
Thesis for the Degree of Doctor of Philosophy

Human Commuting Activity Recognition based on 
Mobility Natural Vibration on a Mobile Device

Taeho Hur

Department of Computer Science and Engineering
Graduate School

Kyung Hee University
Seoul, Korea

February, 2020



Human Commuting Activity Recognition based on 
Mobility Natural Vibration on a Mobile Device 

Taeho Hur

Department of Computer Science and Engineering
Graduate School

Kyung Hee University
Seoul, Korea

February, 2020



Human Commuting Activity Recognition based on 
Mobility Natural Vibration on a Mobile Device

by
Taeho Hur

Advised by
Professor. Sungyoung Lee

Submitted to the Department of Computer Science and Engineering
and the Faculty of the Graduate School of
Kyung Hee University in partial fulfillment

of the requirements for degree of 
Doctor of Philosophy

Prof. Tae-Seong Kim

Prof. LokWon Kim

Prof. Sung-Ho Bae

Prof. Hyon Woo Seung

Prof. Sungyoung Lee



- iv -

Abstract

Traditional Human Activity Recognition attached wearable sensors on the body with 

fixed position and orientation. As the technology has developed, smartphone has 

emerged embedded with various kinds of sensors, substituting wearable sensors. Due to 

the nature of smartphone, people carry it on any place with different orientation. This 

lead to one of an important consideration, guaranteeing position and orientation 

independency. 

Meanwhile, people nowadays show similar life pattern. This includes such as people 

go to work on week days, uses vehicles for movement, and carry a smartphone. This 

makes a perfect chance to recognize commuting activities. Commuting activity is an 

activity happening during commuting such as standing, sitting, walking, jogging, riding a 

car, bus, subway, train, motorcycle, bicycle, and many others. As most of the people 

carry smarpthone, we can extract inertial data from accelerometer and gyroscope, speed 

and coordinate information from GPS, sound from mic, video from camera and so on. 

From these data, we can extract features and classify them to know which activity the 

user is performing. 

The advantage of automatic detection of commuting activity will be 1) Statistical 

data of transportation usage can be acquired automatically, reducing the cost and time 

spent via manual survey, 2) User customized services or advertisements can be provided 

based on transportation just-in-time, 3) Monitoring health status, safety issues, and 

consumed calories can be provided for health care, and 4) Carbon footprint can be 

estimated which is a unit of an object producing greenhouse gas. 

Especially vehicles among commuting activities possess major issues. The problem is 

that user does not move inside the vehicle, only standing or sitting. These are static 
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activities having no big variation on sensor signal, and also showing no eigen pattern 

from time domain signal. To overcome this problem, some of the research extracted 

features from frequency domain signal. Frequency is the number of occurrences of a 

repeating event per unit of time. Mainly extracted features are statistical features such as 

mean and standard deviation, or peak frequency. But these features contains problems 

that statistical feature cannot be applied in frequency domain that each frequency is 

representing different dimension, and the peak frequency can be changed. Another 

consideration of commuting activity recognition is that due to unseen real world 

environmental factors, error may cause based on machine learning method. To correct 

this error, heuristic based post-processing is required after machine learning based 

classification.

Therefore, in this paper, two methods are proposed. The first is using natural 

vibration features to handle position independency and classifying vehicles. As every 

object has their own natural vibration, each vehicle will have their own too, and this 

does not affect the position of the sensor. The second is activity correction which 

adjusts the classified result taking into account real world scenario. In here, GPS 

coordinate is used to distinguish from road vehicles to subway when the subway runs 

ground level, state transition rule is adopted, and the activity is corrected referring 

current activity, previous activity and previously corrected activity. From our 

experimental result, the proposed method shows higher performance than existing method 

for commuting activity recognition.
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1. Introduction

1.1 Background

The goal of Human Activity Recognition (HAR) is to recognize common human 

activities in real-life settings such as locomotion, postures, and gestures [1]. Types of 

locomotions includes activity such as walking, jogging and running, and types of 

postures includes activity such as sitting, standing and lying, and types of gestures 

includes activities like shaking hands, waving hands, and so on. The general 

procedure of HAR is constituted of data acquisition, pre-processing, segmentation, 

feature extraction, and classification. Data acquisition is literally collecting the data to 

be used for recognition. Pre-processing includes the refinement of data, such as 

filtering, reducing, integrating, and transforming. Segmentation process is done where 

the data must be split to apply features and classify into groups. Feature extraction 

includes to extract prominent characteristics of data. Feature selection process is 

followed after extraction to only pick meaningful features. Finally, classification is 

conducted based on the features and produce the activity label in the end.

Figure 1-1. General activity recognition chain
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Research on HAR began from the 1980s [2] and has become the basis of context 

awareness such as pervasive computing, wearable computing, human computer 

interaction, and in the support of health care, life care and wellness care. Most of 

these require information about users’ life patterns to provide personalized services or 

health promotion. Many studies have suggested methods to recognize numerous 

activities with high accuracy [3–7]. There are mainly three different methods of 

HAR, which are video-based, environmental sensor–based, and wearable sensor–based, 

while each method has its own pros and cons. 

In video-based methods, video recorded from cameras such as CCTV are used as 

data [8-12]. At first, pre-processing method can be applied to remove noises such as 

blur, glitter, illumination and occlusion. Then video is segmented to frame by frame. 

Then the object and background are separated to only refer human being. Features 

are extracted afterwards to well detect which activity the human is performing. 

Lastly, the classification is made and activity is recognized on each frame. Compared 

to traditional RGB video based HAR, a skeleton based method is studied these days 

by using 3D depth cameras, where it can more easily separate human from 

background. But this method can only be applied when depth camera is installed, not 

usable from CCTV videos. The advantage of video-based method is that the subject 

doesn’t need to carry any kind of sensors, making it unobtrusiveness. On the other 

hand, the disadvantage comes from that the subject is hard to be traced. It can only 

be used where the camera is placed. Currently, even though there are lots of cameras 

installed, there are still many places having no cameras installed. It is even hard to 

detect specific subject while there are a lot of people inside on the scene. Therefore, 

it is still a challenging task to conclude whether the same subject has appeared from 

one video to another. 
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In environmental sensor–based methods, sensors such as infrared sensors, pressure 

sensors, or proximity sensors are installed in specific location such as smart home or 

a specific location with embedded sensors around [13-16]. Most of the environmental 

sensors has binary outputs which is much easier to infer user activity in combination 

with many sensors. And it is also good to trace the subject moving around indoor 

for whole day that specific location’s sensor will response. But the problem comes 

from that it is hard to differentiate subjects if there are more than two subjects 

inside, having no particular factors to differentiate them such as tags. Another 

problem is that it can only detect abstract activities. For example, if the user is on 

the couch and reading a book, it may only conclude user activity as sitting, but not 

reading. Finally, recognition limitation comes from that this method only works in the 

place where sensors are installed.

In wearable sensor–based methods, devices containing inertial sensor units, such as 

an accelerometer (ACC) and gyroscope, and non-inertial sensor units such as 

magnetometer and GPS are attached to the body [17-20]. In particular, accelerometers 

are a popular way to recognize users’ activity, while other sensor assists 

accelerometer. Activities are then classified into types, with each activity type 

showing a different pattern of sensor signal values. Normally, sensors attached on 

lower body part, such as thigh or ankle, are in charge to detect the leg movement, 

detecting locomotions or foot gestures such as kicking. Sensors attached on upper 

body part in torso such as waist or chest detects the overall body movement such as 

walking or jogging. Lastly, sensors attached on wrist or forearm will detect hand 

based gestures. As mentioned above, previous research tried to measure the change of 

motion precisely, so researchers attached many sensor devices on each part of the 

body and analyzed the resulting data. Table 1-1 shows the types of HAR and their 

used sensors.
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Types of HAR Types of sensors Description

Video-based 

HAR

RGB
A traditional video with moving image composed of 

RGB color. 

RGB Depth

A video showing the objects in different color of 

depths based on perspective. It is easier than RGB 

video to differentiate from object and background that 

object is usually former than background.

Skeleton

A video showing the skeleton and joints of human. 

This method suits well for activity recognition by only 

capturing human body movement. Disadvantage of this 

is that it shows error on skeleton in high rate.

Environmental 

sensor-based 

HAR

Pressure
A sensor operated when pressure is detected. Normally 

used in furniture such as couch, chair, bed, etc.

Proximity
A sensor operated when an object comes close to 

predefined distance. Normally used in doors or drawers.

Infrared
A sensor which detects body heat. It is used to know 

whether the object exists.

Microwave
A sensor detecting reflections on moving objects by 

sending microwave pulse.

Ultrasonic
A sensor detecting reflections on moving objects by 

sending ultrasonic wave.

Wearable 

sensor-based 

HAR

Accelerometer
A sensor returning acceleration signal based on gravity. 

Normally used to detect moving direction.

Gyroscope
A sensor returning angular velocity signal. Normally 

used to detect how much the object has rotated.

Magnetometer
A sensor returning magnetic field signal. Normally used 

to find point of the compass.

GPS
A sensor returns current coordinate latitude and 

longitude, and speed based on satellite signal.

Table 1-1. Types of HAR and their used sensors
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HAR methods building upon multiple sensors became less frequent after the 

introduction of smartphones from early 2010s. The methods devised from previous 

research required users to buy sensors of different types and attach them to different 

parts of their bodies. Each sensor is expensive, and the resulting systems are 

cumbersome to use in real life. However, smartphones are equipped with multi-modal 

sensors, and many people worldwide (and more people every year) carry at least one 

of it [21]. Therefore, HAR research has significantly shifted direction in recent years, 

and now focuses more predominantly on the use of smartphones. Additionally, after 

the advent of smartphone, wrist type devices have come to the surface. A 

smartwatch, which is a small edition of smartphone is widely used nowadays. Also 

many kinds of wearable devices such as Fitbit, Misfit, and Fuelband were released. 

All of these contain inertial sensors and used for the purpose of human activity 

recognition, by itself or along with smartphone. 

Although the unobtrusiveness has reduced than before and it is good to trace 

people that they carry a smartphone embedded with sensors whole time, it still 

contains weaknesses. A human being cannot perform the same activity in the same 

way. For example, if the same person tries to walk in the same route with the same 

speed, the sensor signal does not show exact same pattern that sensor is sensitive 

enough and respond to even minimum movements. For example, even the sensor is 

simply on the desk, the signal values does not show strict linearity but small 

sinusoidal curves. This differs much more as times goes by when the person gets 

older or having injuries. It also differs to every person that no one is identically 

same, even for twins, performing different activities.
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1.2 Motivation

As the technology advances by time, people’s life style is getting standardized. For 

example, people carry their smartphone and commute on weekdays, or go for 

shopping and traveling on weekends. In here, they do not walk but mostly ride 

vehicles. Contrary to modern technology development, deterioration of health caused 

by lack of exercise is becoming a social issue, and from this point of view, human 

movement is not required when riding vehicles and does not have a good effect in 

terms of health. If the vehicles are well recognized, their life pattern can be more 

well understood and could provide personalized health or convenient services. From 

here, detecting commuting activities such as taking a bus, subway, train, car, bicycle 

have following advantages [22]:

Ÿ Statistical data of transportation usage can be acquired automatically, reducing 

the cost and time spent via survey 

Ÿ User customized services or advertisements can be provided based on 

transportation just-in-time

Ÿ Monitoring health status, safety issues, consumed calories, and impact on 

environment based on carbon footprint 

Carbon footprint is a new concept. If a human moves from one location to another 

on foot, oneself will not produce any air pollutions. If a human rides a car for 

moving, it will produce one whole carbon one can make. And if a human takes 

public transportation, production of carbon will be distributed by the number of 

people taking it. Therefore, by automatically detecting type of transportation, it would 

be able to figure out how a human impacts to the environment. 
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There are three main factors that controls the activity recognition accuracy which 

are using quality of data, extracting discriminant features, and using appropriate 

classification methods. Using high quality data is the basic and fundamental factor. 

Because if the data contains too much noises or if the data labeling is wrong, it will 

never show good accuracy whatever you do on feature extraction and classification 

stage. Generally in most research, it is assumed that data is in good quality. 

Classification is also important to well distinguish the activity based on the features. 

