is not explicitly pointed 

out by the users. This work generates the implicit trust based on the user 

similarity.  

Using the user’s ratings on the items, the following steps are applied to build 

the implicit trust networks for TARS:   
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(1) Calculate the user similarity between users. The Pearson correlation 

coefficient, which is one of the most successful mechanisms in terms of 

accuracy in the conventional CF, is used to measure the user similarity in this 

research. The user similarity between two randomly selected users 1u and 2u is 

calculated as:  

1 1 2 2,1 2

1 2

1 1 2 2, ,1 2 1 2

, ,

,
2 2

, ,

( )( )

( ) ( )

u u

u u u u

u i u u i uI

u u

u i u u i uI I

r r r r
s

r r r r

 


 


 

, 

in which
1 ,u ir and

2 ,u ir are 1u ’s rating and 2u ’s rating on item i respectively, 
1ur and 

2ur are 1u ’s average rating and 2u ’s average rating on all their rated items 

respectively, and
1 2,u uI is the items that are rated by 1u and 2u simultaneously, i.e., 

their co-rated items.
1 2, [ 1,1]u us   , in which a positive value implies a positive 

association (the larger
1 2,u us is, the more similar 1u and 2u are) and a negative 

value implies a negative association (the larger
1 2,u us is, the less 

similar 1u and 2u are).  

(2) Generate the implicit trust based on the user similarity. In case two users 

are positively associated, the higher similarity value they have, the more likely 

they would find the recommendations given by the other one be useful. So it is 

more likely for them to trust each other. This work therefore regards the users 

implicitly trust those who have high user similarities with them, and implicitly 

distrust those who have low user similarities with them. This situation is inverse 

in case the users are negatively associated. Since the negative user similarities 

greatly increase the computational complexity in the implicit trust propagations, 

this work only discusses the implicit trust with respect to the positive user 

similarity in this research.  

The implicit trust would be measured in various ways. This work uses the 

binary measurement due to its simplicity and popularity [24]. Specifically, this 
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work codes 1 if the trustor trusts the trustee and code 0 in other cases. The trust 

function between the two randomly selected users is represented as: 

1 2 1 2 1 2, , ,( , ( ))u u u u u ut f s size I = 1 2 1 2, ,1 ( )

0

u u s u u Is Thres size I Thres

else

  



, 
 

in which (.)f is the mapping function from the user similarity to the implicit 

trust. In addition to the user similarity, another attribute
1 2,( )u usize I , i.e., the size 

of the users’ co-rated items, is involved in (.)f . This attribute is added to 

ensure the statistical effectiveness of the user similarity. For instance, if two 

users only have one or two co-rated items, their user similarity is not enough to 

reflect their real relationship, so it is meaningless to generate the implicit trust 

between these users. sThres is the threshold of the user similarity, and IThres is 

the threshold of the number of the co-rated items. Since the user similarity is 

mutual, the implicit trust in this research is nondirectional, i.e.,
1 2 2 1, ,u u u ut t . 

(3) Build the implicit trust network based on the implicit trust statements. It is 

far from enough to use the implicit trust directly in TARS. This is because the 

trust matrix is always very sparse due to the sparseness of the user similarities: 

it is only possible for the users to have similarities with a few users since it is 

not realistic for the users to rate all the items. Taking the advantage of the 

transitivity of trust, the implicit trust network is built for TARS to achieve 

higher rating prediction coverage. The implicit trust network is the trust 

network constructed on the basis of the implicit trust: the users act as the nodes 

and their implicit trusts act as the edges. In this case, the users can build up the 

trust relationships between each other even they do not have the direct implicit 

trust.  

An example is given in Fig.22 to illustrate how this work builds the implicit 

trust network. Ten users are involved in the recommender system, as shown in 

the left side of the figure. This work generates the implicit trust by 

setting sThres =0.75 and IThres =2. Six users have implicit trusts with others, i.e., 
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, , , , ,A B C D E F . These six users act as the nodes and their trusts act as edges, an 

implicit trust network is therefore constructed, as shown in the right side of the 

figure. Due to the binary trust measurement used in this research, the graph used 

to represent the implicit trust network is the binary graph. That is, an edge 

between two users means these two users are mutually trusted, having the trust 

value 1, while no edge represents the absence of trust.  