But in general, well known statistical classifiers such as Support Vector Machine 

(SVM), Decision Tree (DT), K-Nearest Neighborhood (KNN), Random Forest (RF), 

Bayesian Network, and Multilayer Perceptron are used. Among three main factors, 

feature is considered to be the most important one. The features that can best 

represent the activity must be extracted and selected from the collected sensory data. 

This feature engineering process is the most significant problem for achieving 

accurate HAR [23]. 

Existing research on vehicle detection uses statistical features on time domain and 

frequency domain. Vehicles are static activities where there is no movement of 

human. Therefore, looking through the acceleration signal, no big fluctuation is made. 

And also, the signal pulse seems to be random without any particular pattern. This is 

applied to all kinds of vehicles. For example, subway has motor and runs on the 

rail. While inside subway, one cannot feel any big vibration but small ones. While in 

the car, one can feel bigger vibration than subway but still small ones. While in the 

bus, the vibration is more bigger. But when looking through the signal collected 

from accelerometer, it can be observed that it is hard to distinguish them intuitively. 

Even with extracting features and apply machine learning, the classification accuracy 

is poor. Therefore, frequency domain features are also used in the research. 
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Frequency is a unique signal to detect number of times an object vibrates over a 

period of time. The unit of this is hertz (Hz). 1Hz means an object vibrates one 

time for a second. For vehicle detection, frequency features are also extracted. But 

frequency changes if external factors are intervened, changing the vibration. For 

example, buildings or suspension bridges, exhibit a dynamic response that is severely 

shaken when seismic waves are received. As described above, all objects show 

dynamic fluctuations in the degree of disturbance, but are dynamic, and this 

phenomenon of vibration from the outside is called force vibration.

Meanwhile, even though the object is not disturbed, each object has its own 

vibration characteristics, and this unique vibration characteristic is called natural or 

eigen/vibration or frequency [24]. In reality, the object does not vibrate unless 

dynamic forces are applied from the outside. Thus, natural vibrations refer to the 

inherent dynamic nature of the object. 

Natural vibration is a unique value that never changes once an object's shape, 

material, and constraints are determined. And the number of natural vibration exists 

as much as the degree of freedom of the object. For example, the clock of a wall 

clock has only one natural frequency because there is only one degree of freedom. 

For another example, a thin metal plate with one end fixed to the wall cannot 

vibrate without any dynamic force from the outside. But when pressing and releasing 

the other end, the plate vibrates up and down. The natural vibration representing the 

oscillating speed is the number of cycles oscillated per unit time, and one cycle is 

defined as starting and returning vibration to the initial position. In this case, it is an 

resilient continuum body which has infinite freedom because it has infinite degrees of 

freedom.
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It is easy to understand the definition of a cycle when we consider the circular 

motion of the earth rotating around the sun. In this case, the rotation of the cycle 

corresponds to 2 * pi radians. Therefore, the natural frequency corresponds to the 

angle rotated per unit time when the vibration motion is converted into the circular 

motion. If we oscillate with one oscillation cycle per second, the natural frequency is 

2 * pi radians / second, corresponding to 360 degrees. Natural vibration starts at the 

lowest value and begins with the order first, second, and so on. In particular, the 

first natural vibration is called the fundamental natural vibration. This refers to a 

frequency that vibrates in a shape that can be easily deformed when the object 

vibrates, and indicates a frequency that the object vibrates in a shape that is difficult 

to deform as the object becomes higher. The deformation shape of an object 

vibrating at each natural frequency is called a natural mode shape for that natural 

frequency. When the object vibrates forcibly, the resonance response increases 

infinitely when the frequency of disturbance coincides with or close to the natural 

frequency of the object. In addition, after a certain time after the disturbance is 

removed by forcibly vibrating the object, the object is freely oscillated to the first 

natural frequency. That is, the first mode shape refers to a vibration shape of an 

object vibrating at a first natural frequency, and as described above, it means a shape 

that an object can easily deform. And the dynamic response of the object due to 

forced vibration is expressed by the combination of all natural vibration modes of the 

object.

Natural vibration characteristic is expressed by natural frequency, natural mode, and 

damping ratio. Natural frequency calculated without considering damping is called an 

undamped natural frequency, and the natural frequency reflecting the damping is 

called a damped natural frequency. Numerical analysis of natural frequencies and 

natural modes is called modal analysis. These natural vibration characteristics can be 
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analyzed by experiments, theories and numerical methods, and in the case of 

experiments, they are measured using resonance phenomena with measuring devices 

such as oscilloscopes. Theoretical and numerical analysis techniques can be used to 

solve mathematical expressions that govern natural vibrations by hand or to obtain 

approximate solutions using numerical techniques such as the finite element method. 

Therefore, we should take a look on natural vibration for vehicle. Vehicle’s natural 

vibration comes from suspension such as spring stiffness, shock absorber damping 

force, and tire vertical stiffness. It is also affected by road condition, speed, loadage, 

and engine vibration [25].

Another important factor to consider for accurate HAR is that there is no such 

kind of statistical or probabilistic classification methods which can show complete 

accuracy. Most of the HAR research focuses on improving the accuracy in the stage 

of pre-processing, feature extraction and selection, and classification. To reduce errors 

at most, additional follow-up measures are required based on heuristic where machine 

learning method cannot solve the problems. A lot of works have proposed their own 

post-processing methods with complex mathematics showing good correction results. 

But in our case, it should be considered that our target is to run the HAR on 

smartphone, so a simple yet efficient method is required to be run in mobile 

environment in real-time.
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1.3 Problem statement

Early stages of HAR for commuting activity did not differentiate vehicles in detail 

but regard as a single vehicle class. They did not just only unclassified with similar 

types such as road vehicles of car and bus or subway and train, but merge them all 

which has apparently different characteristics. But differentiating vehicles is necessary 

for higher accuracy. For instance, if a person commutes to company driving car, they 

will only walk few by walking from home to garage and parking lot to company. 

But when using public transportation, they should walk from home to station and 

station to company, which will include a lot more walking then driving a car. So 

using public transportation will increase the amount of walking exercise, which will 

make one more healthier than the person using a car. A person using a bicycle for 

commuting has even more amount of exercise while the bicycle is not automatic, 

requiring human labor. From these reason, in the perspective of health, recognizing 

each vehicle is preferred.

Most HAR research on smartphones mainly uses accelerometer and shows 

considerably high accuracy in recognizing ambulatory activities, such as staying, 

walking, and jogging [26-30]. However, it shows low accuracy in recognizing when a 

user is in vehicles such as in a bus, car or subway [31–33]. That discrepancy in 

accuracy occurs because different physical activities involve certain significant 

physical differences that are indicated in the magnitude and pattern of acceleration 

signals. When people are inside a vehicle like a bus or subway, they either stand or 

sit, which are static activities, relatively motionless. 

One major consideration using smartphone is that the position and orientation is 

not fixed. Some people put it in trousers or jacket pocket. Some will put it inside a 
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bag, where a bag is also divided such as backpack or handbag. Finally, some people 

will hold the phone, simply holding it or using it. Therefore, it is quite difficult to 

distinguish between standing/sitting on a static floor or being in a vehicle when the 

sensor is not fixed; no large difference appears in the patterns of raw acceleration 

signals while not knowing the orientation. Therefore, methods to offset position and 

orientation is necessary for smartphone based HAR.

As mentioned on section 1.2, we will have to take a look on vehicle’s natural 

vibration. This can be done by taking a look on frequency signal. Inertial sensors on 

smartphone, accelerometer, mainly measures the acceleration force. This is a time 

domain signal that we can observe the pulse of the signal as time goes by. By using 

Fourier Transform, we can convert this into frequency domain signal. Many kinds of 

features are extracted on existing works. They extract mean which returns average of 

all frequency in segmented window, standard deviation of all frequency in segmented 

window, energy of all frequency, spectral entropy, energy proportion which returns 

proportion of energy in different frequency band or first and second peak frequency 

energy. 

However, these features possess some problems. First, mean and deviation is a 

statistical feature. It cannot be applied on frequency domain. In time domain signal, 

the signal shows the variation in chronological sequence. Therefore, these statistical 

features can be applied. But in frequency domain, all the individual frequency 

possess different meaning, where the dimension is different. This cannot be treated as 

same as time where it only shows single dimension. Secondly, referring all frequency 

energy is inefficient where some of the frequency are meaningless to refer, and only 

increases the dimension of feature vector. This is applied same to dividing proportion 

of energy, where meaningless frequency will be included in the divided proportion. 
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Third, taking an look on first or second peak frequency energy is not appropriate 

that peak frequency will be changed due to environmental factors such as road 

conditions. Therefore, a method to extract the natural frequency of the vehicle itself 

is necessary.

Meanwhile for post-processing method, it is used to correct the result from the 

data driven machine learning based classification. Most of the work uses majority 

voting method by referring predefined set of windows. This will cause inefficiency 

by referring unnecessary data, and also has problem when voting shows equal.

In summary, for a practical mobile activity recognition for commuting activity, 

position and orientation problems must be solved, features which can well represent 

the nature of the vehicles should be extracted, and to overcome the confusion among 

static activities in smartphone environment after machine learning based classification, 

an efficient post-processing method is required which can be used in smartphone. 

From the aspect of difficulties on distinguishing vehicles on different position of 

phone, some of the activities to be recognized in this thesis are static. These are the 

motorized vehicles such as car, bus, and subway, and non-motorized activities such 

as stay and bicycle. When people are inside a vehicle like a car, bus or subway, 

they either stand or sit, relatively motionless. By examining the raw sensor signals in 

these activities, no discriminative differences in pattern are shown. Not only vehicles 

but also stay is a static activity. Finally, when riding a bicycle, smartphone located 

in trousers pocket shows periodic signal pattern by cycling, but when the phone is 

located in jacket pocket, backpack and hand, this also shows similar patterns to 

vehicles and stay. This brings the confusion among five different activities. This 

discrepancy in accuracy occurs because different physical activities involve certain 
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significant physical differences that are indicated in the magnitude and pattern of 

acceleration signals. To solve this problem, we must find the discriminative features 

that can best distinguish the vehicles by inertial sensor signals.

From the aspect of classification error on machine learning, even though using 

optimized features, no such classification method can show complete classification 

performance. And even though it showed perfect performance in off-line process, in 

on-line process, the data is different compared to the training data, and also the 

optimized feature will change, which eventually deteriorates the performance. A 

method is required to pull up the performance by changing which features to extract, 

changing the classification method, or applying post-processing to revising the final 

result in real-time.
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1.4 Contribution

In this thesis, a commuting activity recognition using accelerometer, gyroscope and 

GPS data from a smartphone to recognize stay, walk, jog, in a bus, subway, car and 

riding a bicycle is proposed. These activities are chosen to be the basic activities in 

daily life commuting that occur frequently and can thus be used as source data for a 

life-log. Contributions of the thesis are represented as follows.

 

From the aspect of extracting natural vibration features, as the vehicles shows 

similar sensor signal pattern in time domain, using time domain signal features 

cannot well distinguish vehicles where it is hard to find periodic patterns. By 

assuming that different kind of vehicles may have different kind of natural vibrations, 

proposed method extracts natural vibration features based on frequency domain 

features. In here, each vehicle shows different dominant frequency amplitude, and 

also even in different positions, this does not change. 

From the aspect of applying post-processing, an activity decision algorithm as a 

post-processing is proposed to revise the classification result from machine learning 

based classification. The purpose of this correction algorithm is to maintain the 

current activity result unless it confirms that it is truly changed. It refers to previous 

activity, corrected activity and current activity to determine the final result. It also 

uses GPS to aid the classification based on speed and uses coordinates to classify 

other vehicles from ground section subway. This method does not require complex 

computation, which can well fit for real-time mobile application.
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1.5 Thesis Organization

The thesis is organized in five sections. Section 1 introduces the background of 

human activity recognition and different means of recognition such as video based, 

environmental sensor based and wearable sensor based. Then the motivation for this 

thesis is explained of the advantage of automatic commuting activity recognition, the 

difficulty of recognizing and classifying commuting activity such as public 

transportation using smartphone, and the necessity of post-processing. Finally, 

contribution is described. Section 2 introduces related works from traditional wearable 

sensor based HAR, HAR using smartphone, human commuting activity recognition 

using smartphone, and post-processing. Section 3 describes the proposed method of 

human commuting activity recognition using smartphone with activity correction. At 

first in pre-processing, projecting acceleration signal to earth coordinate, smooth 

filtering, and changing time signal to frequency signal is described. On feature 

extraction stage, sensor signal is analyzed to extract natural vibration features from 

frequency domain signal from vehicles. Finally, a correction method to correct the 

error from classification is introduced. Section 4 describes the experimental 

environment of how and which data is collected, subjects and the route. Then 

experiments are conducted by comparing different classifiers, comparing different 

research, and finally tested on differently collected data to check overfitting. And 

then regularization and optimization is performed for model generalization. And lastly, 

conclusion and future directions are described in section 5. 
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2. Related Works

2.1 Wearable Sensor based HAR

Research on HAR using wearable sensors has long been undertaken, with various 

accomplishments. HAR was initially achieved by attaching individual sensor devices 

to various body parts, so called body sensor network. HAR can be categorized with 

different criteria such as what types of sensors to use, how many sensor devices to 

use, which position to attach the sensor device on the body, whether it is real time 

recognition or not, whether to recognize overall body movement, posture or gesture, 

what kind of activities to detect, handling the problems of sensor displacement, etc. 

In this section, research is classified based on the number of sensor devices.

2.1.1 Using single sensor device

Karantonis et al. [34] placed a single sensor on waist detecting walking and 

falling. The sensor device was mounted with wireless communication device where it 

showed the result in real-time. They have also detected the transitions between 

activities. Mathie et al. [35] also placed the sensor on the waist to detect falling, 

walking, sitting, standing and lying. They have adopted hierarchical classification 

where it first divides activity and rest, activity to fall, walk, postural orientation, 

others, and postural orientations to sitting, standing and lying. Yang et al. [36] placed 

the sensor on the waist to detect locomotions and also ADLs such as walking, 

running, scrubbing, standing, working at a pc, vacumming and brushing teeth. They 

have also adopted hierarchicl classification as dividing into static and dynamic 

activities. They have used neural network for classification. Bonomi et al. [37] has 
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placed the sensor on lower back to detect lying, sitting, standing, working on a 

computer, walking, running and cycling. They have used decision tree as a classifier 

with different time segmentation which are 0.4, 1.6, 3.2, 6.4 and 12.8 second. Gupta 

et al. [38] has placed the sensor on waist to detect transitional activities such as 

walking, jumping, running, sit-to-stand and vice versa, stand-to-kneel and vice versa 

and still. They have compared feature selection methods such as Relief-F and 

sequential forward floating search (SFFS) and also compared Naive Bayes and KNN. 

Massé et al. [39] has placed the sensor on trunk to detect sitting, standing, walking 

and lying for mobility impaired stroke patients. They have additionaly used 

barometric pressure sensor. Frank et al. [40] has placed the sensor on the belt and 

recognized sitting, standing, walking, running, jumping, falling and lying using Bayes 

network. Garcia-Ceja et al. [41] has placed the sensor on wrist to detect long term 

activities such as shopping, showering, dinner, working, commuting and brushing 

teeth. They have compared the result with Hidden Markov Models and Conditional 

Random Fields. Khan et al. [42] have used accelerometer placed on chest recognizing 

lying, sitting, standing, walking and running, and transitional activities between lie, 

stand sit and walking. They have used hierarchical classifying as using Artificial 

Nerual Network for lower level activities and Autoregressive modeling the higher 

level activities. Casale et al. [43] have used accelerometer placed on the chest to 

recognize stair, walk, talk, stand and working on a pc. They have used random 

forest for classification. Long et al. [44] used accelerometer placed on waist to 

recognize walking, running, cycling, driving and sports. They have used principal 

component analysis to remove feature correlation and reduce feature vector dimension 

with Bayesian classification. 
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2.1.2 Using two sensor devices

Parkka et al. [45] has placed sensors on wrist and chest to detect lying, sitting, 

walking, rowing and cycling. They have compared using custom decision tree, 

automatically generated decision tree and artificial neural network. Lyons et al. [46] 

has placed the sensor on thigh and trunk to detect sitting, lying, standing and 

moving. They have detected the posture based on the inclination threshold. Yeoh et 

al. [47] has placed the sensor on wrist and two thighs to detect sitting, lying, 

standing and walking speed. They have divided the classifier for postural activity and 

movement activity. Salarian et al. [48] placed the sensor on trunk and two shanks to 

detect lie, sit, stand, walk and sit-to-stand and vice versa activities based on 

Parkinson’s disease patients. Mannini et al. [49] used accelerometer placing wrist and 

ankle recognizing ambulation, cycling, sendentary and others. They have concluded 

that error from wrist based recognition can be corrected with ankle based recognition.

2.1.3 Using three sensor devices

Olguın et al. [50] has placed the sensor on wrist, hip and chest to detect sitting, 

running, walking, standing, lying and crawling. Chamroukhi et al. [51] has placed the 

sensor on chest, thigh and ankle to detect stairs, walking, sitting, standing up and 

sitting on the ground. They have adopted automatic temporal segmentation and 

expectation-maximazation algorithm. Moncada-Torres et al. [52] have placed the 

sensors on chest, thigh and ankle to detect 16 ADLs such as whole body movements 

and gross and dextrous upper-limb activities to compare the importanace of sensor 

placements. Attal et al. [53] have placed the sensors on chest, right thigh and left 

ankle and compared the result with different classification methods such as KNN, 

SVM, RF and HMM, GMM and K-Means. Pirttikangas et al. [54] has placed sensors 
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on thigh, necklace and both wrists to detect typing, watching TV, drinking and stairs. 

They have also collected heart rate data. Based on the forward-backward sequential 

search based feature selection, sensor signal from necklace was shown to be 

important. Banos et al. [55] dealt with sensor displacement problems, which is also a 

classic problem in the area of wearable sensor based HAR. They have compared to 

put the sensor in ideal setting, placing the sensor wrongly by the user oneself who 

doesn’t know the ideal position, and in the case when the sensor slips from the ideal 

position. 

2.1.4 Using over four sensor devices

Gao et al. [56] has placed the sensors at chest, waist, thigh and side to detect 

standing, sitting, lying, walking and transition between activities. They have compared 

the affect of different sensor locations. Gjoreski et al. [57] has placed sensors on 

thigh, waist, chest and ankle to detect lying, sitting, standing and transitional 

actitivies. They have also conducted an experiment to check placement of sensor best 

detects the fall. The most remarkable research was conducted by Bao et al. [58]. 

They attached five 2D accelerometers on the forearm, wrist, pelvis, knee, and calf 

and recognized activities such as walking, running, standing, sitting, watching TV, 

cycling, eating, and reading. They showed an average of 84% accuracy independent 

of user. Atallah et al. [59] has used seven sensor devices to check which position is 

the best for HAR using accelerometer. They have placeed the sensors on ear, chest, 

arm, wrist, waist, knee and ankle. They have divided the activity into groups such as 

very low level activity, low level activity, meduim level activity, high level activity 

and transitional activity. Recognized activities were postures such as lie, locomotions 

such as walk and run, and others for ADLs. From their experiment, sensor on knee 

showed best for high level and transional activity. Cleland et al. [60] used six sensor 
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devices to check which position is the best for HAR using accelerometer. They were 

placed on chest, wrist, lower back, hip, thigh and foot. Walking, running, treadmill, 

sitting, lying, standing and stairs were recognized. From the experiment, hip showed 

the best result when using alone, and using over two sensors did not show big 

difference on accuracy.

A lot of work has been proposed using wearable sensor based HAR. The number 

of sensors and their attachment place is one of the important aspect for highly 

accurate HAR. But the research trend has changed to use mobile phone after the 

emergence of smartphone. It has great advantage having multiple types sensors 

embedded on it, and most of the users carry them where obtrusiveness problem is 

solved. As the characteristic of smartphone is that position and orientation is free, 

sensor displacement research has faded away. 
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2.2 Smartphone based HAR

After smartphone has come to the surface, direction of the research has changed to 

use smartphone itself. The challenges for smartphone-based HAR are (1) deciding 

what kind of smartphone sensors to use, (2) handling the position and orientation 

problem, (3) saving energy to reduce battery consumption, and (4) using additional 

sensors along with smartphone. At the early stage of the research, the phone served 

merely as a data collection device. The data were either transmitted directly to the 

server through online communication or connected to the server after data collection 

was complete. In both cases, the server performed the whole recognition process. As 

smartphone performance increased, the recognition process moved to the smartphone 

itself.

2.2.1 Types of sensors

Most HAR research uses only an accelerometer, but some studies have used other 

inertial sensors. Shoaib et al. [61] used an accelerometer, gyroscope, and 

magnetometer to evaluate recognition results using different combinations of sensors. 

The accelerometer and gyroscope showed reasonable results even when used 

independently, but the magnetometer was not sufficient to use alone because of the 

device orientation problem. Khan et al. [62] used a pressure sensor and microphone 

along with an accelerometer. They used the microphone based on other research [63]. 

The pressure sensor was used to track altitude—particularly the relative altitude 

between different points, which could be helpful in recognizing activities that result 

in an increase or decrease in altitude, such as climbing or descending stairs. Shoaib 

et al. [64] experimented on combination of different kind of inertial sensors which 

are accelerometer, gyroscope and magnetometer. As a result, magnetometer has only 
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small contribution while accelerometer and gyroscope affects tremendously. Martin et 

al. [65] used all kinds of sensors such as accelerometer, gyroscope, magnetometer, 

gravity, Linear acceleration and orientation. They have compared the experiment with 

different combination such as features and classification methods. Ryder et al. [66] 

have used accelerometer and GPS to check ambulatory. The collected data are sent 

to server and processed. Kim et al. [67] has used accelerometer, gyroscope and 

magnetometer to recognize walking, stairs, running and motionless inside the building. 

They have used hierarchical SVM and measured enery expenditure of the user. Ouchi 

et al. [68] have split the activities into indoor and outdoor. Indoor activities includes 

walking and resting and some ADLs such as vacumming and brushing teeth. Outdoor 

activities include resting, walking, running and boarding. Two different classification 

methods are switched to recognize actitivties based on GPS. Zhao et al. [69] used 

accelerometer and magnetometer. They have divided the activity into two classes 

which are periodic and non-periodic, and then with the divided result, sencond 

classifier is applied.

2.2.2 Position and Orientation

Some researchers tried to achieve position or orientation independent recognition. 

Anjum et al. [70] collected data with the phone in different orientations. To solve 

the orientation problem, they rotated the three orthogonal reference axes to align with 

the three transformed axes with eigenvector corresponding to the axes in descending 

order of signal variation. Henpraserttae et al. [71] proposed a projection-based method 

for device coordinate estimation to handle the device orientation problem. They 

transformed all input signals into a single global reference coordinate system. Lu et 

al. [72] used orientation-independent features, one-time device calibration (which can 

be perceived by the user), and classification techniques in which activities are 
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modeled by splitting them into several sub-classes, each of which is associated with 

particular body positions. Khan et al. [73] used features including autoregressive 

coefficients and signal magnitude area are calculated. Kernel Discriminant Analysis is 

then employed to extract the significant non-linear discriminating features which 

maximize the between-class variance and minimize the within-class variance to handle 

different positions of smartphone. Chen et al. [74] used diverse classifiers for both 

personalized and generalized model, and experimented in terms of various placement 

settings, sensitivity to user space, stability to combination of motion sensors, and 

impact of data imbalance. Thiemjarus et al. [75] placed the smartphone on chest, 

waist and both side of trousers pocket with different orientations. Based on the result, 

the highest accuracy showned one waist, even higher than combining all of the 

positions. Trousers pocket and combining all didn’t show large difference while chest 

showed the lowest accuracy. Khan et al. [76] placed the sensor on either side of 

trouser’s front and rear pocket, and jacket’s inner pocket. Based on the result, the 

accuracy on any or the trouser’s pocket was similar while jacket pocket slightly 

decreased when used with Kernel Discriminant Analysis (KDA). Otherwise, without 

using KDA, position in jacket showed lower than trouser’s pocket with some 

difference. Yang et al. [77] have proposed position-independent method called PACP 

(Parameters Adjustment Corresponding to smartphone Position), where features were 

extracted from the raw accelerometer and gyroscope data to recognize the position of 

the smartphone first; then the accelerometer data were adjusted corresponding to the 

position; finally, the activities were recognized with the SVM (Support Vector 

Machine) model trained by the adjusted data. To avoid the interference of smartphone 

orientations, the coordinate system of the accelerometer was transformed to get more 

useful information during this process. Experimental results show that PACP can 

achieve an accuracy over 91%.
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2.2.3 Energy saving methods

Some researchers tried to reduce the computational power. Anguita et al. [78] 

proposed multiclass classification which adapts the standard Support Vector Machine 

(SVM) and exploits fixed-point arithmetic for computational cost reduction. Lee et al. 