 

  

Fig. 22. An example of the implicit trust network generated by the user 

similarity  

 

5.2 Finding small-world properties in implicit trust 

networks 

The small-worldness of the trust network has been verified in chapter 3. The 

trust networks used for the experimental verification are the explicit trust 

networks, i.e., the trusts between all users of the trust network are explicitly 

pointed out by the users themselves. This subchapter verifies that the implicit 

trust networks, which are generated by the cheap or less effort-consuming trust 

related information, also have the small-world nature.  
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To verify the small-worldness of the implicit trust network, this work uses 

two kinds of verification methodology. On one hand, by using the conventional 

verification methodology, this work verifies that the implicit trust network has 

lager clustering coefficient and short average path length. On the other hand, 

this work verifies that the implicit trust network is the scale-free network. This 

indicates its continuous small-worldness in dynamic natures.  

5.2.1 Implicit trust networks used in this research 

Using the method shown in subchapter 5.1, three implicit trust networks are 

extracted from the Epinions dataset9 to verify the small-worldness of the trust 

network. The Epinions dataset has two kinds of files: the rating data and the 

trust data. The rating data records the users’ ratings on items. The trust data 

records the users’ trust on other users. These trust statements are explicitly 

pointed out by the users. This work chooses to use the Epinions dataset to 

facilitate further comparisons between the explicit trust based TARS and the 

implicit trust based TARS. For the experiments held in this subchapter, only the 

rating data of the Epinions dataset are used.  

Firstly, this work extracted three rating matrices from the Epinions dataset 

based on the timestamp of the ratings. They are named as _1EpinionsR , _ 2EpinionsR  

and _ 3EpinionsR respectively. _1EpinionsR records the ratings stated in January 2001. 

It consists of 31019 users’ 8632163 ratings on 551392 items. _ 2EpinionsR records 

the ratings stated in the year 2002, from January to December. It consists of 

2275 users’ 740422 ratings on 36144 items. _ 3EpinionsR records the ratings stated 

in November and December of 2003. It consists of 20157 users’ 664061 ratings 

                                                      

9 http://www.trustlet.org/wiki/Epinions_dataset 
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on 139633 items. _1EpinionsR and _ 2EpinionsR are extracted from the “extended 

epinions dataset”10. _ 3EpinionsR is extracted from the “epinions dataset”11.  

Secondly, three implicit trust networks are constructed based on the above 

rating matrices. Specifically, this work sets sThres =0.75 and IThres =2 for the 

implicit trust generation function. The values of the thresholds are chosen based 

on the analysis of the explored rating matrices. _ 3EpinionsR  is used as an example 

to illustrate this. In _ 3EpinionsR , 19859 users have at least one co-rated item with 

other users, and there are totally 11160113 pairs of user similarities between 

these users. However, majority user similarities are useless for the implicit trust 

generation, as shown in Fig. 23: the user similarity of 90.08% pairs of users 

equals to 0, which means these users do not have any similarity. This is because 

most pairs of users only have limited number of co-rated items, as shown in 

Fig. 24: in case the user similarity equals to 0, 98.63% pairs only have one or 

two co-rated items. So this work only focuses on the pairs of users that have at 

least 3 co-rated items, i.e., IThres =2 for the implicit trust generation. This 

would greatly reduce the useless information and make the implicit trust 

generation process more efficient. What’s more, since a Pearson correlation 

greater than 0.7 is regarded as the strong positive association [22], this work 

sets sThres =0.75 in this research.  

 

                                                      

10 http://www.trustlet.org/wiki/Extended_Epinions_dataset. 

11 http://www.trustlet.org/wiki/Downloaded_Epinions_dataset. 
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Fig. 23. Distribution of the user similarities between users 

 

 

Fig. 24. Distribution of the co-rated items between users given user similarity 

equals to 0  

 

The trust matrices generated from _1EpinionsR , _ 2EpinionsR and _ 3EpinionsR  are 

named as _1EpinionsT , _ 2EpinionsT and _ 3EpinionsT respectively. _1EpinionsT records 13244 
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users’ 521507 implicit trust statements on each other. _ 2EpinionsT records 1260 

users’ 54643 implicit trust statements on each other. _ 3EpinionsT records 14704 

users’ 355033 implicit trust statements on each other. The implicit trust 

networks constructed by these three trust matrices are named as Epinions_1, 

Epinions_2 and Epinions_3 respectively. The characteristics of these implicit 

trust networks are summarized in Table 13. All users involved in these trust 

networks act as the trustors, the trustees or both.  