[79] used hierarchical hidden Markov models for recognition. To reduce the 

computational power, the recognition models are designed hierarchy as actions and 

activities, where actions are low-level context such as stand or walk and activities are 

high-level context such as shopping or taking bus. Reyes-Ortiz et al. [80] presents 

the Transition-Aware activity recognition where prediction technique deals with 

transitions either by directly learning them or by considering them as unknown 

activities. They have combined the probabilistic output of consecutive activity 

predictions of a SVM with a heuristic filtering approach. Lu et al. [81] proposed 

using an unsupervised classification method called MCODE to recognize activities 

including basketball activity. 

2.2.4 Smartphone with additional sensors

Some ressearchers tried to use additional sensors along with smartphone. Keally et 

al. [82] have used both body sensor network and smartphone together with adaboost 

to improve the performance albeit unobtrusiveness. He et al. [83] used Fisher’s 

discriminant ratio criterion and 3 criterion for feature selection to select features 

among 140 features. Then a hierarchical classifiers including fourteen classifiers were 

applied. Reiss et al. [84] introduced a new, confidence-based boosting algorithm 

called ConfAda-Boost.M1. which outperforms commonly used classifiers such as 

decision trees or AdaBoost.M1. Capela et al. [85] collected data from able-bodied, 

elderly, and stroke patients. Features were selected among 76 features using three 
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filter-based, classifier-independent, feature selection methods (Relief-F, 

Correlation-based Feature Selection, Fast Correlation Based Filter). Ronao et al. [86] 

proposed a two-stage continuous hidden Markov model (CHMM) approach where 

first-level CHMMs is for coarse classification, which separates stationary and moving 

activities, and second-level CHMMs for fine classification, which classifies the data 

into their corresponding activity classes. Random Forests (RF) variable importance 

measures are exploited to determine the optimal feature subsets for both coarse and 

fine classification. 

As the research shifted to smartphone based HAR, solving the orientation problem 

became the basic by getting signal magnitude or extracting vertical and horizontal 

component or projecting to earth coordinate. Also a lot of methods tries to save 

power consumption by using less type of sensors or reducing the sampling rate 

which was not shown phenomenon in wearable sensor based HAR. 
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2.3 Human Commuting Activity Recognition

Numerous works tried to identify vehicles, such as car, bus, subway, train, tram, 

motorbike and bicycle. They were to recognize more contexts including vehicles with 

a single mobile phone. Early works did not differentiated vehicles but categorized 

them as a single activity. Then many types of vehicles were introduced and tried to 

separate each of them. 

Yu et al. [87] have used accelerometer, gyroscope and magnetometer to detect still, 

walking, running, biking and vehicles. They have extracted time domain features and 

frequency domain features of the peak value and ration between the first and second 

peak. And error correction is made based on the scores of series of activities. But 

they did not differentiated vehicles but classified as a single class. Hao et al. [88] 

used accelerometer and GPS to detect stay, walking, bicycling and motorized 

transport. Stay is divided into long term and short term. They have divided activity 

into moving and stationary for every activity but did not differentiated vehicles. 

Sankaran et al. [89] used only barometer to detect idle, walking and vehicle. As 

barometer consumes low power and shows efficiency, vehicle is not classified in 

detail yet the performance is not impressive. Yang et al. [90] used acclerometer to 

detect sitting, standing, walking, running, driving and bicycling. They have extracted 

vertical and horizontal components and extracted features rather than using magnitude. 

It has shown better result but still the vehicle is not separated. Reddy et al. [91] 

used accelerometer and GPS to detect stationary, walking, running, biking and 

motorized trasnport. They have used decision tree followed by first order discrete 

Hidden Markov Model. The result is good enough but the transport is not 

differentiated. Fang et al. [92] has used accelerometer, gyroscope, magnetometer to 

detect still, walk, run, bike and vehicle and adopted deep neural network. For the 
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vehicle data, motorcycle, car, bus and metro data are collected. It showed better 

result than traditional statistical classifiers but didn’t differentiate vehicles.

Su et al. [93] have used accelerometer to detect bus, subway, car, bicycle, walking 

and jogging. They have proposed hierarchical classification where wheeled and 

unwheeled activitiy is divided and used SVM based classification. Siirtola et al. [94] 

used accelerometer to detect walking running, cycling, driving a car, sitting and 

standing. Unlike other research, from pre-processing, feature extraction and 

classification are all made on the phone with active and inactive hierarchical 

classification. Sonderen et al. [95] used accelerometer, gyroscope and magnetometer to 

detect running, bike, and car. They have compared with different classifiers to find 

the best sampling rate to reduce the power consumption, but only has car class in 

vehicle. Feng et al. [96] compared the usage of accelerometer only, GPS only and 

using both sensors to detect walking, running, bicycle, motorcycle, bus, car, tram and 

metro. They have used their own heuristic based classification and concluded that 

using both sensors shows the best result. Lu et al. [97] used accelerometer, GPS and 

microphone to detect stationary, walking, running, cycling, and vehicle. Shafique et 

al. [98] used accelerometer and GPS to detect train, walk, bicycle and car. They 

have compared with different classifiers such as SVM, AdaBoost, Decision Tree and 

Random Forest. Shin et al. [99] used accelerometer and GPS to detect walk, tram, 

train, bus and car. They have proposed hierarchical classification with walk-stop and 

walk-start mode with vehicle and non-vehicle mode. Nick et al. [100] used 

accelerometer to detect car, train and pedestrian. The size of the class is too small to 

say that the result is reliable. Jahangiri et al. [101] used accelerometer, gyroscope 

and rotation vector sensor to detect bike, car, walk, run and bus. All of the values 

from each frequency is extracted compared with SVM, KNN and DT. 
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Han et al. [102] used additional sensors in the smartphone with a hierarchical 

structure. They recognized staying, walking, running, and shaking using the 

accelerometer. Shaking indicates either a bus or a subway, and they used the 

microphone to distinguish between them. Ashqar et al. [103] used accelerometer and 

GPS to detect bike, car, run and bus. They have extracted time and frequency 

domain features. From the frequency domain, they have extracted all of the values 

from frequency. Random Forest based classification was done first and then with the 

first and second highest probability, SVM is performed. Lari et al. [104] used 

accelerometer and GPS to detect car, bus and walk. They have used Random Forest 

and included the speed as feature. But only three class is not enough for practical 

usage. Balli et al. [105] have used accelerometer, gyroscope and GPS to detect 

walking, running, biking, bus and car. Speed is used for feature acquiring max and 

average speed. Experiments using different combination of sensors was performed 

where the result showed accelerometer is mandatory. Lee et al. [106] has used 

accelerometer and microphone to detect bus, subway and taxi. They have used the 

audio data when the accelerometer based result is concluded as transportation. Then 

the final activity is concluded based on sound. Chen et al. [107] has used 

accelerometer, gyroscope, magnetometer and pressure sensor to detect bus, car, metro 

and train. They have proposed to use multiple SVM on each pair combination of 

activities. Yanyun et al. [108] used accelerometer, gyroscope, magnetometer and 

pressure sensor and input to Convolutional Neural Network. Time and frequency 

domain are extracted first and input to CNN. The result is much higher compared to 

using traditional methods. 

Byon et al. [109, 110] has used only GPS and classified the activity using 

artificial neural network. Bus, car, bike and walk is classified. The data was clearly 

collected within the same route which may posses the possibility of overfitting. 
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Dabiri et al. [111] also used only GPS and classified based on CNN to detect walk, 

bike, bus, driving and train. It showed better result than traditional statistical 

classifiers. Hedemalm et al. [112] used accelerometer and gyroscope and segmented 

window into 5 seconds. The purpose is to reduce energy, so they have included 

sleep mode between activities and consider the unrecognized activities as previously 

recognized activities. Manzoni et al. [113] collected accelerometer and GPS to 

recognize walking, bike, metro, bus and car. From the frequency domain signal, they 

have extracted coefficients with high frequency magnitude. Zheng et al. [114] has 

used the GPS trajectory data to detect walking, taking a bus and bicycle, and riding 

a car. Using only the GPS has weakness that it shows lower results than using 

accelerometer. Xiao et al. [115] used GPS to recognize walk, bus, taxi, bike, car, 

subway and train. They have extracted global and local features from trajectory data 

and applied ensamble classification using Random Forest, Gradient Boosting Decision 

Tree and XGBoost. But they did not classify road vehicles. Endo et al. [116] has 

used GPS and DNN to recognize bus, train and walking. The GPS is not used as 

raw data but trajectory image is input for DNN. But the accuracy was not good 

representing that using trajectroy image data to DNN is not good. Stenneth et el. 

[117] used GPS and GIS to detect car, bus, ground level train, walking, bike and 

stationary. When transportation network features are not used, the accuracy is poor. 

But when using them, it goes higher and reasonable. Semanjski et al. [118] used 

GPS data from 8,000 subjects. With this tremendous amount of data, the accuracy is 

very high compared to other research which only uses the GPS data. But it did not 

test on new area where the route is different. Bolbol et al. [119] also only used GPS 

data to detect car, walk, cycle, underground, train and bus. They have applied 

moving window SVM classification but still the accuracy is not good. Gong et al. 

[120] used GPS data to detect walk, car, bus, subway and commuter rail. They have 

classified hierarchically as train like, road vehicles and others. Gonzalez et al. [121] 
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used GPS data and neural network to detect car, bus and walk. Result is good 

enough but has limitaion on having only three activities. Nitsche et al. [122] used 

accelerometer and GPS to detect walk, bike, motorcycle, car, bus, tram, metro, train 

and wait. But the train-like activities showed poor performance, and when the GPS 

signal was lost, car and motorcycle showed very poor accuracy.

The trend of studies to detect commuting activities has changed from using 

traditional statistical classifiers to use deep neural networks. The usage of sensor also 

divided by only using inertial sensors, inertial sensors with GPS and only using GPS. 

In most cases, using only GPS shows poor accuracy than others and accelerometer is 

the must have sensor for accurate detection.
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2.4 Post-processing

Post-processing is to alleviate the error of machine learning based classification. 

Research can be divided into three ways as using only machine learning methods, 

adopting heuristic methods, and using both methods

Wenand et al. [123] adopted Adaboost, to retrain the model by updating the 

weights and conclude the final activity based on posterior probability. Wang et al. 

[124] have claimed WOODY, where activity is corrected based on the observation 

probability and weight of each state in observation vector. San-Segundo et al. [125] 

has used Moving Mean (MM) based low-pass filter for feature. In this case, it will 

reduce the noisy variations between consecutive frames. 

Zheng et al. [126] proposed to refer previous activities to choose the current 

activity. From a given activity subset (2n+1), the most frequent activity is chosen 

and set to final activity. Zhong, et al. [127, 128] also proposed to use previous 

activity. Based on the minimum confidence value set as threshold, the current activity 

is changed if it exceeds the threshold. Otherwise, Markov smoother backtracks 

previous activity. Parkka et al. [45] has used median filter and referred 31 seconds 

of window to rather change the activity or not. This is because recognized activities 

in this research are continuous activity, and it will prevent from short transitional 

activities. Wang et al. [129] has updated activity by majority voting looking 1 minute 

duration due to continuous activity. Because of this long period, the comparison 

experiment started after 1 minute. Performance is good referring lots of data but is 

inefficient. Grzeszick et al. [130] sets five past activities to refer. The problem comes 

when majority voting shows equality. In this case, they haven’t updated current 
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activity. Han et al. [131] has first calculated likelihood and than make the transitions 

of the previous activity to new activity only when the likelihood is maximum for at 

least eight consecutive windows.

Machine learning based methods are more complex than heuristic based methods. 

These method usually refers probability based on the base classifier. This is a good 

approach that mostly first and second highest class has majority of the probability. 

But the problem comes when it comes to real world scenario with unseesn 

circumstances that it cannot handle. Meanwhile, heuristic approach is simple. 