 

Table 13  Description of the implicit trust networks used in this research 

 Number of nodes Number of edges per node 

Epinions_1 13244 39.38 

Epinions_2 1260 43.38 

Epinions_3 14704 24.15 

 

5.2.2 Small-world characteristics of implicit trust networks 

By analyzing Epinions_1, Epinions_2 and Epinions_3, this work verifies that 

the implicit trust network is the small-world network. 

Firstly, the conventional experimental verification method is used to show the 

small-worldness of the implicit trust network. Similar as the explicit trust 

networks, the implicit trust networks also have large clustering coefficients. 

This is verified by comparing the clustering coefficients of the implicit trust 

networks and those of their corresponding random networks: using equation (3) 

and equation (4), the clustering coefficients of the explored implicit trust 

networks and their corresponding random networks are evluated, which are 

summarized in Table 14. The detailed distributions of the explored implicit trust 

networks’ clustering coefficients are given in Fig. 25. It shows that similar as 

the explicit trust networks, though the clustering coefficients of some users are 
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small (near 0), those of the majority users are greater than 0.1. A portion of the 

clustering coefficients even equals to 1. This means the neighbors of some users 

are fully connected. This is very different from the random network. The 

comparison between the clustering coefficients of the implicit trust networks 

and those of their corresponding random networks clearly shows that: the 

implicit trust network has much larger (higher order of magnitude) clustering 

coefficients than its corresponding random network. This satisfies the first 

condition of the small-world network’s definition. 

 

Table 14  Clustering coefficients of the implicit trust networks and their 

corresponding random networks 

 n  k  C RC  

Epinions_1 13244 39.38 0.13 2.97 310  

Epinions_2 1260 43.38 0.62 3.44 210  

Epinions_3 14704 24.15 0.16 1.64 310  
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Fig. 25.  Distribution of the implicit trust networks’ clustering coefficients  



 

 51

Similar as the explicit trust networks, the implicit trust networks also have 

short average path lengths. This work chooses around 5% random samples from 

the large implicit trust networks (Epinions_1 and Epinions_3) and all samples 

from the small networks (Epinions_2) to analyze the average path length. The 

distributions of the explored implicit trust networks’ average path lengths are 

given in Fig. 26. It shows that the implicit trust networks have very small 

number of direct trusts, i.e., where the path length equals to 1(less than 10% for 

Epinions_2, less than 1% for Epinions_1 and Epinions_3). By propagating trust, 

users can build up their trust relationships with others within several hops. 

Another important observation is that very small number of the trust 

propagations has long distance, e.g. the probabilities that the path lengths are 

longer than 5 hops (if any) are less than 5%. The path length of most trust 

propagations is from 2 hops to 4 hops. In more details: (1) the maximum path 

length of Epinions_1 is 7 hops, and its average path length is 2.73 hops; (2) the 

maximum path length of Epinions_2 is 4 hops, and its average path length is 

2.05 hops; (3) the maximum path length of Epinions_3 is 10 hops, and its 

average path length is 2.98 hops.  
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Fig. 26. Distribution of the implicit trust networks’ path lengths  
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Using equation (5), the average path lengths of the explored implicit trust 

networks’ corresponding random networks are evaluated, which are 

summarized in Table 15. Comparing the average path lengths of the implicit 

trust networks with those of their corresponding random networks, it is obvious 

that the implicit trust networks have similar (the same order of magnitude) 

average path lengths as their corresponding random networks. This satisfies the 

second condition of the small-world network’s definition. 

 

Table 15  Average path lengths of the implicit trust networks and their 

corresponding random networks 

 n  k  L  RL  

Epinions_1 13244 39.38 2.73 2.52 

Epinions_2 1260 43.38 2.05 1.89 

Epinions_3 14704 24.15 2.98 2.55 

 

Using the above characteristics on the clustering coefficient and the average 

path length, this work compares the implicit trust networks with some well-

known small-world networks documented in the literatures. These well-known 

small-world networks are those shown in Table 6. A further comparison 

between the small-world characteristics of the implicit trust networks and these 

networks is presented in Fig. 27. The axes of Fig. 27 represent the ratios of the 

selected networks and their corresponding random networks. Note that most 

small-world networks are concentrated around where the average path length 

ratio equals to 1. This means that the selected networks have similar average 

path length as their corresponding random networks. In addition, the clustering 

coefficient ratios of most networks are greater than 10. This means that the 

selected networks have much larger clustering coefficients than their 

corresponding random networks. The comparisons of Fig. 27 clearly show that 

the implicit trust networks have the same properties as other well-known small-
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world networks: they are highly clustered yet have small average path lengths. 