Although the performance will not be better than machine learning based approach, it 

can reflect unseen circumstances which is special characteristic of human thinking.
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3. Proposed Method 

3.1 Overview

In this section, we introduce our methodology to recognize stay, walk, jog, and 

riding a bus, car, subway, and bicycle in real-life situations by using a single 

smartphone without considering any specific placement or orientation. For analysis of 

the problems, we have used the data collected by ourselves. Figure 3-1. shows the 

overall architecture of our proposed method. 

First acceleration signal, angular velocity signal, speed, latitude and longitude data 

is collected from smartphone. Then inertial data are sent for pre-processing such as 

projecting acceleration signal into earth coordinate, combining different axis into one 

to refer only the magnitude variation, and smoothing by order 3 moving average 

filter. Then features are extracted from time domain and frequency domain. In time 

domain, general statistical features were selected and extracted. In frequency domain, 

natural vibration features were extracted. Before classfication based on statistical 

classifier, GPS speed based classification is undergone. If the speed is low, it could 

be one of all activities where whole activity based classification is made. If the 

speed is high, it would be one of car, bus, subway and bike. Stay is also included 

in here due to the possibility of misclassification. When the speed is high, coordinate 

data is used to distinguish subway and other vehicles when running ground section. 

After classifying activity, to revise errors from pre-defined classification, 

post-processing is undergone, namely activity correction. Then with proposed 

correction rule, current activity, previous activity and previously corrected activity 

result is referred for final revision.
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Figure 3-1. Proposed overall architecture
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3.2 Pre-processing

Before the emergence of smartphones, HAR researchers attached individual sensor 

devices on the body such as torso or limbs and extracted features based on the axis 

with the pattern most characteristic of an activity. However, this method is not 

applicable for smartphones because people do not carry their smartphones in a fixed 

position and do not consider the orientation. Even in the same activity with same 

axis, the signal differs due to unfixed orientation. Thus, a method to offset the 

directional information is required. Total Acceleration (TA) [132], which is a vector 

sum of three axis signal into one is used to solve this problem. It powers each axis 

signal and apply square root on the sum of powered axis. In this way, only the 

magnitude variation of the signal can be referred, where it can easily distinguish 

walk, and jog which shows large differences in pattern and magnitude. TA is both 

applied for acceleration signal and angular velocity signal. Equation 3-1 is TA 

equation which shows how to get overall signal magnitude.

  


        (3-1)

If we take a look at the signal drawn from both acceleration and angular velocity 

signal, we can notice that these two are resembled. It is clear that both signals are 

measuring different values for different purpose. But we cannot say that these two 

are not related at all. This is because human being cannot move straightly without 

any slight rotation. When walking or jogging, hands and feet will move back and 

forth, and the body will keep the balance as the center, which causes minimum 

rotation. Therefore, acceleration signal represents the variation of magnitude of 

moving. For example, when walking, when one of the leg goes lifts from the ground 
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and goes forth, the magnitude of acceleration signal increases. And when the lifted 

leg stops going forth and comes down to the ground, the magnitude of acceleration 

signal decreases. This variation is recorded in accelerometer. In the same time, when 

lifting the leg to forth, there will be a rotation of lower body part, and vice versa 

when leg coming down. Figure 3-2. illustrates the acceleration signal magnitude while 

Figure 3-3. illustrates the angular velocity signal magnitude of all the activities using 

our collected data in TA.

   

Figure 3-2. Comparison of all activities using acceleration magnitude signals based on TA 
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Figure 3-3. Comparison of all activities using angular velocity magnitude signals based on TA

Although using TA can distinguish walk and jog well, it is clear that the rest of 

the five activities doesn’t show big difference. This is because only walk and jog 

activities are dynamic while the others are static. For example, while staying inside a 

car, bus, or subway, one do not move but stand or sit still inside the vehicle. A 

little bit different but similarly, when riding a bicycle, legs are moved for pedaling, 

but the body itself is fixed on the saddle. So the signal difference comes from the 

vibration of the vehicle itself, not the users movement. Looking into the time domain 

signal, we can see that static activities are in the range of magnitude from about 

zero to two for the acceleration signal, and about eight to ten for angular velocity 

signal. Figure 3-4. and Figure 3-5. illustrates signal of five static activities of 

acceleration and angular velocity signal based on TA respectively.
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Figure 3-4. Comparison of five static activities using accelerometer magnitude signals based on TA 

Figure 3-5. Comparison of five static activities using angular velocity magnitude signals based on TA 
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As shown in the graph, only the bike shows difference while the other four 

activities show minimum to low difference. It is clear that it will be hard to 

differentiate vehicles with TA signal. It is noticeable that running bicycle also shows 

similar acceleration magnitude to running bus and car that they can certainly be 

divided as vehicle with engine or not. There exists quite large vibration when in the 

running bus and car. For the bicycle case, this can be considered as pedaling. On 

the contrary, while car and bus are running by fuel and having an engine, subway is 

run by electricity, which uses a motor. We can figure out from the electric car 

launched these days that they do not make noises or vibration, so that speaker makes 

artificial engine sound to warn people that a car is passing by. Motor gives the 

electric power to the coil, where it rotates the drive shaft based on the magnetic 

difference. On the other hand, engine ignites the fuel and uses the explosion power 

to rotate the cylinder, which rotates the drive shaft, and finally makes the vibration. 

We have made the hypothesis that each vehicle will have a natural vibration that 

can be used to accurately determine the corresponding activity taking place. For this, 

we need to take a look into the gravity axis. Because user doesn’t move inside the 

vechile, acceleration signal for forth and back and left to right will not highly affect  

but up and down due to vibration. Existing research used accelerometer magnitude 

for cases in which the direction of a smartphone was not fixed, because 

accelerometer magnitude offsets the effect of the axis. However, this method cannot 

reflect the natural features that occur in each axis. A method was proposed to solve 

that problem by extracting vertical and horizontal features from an accelerometer 

magnitude signal. However, that method could not perfectly restore the original 

characteristics when reversing, which degraded the accuracy of vehicle recognition. 

Thanks to the smartphone environment we are using, android API provides the 

rotation vector based on magnetic field. We can obtain the 3x3 rotation matrix to 
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represent the angles relative to magnetic North as show in Figure 3-6.

Figure 3-6. Rotation matrix

where      and   Based on the rotation matrix, we can 

calculate the pure acceleration value by multiplying two of them from the following 

formulas where Ri is rotation matrix and ACCi is 3D accelerometer vector. Equation 

(3-2) is used to obtain the X-axis corrected to the east–west direction; Equation (3-3) 

is used to determine the Y-axis corrected to the north–south direction, and Equation 

(3-4) is used to calculate the Z-axis corrected to the up–down direction. In this way, 

all three axes of the accelerometer show zero value while placing still in any 

direction and will lead us to gain the magnitude of gravity axis (Z-axis) when the 

phone is moved in up and down direction.

 
  



×
             (3-2)

 
  



×
             (3-3)

 
  



×
             (3-4)
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Normally, sensor signal contains lot of noises. To smooth this, average moving 

filter with order 3 is applied. Figure 3-7 shows the before and after acceleration 

signal applying average moving filter. Green line shows the original signal while blue 

line shows the smoothed signal. As shown in the figure, big spikes which are noises 

are reduced. And also, the signal apex of the signal is smoothed from sharp point.

Figure 3-7. Example of Acc signal applying average moving filter
Green line is the original signal while blue line is the smoothed signal

As mentioned before, the acceleration signal must be converted to frequency signal 

to refer the natural vibration frequency. For this, we have applied Fast Fourier 

Transform (FFT) on acceleration signal [133] Frequency is how many times a 

periodic phenomenon has occurred in a unit of time, which means a number of 

repetitions occurring per second and represented as hertz (Hz). For reference, RPM 

(Round Per Minute) is the number of repetition that occurs per minute, and because 

the time of one repetition is called a period, the frequency is also the inverse of the 

period. Frequency analysis is a readout of patterns over time and is used as a 

fundamental data for finding the exact cause of the occurrence and establishing 
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appropriate measures, which is why it is used. Discrete Fourier Transform (DFT), 

when given n different complex values, is the process of converting these into n 

different complex values in a certain way. Reverting to that reverse is called IDFT 

by attaching the word "inverse". DFT takes much time with complexity O(N2) where 

FFT reduces this to O(NlogN). There are many methods of FFT where Cooley-Tukey 

algorithm is widely used.
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3.3 Feature Extraction

Several features are selected manually to discriminate activities. Mainly extracted 

activities are time and frequency domain features. Normally, time domain features are 

extracted with statistical features which can show the change of signal as time goes 

by. On the contrary, each frequency is a different dimension, where statistical feature 

extraction cannot be applied which makes no sense. Therefore, we only extracted 

natural vibration features.

3.3.1 Time domain features

For features we use to classify from time domain signal, we extracted 16 types of 

features including mean, standard deviation, max, min, zero crossing, mean crossing, 

range, interquartile range, median, median absolute, median absolute deviation, 

covariance, cross correlation, correlation coefficient, skewness, kurtosis, and trim 

mean. These methods are differently applied for each signal and signal sum. For 

example, TA from both acceleration signal and angular velocity signal, all of the 

feature extraction methods are applied except zero crossing, covariance, cross 

correlation and correlation coefficient. In TA signal, all of the values are over zero 

that zero crossing cannot be count. And the rest of the features require two different 

signals where TA has only one. Therefore, twelve features are extracted from TA 

signal. For each individual axis on both sensors such as accelerometer X, Y, Z and 

gyroscope X, Y, Z, all of the features are extracted except those which need two 

signals. These are extracted from each pair of each sensor, such as accelerometer X 

and Y, Y and Z, and X and Z. This is also applied to gyroscope. All of these 

features are extracted from 3 second based segmented signal. The number of 
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extracted features are: 13 from TA accelerometer, 13 from TA gyroscope, 14 from 

accelerometer X, 14 from accelerometer Y, 14 from accelerometer Z, 9 from 

accelerometer pair, 14 from gyroscope X, 14 from gyroscope Y, 14 from gyroscope 

Z, 9 from accelerometer pair. So the total number is (13 x 2) + (14 x 6) + (9 x 2) 

= 128 features. Table 3-1 shows the list and description of each feature.

Feature Description

Mean The DC component (average value) of the signal over the window

Standard 

Deviation
Measure of the spreadness of the signal over the window

Max The maximum signal value over the window

Min The minimum signal value over the window

Zero crossing
The total number of times the signal changes from positive to negative 

or back or vice versa normalized by the window length

Mean crossing
The total number of times the signal changes from below average to 

above average or vice versa normalized by the window length

Range
The range of signal by the difference of maximum and minimum value 

over the window
Interquartile 

Range

Measure of the statistical dispersion, being equal to the difference 

between the 75th and the 25th percentiles of the signal over the window

Median The median signal value of the signal over the window

Median Absolute 

Deviation

The median signal of the absolute deviations from the signal median 

over the window

Covariance Measure of the joint variability of two signals

Cross correlation
A measure of similarity of two series as a function of the displacement 

of one relative to the other
Correlation 

Coefficient
Degree of statistical relationship between two signals

Table 3-1. Extracted time domain features
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3.3.2 Frequency domain features

To extract features from frequency signal, we must analyze the data first. As the 

signal changes from time to time, we cannot pick random signal to check and decide 

it represents the whole. Therefore, an average distribution of each vehicle is drawn. 

This graph is drawn using only the Z axis of acceleration signal. This is because 

while inside vehicle, people do not move where back and forth or side acceleration 

signal will not change deeply. Instead, as explained in the introduction section, 

suspension mostly affects the vehicle, which is a movement of up and down. 

Therefore, gravity axis which is Z axis mainly affects on natural vibration, and is 

used. Figure 3-8 shows the average distribution of each vehicle from the collected 

data. For example in Figure 3-8 (a), average distribution of bus signal is drawn. The 

different color lines indicate the position of smartphone: Red line for hand, green 

line for backpack, blue line for top (jacket pocket) and black line for bottom 

(trousers pocket). From the graph, we can see some common phenomenon. First, all 

of the activities shows peak on lower frequency, under about 6Hz. But in the 

middle, they differ on each vehicle. Second, every signal line goes down to about 

18Hz. This implies that vehicles do not produce high band frequencies. We can 

know three things from these signal, position independency, different natural vibration 

and different amplitude.

Skewness The degree of asymmetry of the sensor signal distribution

Kurtosis The degree of peakedness of the sensor signal distribution

Trim Mean

Calculation of the mean after discarding given parts of a probability 

distribution or sample at the high and low end, and discarding an equal 

amount of both.
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(a) Bus (b) Subway

(c) Car (d) Bicycle

(e) Stay

Figure 3-8. Average distribution graph from different vehicles
(Red: Hand, Green: Backpack, Blue: Top, Black: Bottom)
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The first one is position, which doesn’t care if in the same vehicle. This is clear 

that in general activities, body parts move differently. For example while walking, the 

legs and arms will move back and forth but in cross while torso only goes up and 

down. But while in the vehicle, as it is static activity, user doesn’t move and the 

sensor on different body parts will be affected samely. Therefore, the phone on hand, 

trousers, jacket and backpack shows similar signals when in vehicle. But these are 

not identical that the characteristic is different and also the impact will be different. 

For example, when in stay, people will use their hand to manipulate the phone or 

wave hands with some gestures while talking. These causes more vibration on hand. 

Therefore, the signal has higher amplitude on hand than other positions. In summary, 

different positions will show different amplitude and have similar patterns of signal 

when inside the same vehicle.

The second one is signals on different vehicles show different natural vibration. 

Natural vibration is a unique signal of frequency of the object. There is not only one 

strict signal frequency but can be more than one, and also varies, not strictly an 

integer. For example in Figure 3-8 (a), We can see that the first natural frequency 

comes from about 3, and the second one comes from about 12, and the third one 

comes from about 24. From this, we can make a theory that the signal can be 

divided into three different parts. The first bandwidth section is from 1~5Hz. This is 

calculated by getting the average of natural frequency and the standard deviation of 

it. For example, the natural frequency of bus in the lower bandwidth is 3 having 

deviation of 2. This is also applied samely to other vehicles. The second bandwidth 

section is determined based on the signal showing lowest from the whole which is 

18. All of the vehicles identically drops the amplitude on frequency 18. Therefore, 

the second bandwidth signal range is 5~18Hz. Automatically, the third bandwidth 

section comes from the last bandwidth section from the second to the end, 18~25Hz. 
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The average distribution is calculated by, adding the whole data with on the same 

frequency and divide it by number of data. For example, 1Hz signal magnitude is 

calculated by 1Hz value of first data, 1Hz value of second data, 1Hz value of third 

data, and so on. And then this is divided into number of samples. All of the other 

frequency value is calculated in same way, and then finally the average distribution 

graph is drawn. This procedure is shown in Algorithm 1. 

Table 3-2 shows the natural vibration frequency of different vehicles. The 

frequency band overlaps a lot in different vehicles. This is because the sampling rate 

of collected data was only 50Hz. With short section, the more overlap happens. But 

the magnitude of frequency, e.g. energy differs from vehicle where it is still 

distinguishable. 

In summary, Table 3-3 shows the overall features extracted.

Get Natural Vibration Frequency
Input: A – Acceleration data of gravity axis
 
Output: N – Natural vibration frequency band
 
F = Frequency
B = Frequency band

for each frequencyFi    
     FAi= getAverage
end

for each frequency band Bi

     BAi= getAverageFrequency
     BSi= getStandardDeviation
     NBi= getBandofNaturalVibrationFrequency
end

Figure 3-9. Get natural vibration frequency
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Section 1 Deviation Section 2 Deviation Section 3 Deviation

Bus 3 2 9 4 24 4

Subway 3 2 8 5 25 4

Car 3 2 8 5 25 4

Bicycle 4 2 7 6 24 3

Table 3-2. Natural vibration frequency of different vehicles

Time domain features No. Frequency domain features No.

Features

Mean

Standard Deviation

Maximum

Minimum

Zero crossing

Mean crossing

Range

Interquartile range

Median

Median absolute

Median absolute deviation

Skewness

Kurtosis

Trim Mean

Covariance

Cross correlation

Correlation coefficient

8

8

8

8

6

8

8

8

8

8

8

8

8

8

6

6

6

Energy of each frequency in the 

range of natural vibration in 

section 1 (each 1~5Hz)

5

Energy of each frequency in the 

range of natural vibration in 

section 2 (each 5~18Hz)

9

Energy of each frequency in the 

range of natural vibration in 

section 3 (each 18~25Hz) 

7

Energy sum of frequency range in 

section 1 (1~5Hz, 2~5Hz)
2

Energy sum of frequency range in 

section 2 (5~13Hz)
1

Energy sum of frequency range in 

section 3 (20~25Hz, 21~25Hz)
2

Energy sum of section 1 1
Energy sum of section 2 1
Energy sum of section 3 1

Spectral Entropy (X, Y, Z) 3

Target sensor Accelerometer, Gyroscope Accelerometer

Number of 

features
128 32

Total number 160

Table 3-3. Total extracted features
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3.4 Classification

Two stage classification is made which are GPS speed based and statistical 

classification based.

3.4.1 GPS speed based classification

From the GPS speed side, the activity is classified based on predefined jogging 

speed of 9.6km/h [134]. When in low speed, classification is made for every activity. 

When in high speed, static activities except walk and jog are in the range of 

classification.

Figure 3-10. GPS speed based classification

3.4.2 Machine learning based classification

After GPS speed based classification is made, statistical classification is done. 

Several classifiers were compared to find showing the best performance. Following 

are brief description of classifiers used. 
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3.4.2.1 K-Nearest Neighborhood (KNN)

KNN is a simple method which concludes the result with majority class within the 

boundary. K is the number to set how many observations will be count. Basically, 

Euclidean distance is measured to get the neareast observations. To avoid tie, K is 

normally set as odd number. KNN is lazy learning algorithm where it doesn’t learn 

in advance but start when the test data comes. 

Figure 3-11. Concept of K-Nearest Neighbor

3.4.2.2 Decision Tree (DT)

DT is simple yet intuitive binary classification method. The order of nodes of the 

decision tree is set by descending order based on information gain of each element. 

Final conclusion is made on the class of the final leaf node. 

Figure 3-12. Concept of Decision Tree
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3.4.2.3 Support Vector Machine (SVM)

SVM is a supervised learning based binary classifier which is well known and 

widely used, and is capable of performing classification and regression. It is known 

to show good performance before the emergence of deep learning. Basically, SVM 

draws an optimal boundary between two classes which can separate them in high 

dimensional feature space. This is called a hyperplane. Support vectors are two other 

boundaries which is drawn horizontality based on the hyperplane far with identical 

distance, where this distance is called margin. The goal of SVM is to find the 

hyperplnae having best margin which can lower the generalization error. Normally in 

real data, an absolute hyperplane to distinguish two classes is difficult. Therefore, 

some of the outliers should be permitted. The hyperparameter to change the margin 

to allow this is called cost. When the cost is low, the hyperplane is drawn roughly 

but may casue underfitting when too low. When the cost is high, the hyperplane is 

drawn strictly but may casue overfitting when too high.

SVM is basically a linear classification. But as the data from real world is 

non-linear, original method of SVM could not work well. To solve this problem, 

Kernel SVM (K-SVM) is introduced. Kernel projects the feature space into higher 

dimension from plain where it can draw the hyperplane in multi-dimension. 

Representative kernels are polynomial kernel, Gaussian kernel (or Radial basis 

function kernel), Pearson VII kernel, etc.

Figure 3-13. Concept of Support Vector Machine
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3.4.2.4 Random Forest (RF)

RF is an ensemble learning method which is consittuded with multiple decision 

trees. RF’s main idea is based on bagging, which is an abbreviation for Bootstrap 

aggregation. The samples constituting each decesion tree are selected randomly 

allowing repetition, where this is called Bootstrap. The advantage of Bootstrap is that 

it can generate different type of multiple samples when the size of training data is 

small, and can guarantee independence among trees which can increase the 

generalization. Each of the tree is a decision tree. The order of nodes of the decision 

tree is set by descending order based on information gain of each element. From the 

multiple tress with multiple conclusions, the final decision is made based on majority 

voting.

The size of the tree is the key of RF. If the size is small, the diversirty of the 

tree increases which means the chance of specific sample to be included is low, than 

the randomness increases and the overfitting decreases. If the size is large, it will 

become more similar to original decision tree which will have no effect on 

randomness and possess overfitting issues. The regularization parameters of RF are 

number of trees made, number of features selected on each tree and the depth of 

trees. 

Figure 3-14. Concept of Random Forest
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3.4.2.5 Recurrent Neural Network (RNN)

Normally, artificial neural network has a problem of vanishing gradient where the 

gradient disappears if the layer keeps going deeper. Meanwhile, RNN is a cyclic 

neural network which keeps the input data information and deliver them to the next 

repetitively. Therefore in RNN, the past event can affect the decision of the future 

by taking into account the correlation of past and current data and predict the future. 

Generally, sequential prediction is done in RNN such as text or audio. Still, RNN 

also possess the problem of vanishing gradient when the layer goes deeper. For 

example, if a word needs to be predicted to come next from a sentence, if the 

context to refer is close, there would be no problem. But if the context is far, it is 

hard to infer the relation between them which is called long term dependency 

problem. Therefore, Long Short Term Memory (LSTM) is proposed. In here, a 

hidden layer has a cell state which connects the cell and three gates which are input 

gate, output gate and forget gate. The input gate determines which new information 

do be stored in cell state. Forget gate determines which information to discard. 

Output gate outputs the result from the updated cell state. 

Figure 3-15. Concept of (a) RNN and (b) LSTM
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3.4.2.6 Convolutional Neural Network (CNN)

CNN is a neural network which is a set of convolution procedures. CNN repeats 

this convolution task and finally input them to fully connected layer for output. It is 

widely used for image processing. Convolution is a mathematical operator that 

multiplies one function by another, and then integrates over the interval to find a 

new function. In the convolution process, a filter is set with a stride. A filter is a 

matrix which will extract features from the whole matrix of image. The stride is set 

by how many pixels the filter will move. For example, if the input image size is 

10x10, filter size 3x3 and stride is 1, the filter will start from upper left considering 

3x3 pixels. It will extract one feature from here and put that feature on the upper 

left of the newly created feature map. Then the filter moves only one pixel, and 

repeats this prodecure. So the size of the new feature map will be subtracting size of 

two from both vertical and horizontal. From the example, the new feature map size 

will be 8x8. Number of convolution layers differs based on the characteristic of 

dataset and what to achieve. An activation function is used to solve vanishing 

gradient problem caused by non-linearity data. A pooling layer is used which 

subtracts only meaningful feature from the feature map do reduce the feature 

dimension.

Figure 3-16. Concept of Convolutional Neural Network
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3.5 Post-processing

3.5.1 Adding GPS Data

So far, this study has focused on general process for activity recognition. If we 

use GPS outdoors, we can distinguish other vehicles from subway more easily. 

Therefore, we have collected GPS data along with acceleration and angular velocity 

data to acquire coordinate (latitude and longitude) and speed information. The 

acquired acceleration and angular velocity data are used for feature extraction and 

classification for HAR, as described in Sections 3.3 and 3.4. GPS data are used for 

correction to recognize vehicles better. To distinguish vehicle from other activities, we 

set the threshold speed as 9.6 km/h as this is known to be average speed for jog. In 

other words, if the speed from GPS is greater than 9.6 km/h, we assume that the 

current activity is not stay, walk, or jog, but car, bus, subway or bicycle. 

We also use GPS for ground-level sections of the subway. To distinguish between 

other vehicles and subway on similar courses, we collected five beacons between two 

subway stations, in case if they are on the ground. Our experiments were conducted 

in Seoul, the capital of South Korea. We input the GPS address of every beacon for 

the subway stations using Google Maps. To use this method in a different context, 

the GPS address should be changed. In Korea, the time from one station to the next 

takes 2–3 min on average. Therefore, the beacon is divided into five including 

departure station and arrival station. And then we set the time interval to 30 seconds 

among the beacons. Each beacon has its own latitude and longitude. If the subway 

passes from one beacon to another within 30 seconds, we determine that the user is 

on the subway. If the user does not pass from one beacon to another within 30 
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seconds or passes only one beacon, we determine that the user is using other vehicle. 

An illustration of this procedure is given in Figure 3-17.

Figure 3-17. Distinguishing bus and subway on ground level using GPS coordinate.

3.5.2 Activity Correction

Guaranteeing accurate recognition requires a correction mechanism. During any 

activity, the user might handle the phone in a way that will change the pattern of 

the inertial data and greatly affect the accuracy. Vehicles recognition will also be 

affected if the GPS signal is not received properly or when they are stopped at a 

station. All of these occurrences constitute noise and could lead to incorrect results. 