This work therefore draws the conclusion that the implicit trust networks are the 

small-world networks.  
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Fig. 27. Small-world characteristics of the implicit trust networks and some 

well-known small-world networks  

 

As described in subchapter 3.3, the conventional experimental verification 

method only verifies the small-worldness of the implicit trust networks in static 

state. This work further verifies that the dynamically changing implicit trust 

networks still have the small-world characteristics. To achieve this, this work 

verifies that the implicit trust network is the scale-free network, as analyzed in 

subchapter 3.3 

The degree distributions of the explored three implicit trust networks are 

calculated. The results are shown in Fig. 28, Fig. 29 and Fig. 30. Different as 

the explicit trust networks, this work does not differentiate the indegree 

distribution and the outdegree distribution of the implicit trust networks. This is 

because the explicit trust network is the directed network, while the implicit 
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trust network used in this research is the undirected network: the implicit trusts 

are generated from the user similarity; since the user similarity between the 

users are bidirectional, the implicit trusts are bidirectional. It is clearly shown in 

Fig. 28, Fig. 29 and Fig. 30.that the nodes’ degree distribution follows the 

power-law: ( )P k k  , in which ( )P k is the probability that a randomly selected 

node has exactly k edges, and  represents the power of the degree distribution. 

The detailed information about the degree distributions is shown in Table 16.  

Since the implicit trust network is scale-free, based on the deduction shown 

in subchapter 3.3, this work draws the conclusion that the implicit trust 

networks are the small-world networks despite of their dynamics.  
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Fig. 28. Degree distribution of Epinions_1  
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Fig. 29. Degree distribution of Epinions_2  
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Fig. 30. Degree distribution of Epinions_3  
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Table 16 Degree distributions of the implicit trust networks 

 n  k    

Epinions_1 13244 39.38 0.96 

Epinions_2 1260 43.38 0.54 

Epinions_3 14704 24.15 1.19 

 

5.3 TARS using the small-worldness of implicit trust 

networks 

Since the explicit trusts used in the conventional TARS models are not always 

available, this work proposes a novel TARS model using the implicit trust 

networks to improve the conventional ones. The proposed model is based on the 

verified small-worldness of the implicit trust networks.  

5.3.1 The proposed TARS model 

The architecture of the proposed TARS model is presented in Fig. 31. This 

model is based on the small-worldness of the implicit trust network. The input 

is the rating matrix which represents the ratings given by users on the items. 

The output is the matrix of the predicted ratings that the users would assign to 

the items. The black boxes in Fig. 31 represent various modules and the white 

boxes represent the matrices. The dash lines and dash boxes are used to show 

the architectures of the conventional CF [23] and the conventional TARS [3] in 

Fig. 31. The proposed method differs from the conventional CF in that the user 

similarity is further transformed to the implicit trust, and rating prediction is 

based on the implicit trust network. The proposed method differs from the 

conventional TARS in that the explicit trust is not needed in the rating 

prediction, while the implicit trust generated from the user similarity is used 

together with the rating matrix to predict the ratings.  
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Fig. 31. Architecture of the proposed implicit trust network based TARS model 

 

The architecture has three modules: the similarity metric module, the implicit 

trust metric module and the rating predictor module. The similarity metric 

module is used to evaluate the user similarities between all users of the rating 

matrix. The implicit trust metric module is used to generate the implicit trust 

based on the user similarities. The details of these two modules have been 

discussed in subchapter 5.1. The rating predictor module is used to predict the 

ratings based on the recommendations given by various recommenders. In the 

module this work uses the rating prediction algorithm used shown in Table 8. 

That is, this work uses the same rating prediction mechanism as the one used in 

the proposed explicit trust network based TARS. The difference is that: in this 

model, the implicit trusts are generated from the user similarities, while the 

proposed  model shown in subchapter 4.1 requires the users to explicitly point 

out their trust on others.  

5.3.2 Experimental results 

The performances of TARS are examined to show the effectiveness of the 

proposed method. The experiments are held on the data shown in subchapter 
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5.2.1. _1EpinionsR , _ 2EpinionsR and _ 3EpinionsR are used as the inputs of the proposed 

method respectively. Predicted ratings on the items of these three rating 

matrices act as the outputs. _1EpinionsT , _ 2EpinionsT and _ 3EpinionsT records the implicit 

trust in the rating prediction procedure. Since the scales 

of _1EpinionsR , _ 2EpinionsR and _ 3EpinionsR are very large, it is computational expensive 

to predict ratings on all the items for all the users. This work chooses around 

5% random samples from _1EpinionsR , _ 2EpinionsR and _ 3EpinionsR as the object of the 

rating prediction, i.e., this work predicts around 400000 ratings for _1EpinionsR , 

around 40000 ratings for _ 2EpinionsR and around 30000 ratings for _ 3EpinionsR .  

Firstly, this work verifies that L   is an appropriate value of MAPD for the 

implicit trust network based TARS, as claimed in the first phase of the rating 

predictor module. Using the implicit trust networks Epinions_1, Epinions_2 and 

Epinions_3, ratings are predicted on the rated items of _1EpinionsR , _ 2EpinionsR  

and _ 3EpinionsR respectively. The MAPD of the proposed method is calculated by 

equation (6): for Epinions_1, maxd = L    2.52   = 3; for Epinions_2, maxd = 

L    1.89   = 2; for Epinions_3, maxd = L    2.55   =3.  

The rating prediction coverage of TARS is examined to verify the 

effectiveness of MAPD in the proposed method. The coverage of TARS is 

measured by both the rating coverage and the recommender coverage. The 

rating coverage and the recommender coverage of the proposed model by using 

different values of MAPD are reported in Table 17 and Table 18 respectively, in 

which the bold values are the coverage calculated by using the suggested 

MAPD values. The active users can build up their implicit trust relationships 

with the recommenders within 5 hops in _1EpinionsR , within 4 hops 

in _ 2EpinionsR and within 7 hops in _ 3EpinionsR . The experimental results show that: 

(1) If the value of MAPD is set to be smaller than the suggested value, both the 

rating coverage and the recommender coverage of TARS decrease, in which the 
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recommender coverage decreases significantly. (2) If the value of MAPD is set 

to be greater than the suggested value, the rating coverage and the recommender 

coverage of TARS do not change significantly. This work therefore draws the 

conclusion that L   is a suitable value of MAPD for the proposed model of 

TARS. 

 

Table 17  Recommender coverage of the proposed method by using different 

values of MAPD 

 
_1EpinionsR  _ 2EpinionsR  _ 3EpinionsR  

maxd = 1 23.04% 42.71% 6.81% 

maxd = 2 95.50% 95.93% 65.52% 

maxd = 3 98.11% 96.66% 85.12% 

maxd = 4 98.20% 96.66% 86.16% 

maxd = 5 98.20% - 86.21% 

maxd = 6 - - 86.21% 

maxd = 7 - - 86.21% 

 

Table 18  Rating coverage of the proposed method by using different values of 

MAPD 

 
_1EpinionsR  _ 2EpinionsR  _ 3EpinionsR  

maxd = 1 92.30% 98.10% 47.25% 

maxd = 2 99.53% 99.10% 82.44% 

maxd = 3 99.53% 99.10% 91.17% 
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maxd = 4 99.53% 99.10% 92.19% 

maxd = 5 99.53% - 92.40% 

maxd = 6 - - 92.40% 

maxd = 7 - - 92.40% 

 

Note that L   is only similar to the average trust propagation distance 

between two randomly selected users of the implicit trust network, but the 

experiments show that L   is a appropriate value of MAPD for the proposed 

TARS. This is because it is the average trust propagation distance between all 

pairs of users that L   is similar to. However, not all users are recommenders. 