To correct this problem, we make the final activity decision only if two sequential 

results (current and previous) are the same. If they are not the same, we maintain 

the activity as the last recognized activity. Figure 6 shows the flowchart for this 

process.

After the data is collected, we classify the activity based on inertial sensor signals. 

Then the classification based on speed is performed. A low speed could be any 

activity, but a speed greater than 9.6 km/h can only be the vehicles. In this first 

recognition cycle, there will be no correction result in the previous stage, so the 

correction result will be the same as the recognized result. The correction flow starts 
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from the next cycle. If the recognized result differs from the previously recognized 

result, the final result will show the same one as previously corrected result, and the 

current corrected result will be set as the same activity and terminate the flow. If the 

recognized result is same as the previously recognized result and it is not staying, 

then the final result is shown as the current activity. Then, it saves the current 

activity to correction result and terminates the flow. On the other hand, if the 

recognized activity is the same as the previously recognized activity and both are 

stay, we take a look into the previously corrected result. If the previously corrected 

result was not a vehicle, the current activity will be stay. However, if the previously 

corrected result was a vehicle, we take a look whether the previously recognized 

results maintained as stay for 3 min. Additionally, if the stay showed for 3 min, the 

final activity is concluded as stay. If the stay did not show 3 min of stay 

continuously, the activity will be concluded as the previously corrected result, which 

will be a vehicle. The 3 min interval is set to prevent misrecognition as stay. When 

a vehicle run on smooth road and rail, the recognition result will frequently show 

stay. When either vehicle is stopped due to traffic or a station, it will also show 

stay due to the lack of movement. So, once the algorithm recognizes the activity as 

vehicle, and stay occurs in the middle, we disregard this result and force the 

algorithm to show the result as vehicle. However, we need a breakpoint or the 

activity will not be changed from vehicle. As mentioned above, the time from one 

station to another in Korea is 2–3 min for either bus and subway, and the longest 

traffic light standby time is about 3 min for the bus. So, we set the break time to 3 

min. If the stay shows 3 min, now the algorithm determines that the user is actually 

in stay and escapes from the recognition as vehicle. Figure 3-18. shows the overall 

flow of activity decision and the according algorithm in Algorithm 2.
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Figure 3-18. Flow of activity correction

Activity Correction
Input: C – Classified activity label
 
Output: F – Final activity label
 
while1do
     if currentActivity== previouslyCorrectedActivitythen
          if currentActivity!= stay then
               F =currentActivity
          else
               if stay > 3minutesthen
                    F =stay
              else
                    F = previouslyCorrectedActivity;
               endif     
          endif
     else 
          F = previouslyCorrectedActivity;
     endif
endwhile

Figure 3-19. Algorithm for activity correction
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Figure 3-20 (a) shows an example operation of the correction algorithm. A total of 

30 activities were recognized, and the correction was performed for each activity. 

Note that one activity label is concluded after 3 seconds and that we set the size of 

the window in this way. The first four correction results (12 seconds) are not shown 

because they are in initialization stage. The fifth result shows the same in both 

recognition and correction parts as there are no data to refer to from the previous. 

On the sixth result, the actual recognition changed from staying to walking. However, 

the previous correction result was walking, so the algorithm disregarded the 

recognition result and set the correction result as walking. This happened again on 

the 12th. On the other hand, the 13th recognition result was staying, which is the 

same as the previous (12th) recognition result. Although the correction result is 

different from walking, this is regarded as the ground truth activity and the 

correction result is changed to staying. Taking a look at the 23rd result, the 

recognition results of both 22nd and 23rd are staying. It seems that the correction 

result should be changed to staying even if the previous (22nd) correction result was 

bus. However, as mentioned above, we set a 3 min interval in the vehicle activity. 

So, the algorithm ignores the recognition result (staying) and concludes the correction 

result as bus.

Figure 3-20 (b) shows another example of the correction algorithm’s operation. 

Until the 140th result, it is similar to the previous example. After that, if the 

correction result changes to subway, it ignores the recognition result but keeps the 

correction result as subway. From the 149th, the recognition result turned to stay 

until the end. This means that the user actually got off the subway and was staying 

still. However, due to the 3-minutes interval problem, the correction result kept 

showing subway. After 3 minutes (which means 60 blocks after), the algorithm 

finally concluded the ground truth activity as stay. This case is the only disadvantage 
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of our algorithm; however, we cannot eliminate this 3 minutes interval feature 

because it will lead to substantial error without it.

(a)

Figure 3-20. Distinguishing bus and subway on ground level using GPS location
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3.5.3 State Transition Rule

Figure 3-21 shows the state transition diagram. Stay, walk, and jog can alternate 

each other while vehicles cannot be changed to each other due to the nature of 

reality. Normally, vehicles cannot be changed each other before transferring them. A 

person should at lest walk to take another vehicle. One exceptional case is turning 

from vehicle to stay. In the case as we mentioned before, if the vehicle is 

misrecognized for 3 minutes, it should correct the result to stay. Figure shows the 

digram of state transition rule.

Figure 3-21. State Transition Rule
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4. Experiment

In this section, we introduce the experiments from both traditional method and 

deep learning method, and with the result with applying post-processing. We also 

describe the devices used, data collection environment, performance evaluation 

method, and results. 

4.1 Experimental Environment 

The dataset is collected by ourselves using four Samsung Galaxy S7 smartphone. 

Both 3D axes of linear acceleration and gyroscope was collected with the frequency 

of 50Hz sampling rate and range 8G where the maximum range of accelerometer is 

±78m/s2 and the gyroscope is ±20rad/s. GPS was also collected with speed, latitude 

and longitude. 

Seven commuting activities including ambulatory activities were collected: stay, 

walk, jog, riding bus, subway, car, and bicycle. For stay, walk, jog and bicycle, five 

minutes were collected for each subject. For bus, subway and car, more than ten 

minutes of data were collected. But to keep the balance of the data, the middle part 

of data was cut to only contain five minutes of data from these three activities. One 

observer followed the subject during data collection for checking whether the subject 

is performing totally different activity, record the time, and drive the car for them. 

Only one or two subjects have collected the data at a time due to only having four 

smartphones. When two subject went out for collection, they did it alternatively. The 

number of collected data for training and testing is shown in Table 4-1. 
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Activity Stay Walk Jog Car Bus Subway Bike Total

Train data 6,973 7,343 6,823 7,073 7,121 7,016 7,139 49,488

Test data 618 360 80 3,865 2,492 4,047 388 11,848

Table 4-1. Number of collected for train and test (instances)

Total 17 subjects has participated for data collection. The subjects ranged in age 

from 25 to 66 (average 35), in height from 167cm to 183cm (average 174cm), and 

in weight from 61kg to 89kg (average 72kg), where they were all male. None of the 

subjects had any kind of physical or mental disorder. Information of subjects are 

shown in Table 4-2.

No. Gender Age Height (cm) Weight (kg)
1 Male 25 180 80
2 Male 26 172 78
3 Male 27 167 67
4 Male 27 183 73
5 Male 28 179 73
6 Male 29 170 61
7 Male 29 180 78
8 Male 30 175 56
9 Male 32 167 74

10 Male 32 180 74
11 Male 34 178 87
12 Male 34 183 85
13 Male 35 167 63
14 Male 38 180 74
15 Male 42 175 89
16 Male 66 170 70
17 Female 62 156 56

Average
16 Male
1 Female

35.06 174.24 72.82

Table 4-2. Subject information participated for data collection
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The smartphone was positioned in four different locations: trousers front pocket, 

jacket pocket, in the backpack, and holding in hand, where these positions represent 

common ways people carry their smartphones. The side location of pockets and hand 

was set free, in other words, one subject place the phone in right trousers pocket, 

right jacket pocket and hold on in left hand while other subject did vice versa. The 

orientation was told to set free. When in trousers pocket, the phone is totally fixed. 

When in jacket or backpack, the phone is loosely fixed. When in hand, the 

orientation changes more frequently than other positions. 

The data is segmented in 3 seconds. When extracting feature, time and frequency 

domain features are differently extracted. In time domain, 3 seconds of data are 

applied. In frequency domain, at first, each 1 second data is transformed to frequency 

signal. Then each frequency from three different data are summed. For example, 1hz 

data on first, second and third data are summed, and this applies to all frequency 

until 25hz. Then natural vibration features are extracted from the summed 25hz data. 

The specification of PC running the experiment was having i5 quad core cpu at 

4.5Ghz, 16gb ram and a single GTX 1080 ti graphics card. Weka tool is used for 

traditional methods experiment and python with tensorflow is used for deep learning 

based experiments. All the experiments were run on Windows 10 environment. 

The path for training data collection was set as follows:

Ÿ Subway: Bundang line (Yeongtong– Suwon station)

Ÿ Bus: City bus, Intercity bus

Ÿ Highway: No. 5100 (Kyung Hee University – Gangnam)

Ÿ City road: No. 310, 900, 7-2 (KHU – Suwon Station, All same route)



- 67 -

Ÿ Car: Gasoline car, Diesel car

Ÿ Highway: Dongbu-daero (Kyung Hee University – Osan City hall)

Ÿ City road: Kyung Hee University – Sungkyunkwan University 

Ÿ Walk/Jog/Bicycle: Inside Kyung Hee University

The path for test data collection is set as follows:

Ÿ Subway: Line 1 (Suwon – Singil station)

Ÿ Bus: No. 641 (Singil – Gangnam station)

Ÿ Car:　Gasoline car (Gangnam station – Kyung Hee University)

Ÿ Walk/Jog/Bicycle: Inside Kyung Hee University

Figure 4-1. Route for subway, city road bus and city car for training data collection
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Figure 4-3. Route for subway, bus and car for test data collection

Figure 4-2. Route for (a) highway bus and (b) highway car for training data collection
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The experimental environment for statistical classifiers and DNN methods are as 

follows.

Figure 4-5. Experiment procedure for LSTM

Figure 4-4. Experiment procedure for statistical classifiers
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Figure 4-6. Experiment procedure for CNN 1D and 2D
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4.2 Experimental Results 

Total five kinds of experiments will be conducted which are ① Comparison of 

different classifiers, ② Comparison with different research, ③ Comparison with 

different post-processing research, and ④ regularization parameter tuning to overcome 

overfitting. All of the data is random shuffled first before input to classifiers. Table 

4-3 shows the summarized list of experiments.

No. Experiment Name Details

1
Comparison of 

different classifiers

Ÿ Features input : Support Vector Machine, KNN, Decision 

Tree, Random Forest

Ÿ Raw signal input: LSTM, CNN 1D, CNN 2D

2
Comparison with 
different research 

Ÿ Widhalm et al. [135]: Using all of the frequency’s energy

Ÿ Hemminki et al. [136]: Energy of each frequency 1-10Hz

Ÿ Wang et al. [137]: Energy of 0-2Hz and 2-4Hz 

Ÿ Fang et al. [138]: Peak frequency’s energy

3

Comparison with 
different 

post-processing 
research

Ÿ Wang et al. [129]: Activity updating by majority voting 

looking 1 minute duration due to continuous activity

Ÿ Grzeszick et al. [130]: Activity updating with majority 

voting in past five activities

4

Regularization 
parameter tuning to 

overcome 
overfitting

Ÿ Parameter tuning of SVM with parameter C

Ÿ Parameter tuning of Random Forest with parameter tree 

depth, number of tree and number of features in a tree

Ÿ Parameter tuning of DNNs

Table 4-3. List of experimentss



- 72 -

4.2.1 Comparison of different classifiers 

In this section, different classification methods are compared to pick the classifier 

showing best performance. For traditional classifiers, Support Vector Machine, 

K-Nearest Neighborhood, Decision Tree and Random Forest are used. 10 fold cross 

validation is performed for these using the whole collected training data. In here, 

hand crafted features from proposed method including time domain statistical and 

frequency domain natural vibration features are used for input. Default parameters are 

used for each classifiers. For Deep Neural Networks method, Long Short Term 

Memory and Convolutional Neural Network with 1 dimension (1D) and 2 dimension 

(2D) is performed. In here, raw sensor data are input. The result is shown in Table 

4-4.

From the experiment result in traditional methods, RF showed the best accuracy of 

93.203%. The next comes DT, and KNN showed slightly lower. SVM showed lower 

than these, and then LSTM, CNN 2D, and CNN 1D comes next. Random forest 

randomly selects features and conclude the result with majority voting of all trees. 