Further analysis on the distribution of the average path length between the 

active users and the recommenders, which is given in Fig. 32, shows that: 

compared with the distribution of the average path length between all pairs of 

users in the implicit trust network, as shown in Fig. 26, the average path length 

between the active users and recommenders are much smaller than that between 

all pairs of users, and the maximum distance between the active users and the 

recommenders are always shorter than that between all pairs of users. This 

indicates that compared with the non-recommenders or the non-active 

recommenders, the recommenders tend to have shorter distances with the active 

users. This contributes to the effectiveness of the method by setting L   as the 

value of MAPD for TARS. This phenomenon is the same as the proposed 

TARS model in Chapter 4.  
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Fig. 32. Distribution of the path lengths between the active users and the recommenders 

 

Secondly, the proposed model is compared with the proposed TARS model 

shown in subchapter 4.1 and the conventional CF. The performances of these 

models are examined in two aspects with the proposed model: the rating 

prediction accuracy and the rating prediction coverage (including the 

recommender coverage and the rating coverage). The rating prediction accuracy 

of the recommender system is measured by the error of the predicted ratings. 

Specifically, this work calculates the Mean Absolute Error (MAE). By 

predicting the rating on the rated items of _1EpinionsR , _ 2EpinionsR and _ 3EpinionsR , the 

MAE of different models is reported in Table 19, in which iTARS represents 

the implicit trust network based TARS model proposed in this chapter, and 

eTARS represents the explicit trust network based TARS model proposed in 

Chapter 4. The recommender coverage and the rating coverage of different 

models are given in Table 20 ad Table 21 respectively. These experimental 

results show that:  

(1) Comparing with eTARS: in contrast to the decreasing of the rating 

prediction coverage, the rating prediction accuracy is improved by iTARS. 
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Specifically, in the experiments held on _1EpinionsR , by decreasing 1.05% 

recommender coverage and 0.38% rating coverage of eTARS, iTARS can 

improve 19.44% of its rating accuracy; in the experiments held on _ 2EpinionsR , by 

decreasing 0.61% recommender coverage and 0.84% rating coverage of 

eTARS, iTARS can improve 12.00% of its rating accuracy; in the experiments 

held on _ 3EpinionsR , by decreasing 11.22% recommender coverage and 8.59% 

rating coverage of eTARS, iTARS can improve 34.86% of its rating accuracy.  

(2) Comparing with the conventional CF: iTARS has similar rating prediction 

accuracy as the conventional CF, while the recommender coverage and the 

rating coverage are improved, in which the recommender coverage tends to be 

greatly improved. Specifically, in the experiments held on _1EpinionsR , the 

recommender coverage is 18.65% improved and rating coverage is 0.55% 

increased by using iTARS; in the experiments held on _ 2EpinionsR , the 

recommender coverage is 36.18% improved and rating coverage is 0.22% 

increased by using iTARS; in the experiments held on _ 3EpinionsR , the 

recommender coverage is 159.67% improved and rating coverage is 16.72% 

increased by using iTARS.  

To sum up, the proposed implicit trust network based TARS model is 

superior to the conventional TARS not only in that it releases the user efforts in 

trust labeling, but also in that the proposed model improves the rating prediction 

accuracy with little cost in the rating prediction coverage; the proposed implicit 

trust network based TARS model is superior to the conventional CF in that the 

proposed model improves the rating prediction coverage without cost in the 

rating prediction accuracy. This work therefore draws the conclusion that the 

proposed model of TARS, which is based on the small-worldness of the implicit 

trust network, is effective in rating predictions.  
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Table 19   MAE of the proposed model and the conventional models 

 
_1EpinionsR  _ 2EpinionsR  _ 3EpinionsR  

The proposed iTARS 0.29 0.22 0.71 

The proposed eTARS 0.25 0.21 0.73 

Conventional CF 0.29 0.20 0.73 

 

Table 20  Recommender coverage of the proposed model and the conventional 

models 

 
_1EpinionsR  _ 2EpinionsR  _ 3EpinionsR  

The proposed iTARS 98.11% 95.93% 85.12% 

The proposed eTARS 99.15% 96.52% 95.88% 

Conventional CF 82.69% 70.44% 32.78% 

 

Table 21  Rating coverage of the proposed model and the conventional models 

 
_1EpinionsR  _ 2EpinionsR  _ 3EpinionsR  

The proposed iTARS 99.53% 99.10% 91.17% 

The proposed eTARS 99.91% 99.94% 99.74% 

Conventional CF 98.99% 98.88% 78.11% 

 

In the implicit trust network based TARS, the trust statements are generated 

by the trust sensitive information. In the explicit trust network based TARS, the 

trust statements are explicitly pointed out by the users. The above simulations 

results show that the proposed implicit trust network based TARS has similar 

rating prediction performance as the explicit trust network based TARS. Based 
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on the analysis of the explicit trust and the generated implicit trust, it is found 

that there are some relationships between these two kinds of trust statements. 

This may contributes to the similar rating prediction accuracy of these two 

kinds of TARS models. The concrete relationships between the implicit trust 

statements and explicit trust statements used in the proposed TARS models are 

given in Fig. 33, Fig. 34 and Fig. 35.  These simulation results clear show that: 

(1) if two users have short explicit trust propagation distance, they also tends to 

have short implicit trust propagation distance; (2) if two users have long explicit 

trust propagation distance, they also tends to have long implicit trust 

propagation distance.  

 

 

Fig. 33. Relationship of the implicit trust and the explicit trust used for 

predicting ratings of _1EpinionsR  
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Fig. 34. Relationship of the implicit trust and the explicit trust used for 

predicting ratings of _ 2EpinionsR  

 

 

Fig. 35. Relationship of the implicit trust and the explicit trust used for 

predicting ratings of _ 3EpinionsR  
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Chapter 6 

Conclusion and future works 

Using the experimental data extracted from five public released datasets, this 

work verifies the small-worldness of the trust network: the nodes of trust 

network are highly clustered while the distance between two randomly select 

nodes is short. This work further verifies that the trust network continuously has 

the small-world structure. This is achieved by verifying the scale-freeness of the 

trust network. One basic property of the scale-free network is that its structure 

and dynamics are independent of its scale. This ensures the continuous scale-

freeness of the scale-free network in dynamics. Since the scale-free network is 

one category of the small-world network, by verifying its scale-freeness, this 

work shows that the small-worldness of the trust network is independent of its 

dynamics.  

The small-worldness of the trust network indicates that any two nodes of the 

trust network could be connected within limited number of trust propagations, 

and the average trust propagation distance is similar to the average path length 

of this trust network’s corresponding random network, which is easy to 

calculate since it only relates to the size and the average degree of the trust 

network. This work uses this property to optimize the conventional trust-aware 

recommender system: the average path length of the trust network is used to 

approximately act as the value of the maximum allowable propagation distance 

of TARS. The performances of this optimized TARS model are examined on 

three large scale real data. The simulations results clearly show that the 

proposed optimized TARS model can achieve the maximum rating prediction 

accuracy and the maximum rating prediction coverage with the minimum 

computation complexity. 
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This thesis further propose a novel TARS model based on the small-

worldness of the implicit trust network, in which the implicit trust is generated 

from the user similarities. Conventional TARS suffers from the problem that it 

needs extra user efforts to label the trust statements. The proposed model solves 

this problem by generating the implicit trust based on other “cheap” trust 

sensitive information, i.e., the information that needs little or no extra user 

efforts. In addition, the proposed model is able to improve the rating prediction 

accuracy of the conventional TARS with little cost in the rating prediction 

coverage. Conventional CF suffers from the data sparseness problem, that is, it 

is hard to find the user similarities between a number of active users and 

recommenders. Though the proposed model generates the implicit trust based 

on the sparse user similarities, this work solve the data sparseness problem by 

propagating the implicit trust and build the implicit trust network for the rating 

prediction. By analyzing the implicit trust networks of TARS, this work verifies 

the small-world topology of the implicit trust network. This indicates that, 

similar as the explicit trust network, the trust propagation distance between any 

two users of the implicit trust network is short, within limited number of trust 

propagation hops. Using the same rating prediction mechanism of the proposed 

optimized TARS model using the explicit trust network, experimental results 

show that the proposed trust-aware recommender system using the implicit trust 

network can also achieve high rating prediction accuracy and high rating 

prediction coverage.  

The future work of this thesis will mainly focus on how to filter out the unfair 

recommendations for TARS. TARS suggests information to the active users 

based on the recommendations given by various recommenders. However, there 

may exist some self-interested recommenders who give unfair 

recommendations to maximize their own gains (perhaps at the cost of others). 

So it is essential to avoid or reduce the influence of the unfair positive or 

negative recommendations from the self-interested recommenders. For this 

purpose, I intend to introduce the users’ distrust statements into the TARS 

model. By analyzing the recommendations given by each user’s distrusted 
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recommenders and the relationship between the trust statements and the distrust 

statements, the reliable recommendations will be chosen for the rating 

aggregations of the proposed TARS model. 
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