Classification methods Accuracy (%)

Support Vector Machine (SVM) 78.363

K-Nearest Neighborhood (KNN) 83.794

Decision Tree (DT) 85.400

Random Forest (RF) 93.203

Recurrent Neural Network 
(Long-Short Term Memory, LSTM)

89.963

Convolutional Neural Network (CNN) 1D 91.948

Convolutional Neural Network (CNN) 2D 92.351

Table 4-4. Comparison with different classification methods
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Therefore, in our case, as static activities show similar sensor values, data are 

gathered in feature space. The advantage of DT in this case is that unlike other 

methods considering whole features at the same time, DT only picks each feature at 

a time and distinguish the class. And with randomly selected features, it will perform 

better than DT and have strong point in overfitting. The KNN may pick the data 

well that the data for each class will be aggregated. But SVM may have problem 

drawing hyperplane within the aggregated data which showed poor result. Meanwhile, 

DNNs methods showed good result after RF. But these result cannot be trusted. The 

result of these has used the data split from collected train dataset where it may have 

high similarity, and used only basic setting without any parameter tuning. This will 

be handled in section 4.3. All of these result may contain overfitting even proved 

with cross validation. Therefore, new experiment with new test data where it was 

collected in different route and different user who hasn’t participated in data 

collection.

4.2.2 Comparison with different research 

In this section, different research trying to classify commuting activity is compared 

with proposed method. Fang et al. has extracted only the peak energy from 

frequency domain. On the contrary, Widhalm et al. have extracted energy from whole 

frequency and used as features. Wang et al. has extracted energy from two 

bandwidth, 0-2Hz and 2-4Hz. This is because the highest energy comes from low 

frequency band. Finally, Hemminiki et al. also extracts energy from low frequency 

band, 1-10Hz. Table 4-5 shows the result.
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Research Accuracy (%)

Widhalm et al. 92.846

Hemminki et al. 91.591

Wang et al. 91.308

Fang et al. 90.927

Proposed method 93.203

Table 4-5. Comparison with different research using RF

Proposed method showed the best accuracy of 93.203%. But other methods also 

showed similar results where all of them exceeds 90% accuracy. Widhalm et al. used 

all the frequency energy where each may have their own meaning. Wang and Fang 

method used low frequency band energy where vehicles show most energy in these 

area. Fang only used one which is the peak energy but still will have the value in 

low frequency band. From this result, we cannot say the proposed natural vibration 

feature outperforms the other feature extraction methods. But as it will be later 

shown, it has more generalization and overfitting prevention power than others.

4.2.3 Comparison with different post-processing research 

In this section, different post-processing methods are compared with proposed 

method. Wang et al. updates the activity by majority voting looking for one minute 

duration of data. The reason for setting such a long time is that they have claimed 

that because commuting activity such as vehicles lasts long once the user is inside. 

Grzeszicket et al. also uses majority voting scheme looking for past 5 activities. The 

experiment was conducted using the propose method, using RF for classifier and time 

domain and natural vibration features are extracted. For Wang, since the data in this 

paper is segmented in 3 seconds, looking for one minute means looking for past 20 
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activities. But in here, the author didn’t exactly mentioned on which activity they 

refer, the inferred label or the updated label. In the latter case, there is a problem 

when the activity is changing. Even new order of activity starts, it will keep 

changing to previously recognized activities due to seeing long duration of previous 

activity. Eventually, the activity never changes but fixed to one, and the accuracy 

will decrease dramatically until same activity is performed again. Therefore, the 

experiment is conducted with former case, updating activity with classified result. The 

same was is also applied for Grzeszicket’s method. Only the post-processing method 

is compared in this experiment, e.g. accuracy before applying post-processing is same 

with our proposed method and comparison on only after applying post-processing is 

done. Table 4-6 shows the result. 

From the experiment result, proposed method showed more increase in accuracy 

than other two methods. As expected, Wang’s method increased most little and then 

Grzeszicket’s method but still lower than proposed methods. This is because that 

sometimes tie happens by looking multiple activities. Meanwhile, proposed methods 

only refers previously recognized activity which may not have the problem 

aforementioned.

Research
Accuracy before applying 

post-processing (%)
Accuracy after applying 

post-processing (%)

Wang et al.

93.203

93.821
Grzeszicket et al. 94.109
Proposed method 95.598

Table 4-6. Real world scenario test result
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4.2.4 Regularization parameter tuning to overcome overfitting 

Experiments result above have used the data collected for training. In here, all of 

the route for collection is same. This means that, for example, the subject has taken 

the subway of same line, starting from one station to another and vice versa. 

Similarly, the bus goes the same route. In this case, the data might be well fitted 

with the same route, having similar road conditions or traffics even though the bus 

and subway itself varies. And for the car, two types of car was used in the same 

route, which would be more well fitted. Therefore, to prove that the proposed model 

is well generalized, test data is collected in different route with different user who 

hasn’t participated the training data collection. Figure shows the evaluation result 

using test data and compared with different research, same as in section 4.2.2.

As shown in the result, proposed method showed the best accuracy than other 

research. This means that natural vibration features are more robust to overfitting. But 

still model adaptation process is required that testing accuracy is lower than training 

accuracy, which is an overfitting problem. There several methods to overcome 

overfitting. First way is to increase the training data. With more data, it has more 

Research Accuracy (%)

Widhalm et al. 73.850

Hemminki et al. 72.857

Wang et al. 72.448

Fang et al. 71.890 

Proposed method 77.578

Table 4-7. Comparison with different research using different test data using RF
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chance to learn different environments, having higher probability that unseen data will 

have same or similar properties. Second is to reduce features. Some of the features 

may not work well classifying but still affect in some sense. In this case, it cannot 

classify general cases but only biased to that case. Therefore, eliminating meaningless 

feature may also improve the performance well. The third method is regularization. 

This object is to constrain the learning too much by tuning hyper parameters. 

Regularization is applied differently for each classification methods. Forth method is 

normalization, which converts the data into range zero to one. This will equalize the 

representation of the data, having more reliability. For DNNs methods, there are 

many methods such as early stopping, which stops learning when there is no change, 

or dropout where the ratio of neuron is wiped out, an so on. In the following 

section, SVM and RF based regularization is performed, and then the DNNs.



- 78 -

4.2.4.1 SVM based regularization 

For SVM based regularization, changing complexity parameter c is applied. Firstly, 

kernel is selected which shows the best result when the c is fixed to 1. Among 4 

different kernels such as polynomial, Gaussian (radial basis function) and Pearson 

Universal Kernal (PUK), polynomial showed the best accuracy. Generally, RBF and 

PUK kernel are reported to show the highest result. But due the characteristic of the 

dataset in this work, polynomial kernel showed the best. Therefore, polynomial kernel 

is selected. Multiple experiemtns are performed changing the parameter c without 

chaning the parameters of kernel itself. All of the experiment is performed using the 

training set collected from 17 users and test dataset collected from different user. The 

results are shown in Table 4-8 and Table 4-9.

As shown in the result, the performance using the default c parameter which is 

one shows 61.166% accuracy in polynomial kernel. 17.197% of accuracy has been 

reduced from 78.363% where it was the result using only the training dataset 

collection with 10 fold cross validation. By increasing parameter c which tolerates 

outliers has increased the performance. First the c was increased with minimum gap 

and then larger gap. As a result, when parameter c was 1000, it showed the best 

accuracy of 71.046%. After that, it started to decrease where we can assume that c 

with 1000 is the optimized value in this experiment which has increased the accuracy 

of 9.880% from 61.166% to 71.046%.
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Kernel C-value Accuracy (%)

Polynomial 1 61.166

RBF 1 49.452

PUK 1 59.568

Table 4-8. Comparison of different kernels in SVM fixing parameter C with test data

C-value Accuracy (%)

0.5 58.379

1 61.166

1.5 62.690

2 63.335

2.5 64.198

3 64.706

3.5 65.033

4 65.278

10 66.485

15 66.957

20 67.057

30 68.628

50 69.282

100 69.529

200 70.182

300 70.339

500 70.857

1000 71.046

2000 70.914

Table 4-9. Comparison by changing C-value in SVM with test data using polynomial kernel
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4.2.4.2 RF based regularization

For RF based regularization, changing parameter of tree depth, number of feature 

and number of tree is important. Therefore, with the same way, best accuracy is 

searched changing three different parameters with separated train data and test data. 

Table 4-10 shows the experimental results. As shown in the result, the overall 

accuracy did not changed much while changing the parameters. This means that 

random forest is already generalized which is strong to overfitting. For each 

parameters, we can observe different phenomena. The depth of tree could not affect 

the accuracy after 100 where it doesn’t change. The number of features could not 

affect the accuracy after 14 where it doesn’t change. Finally, the number of trees 

over 200 will start to decrease the accuracy while it increases until 200. Besides the 

depth and number of trees, the accuracy variation of the number of features proves 

that normal DT may possess overfitting but not the RF as DT will use the whole 

feature at once. From the experimental result, the best performance showed when the 

tree depth is 20, number of tree is 200 and the used feature is 7 as 78.106%.

Tree depth Number of features Number of trees Accuracy

10 7 10 72.168

10 10 10 72.168

10 14 10 70.280

10 7 20 73.851

10 7 30 73.763

10 7 50 74.369

10 7 100 74.702

Table 4-10. Comparison by changing different parameters with test data in RF
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10 7 200 74.770

10 10 20 72.168

10 10 30 72.637

10 10 50 73.195

10 10 100 72.637

10 10 200 73.684

10 14 20 71.199

10 14 30 71.914

10 14 50 71.287

10 14 100 71.473

10 14 200 71.943

20 7 10 72.706

20 10 10 70.926

20 14 10 71.180

20 7 20 75.269

20 7 30 76.482

20 7 50 77.187

20 7 100 78.047

20 7 200 78.106

20 10 20 74.800

20 10 30 75.416

20 10 50 76.375

20 10 100 77.421

20 10 200 77.431

20 14 20 74.047

20 14 30 74.760

20 14 50 75.025
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20 14 100 75.709

20 14 200 76.022

30 7 10 71.835

30 10 10 71.728

30 14 10 70.749

30 7 20 74.731

30 7 30 75.836

30 7 50 76.668

30 7 100 77.323

30 7 200 77.323

30 10 20 75.445

30 10 30 75.504

30 10 50 76.766

30 10 100 77.509

30 10 200 77.656

30 14 20 73.831

30 14 30 74.663

30 14 50 74.897

30 14 100 75.602

30 14 200 75.934

50 7 10 71.835

50 10 10 71.728

50 14 10 70.749

50 7 20 74.604

50 7 30 75.934

50 7 50 76.550

50 7 100 77.196
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50 7 200 77.412

50 10 20 75.445

50 10 30 75.504

50 10 50 76.766

50 10 100 77.500

50 10 200 77.685

50 14 20 73.831

50 14 30 74.663

50 14 50 74.897

50 14 100 75.602

50 14 200 75.934

100 7 10 71.835

100 10 10 71.728

100 14 10 70.749

100 7 20 74.604

100 7 30 75.934

100 7 50 76.551

100 7 100 77.196

100 7 200 77.412

100 10 20 75.445

100 10 30 75.504

100 10 50 76.766

100 10 100 77.500

100 10 200 77.685

100 14 20 73.831

100 14 30 74.663

100 14 50 74.897
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100 14 100 75.602

100 14 200 75.934

200 7 10 71.835

200 10 10 71.728

200 14 10 70.749

200 7 20 74.604

200 7 30 75.934

200 7 50 74.604

200 7 100 77.196

200 7 200 77.412

200 10 20 75.445

200 10 30 75.504

200 10 50 76.766

200 10 100 77.500

200 10 200 77.685

200 14 20 73.831

200 14 30 74.663

200 14 50 74.897

200 14 100 75.602

200 14 200 75.934
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4.2.4.3 DNN based regularization

For DNN based regularization, using adam optimizer, only the parameter learning 

rate is changed while maintaining other parameters (beta_1=0.9, beta_2=0.999, 

epsilon=1e-08). And also the batch size, epoch size and layers are changed. Showing 

the highest validation accuracy with minimum difference of train loss and validation 

loss model is saved. And then the test data is evaluated with the stored model. Table 

4-11 shows the result of LSTM, Table 4-12 shows the result of CNN 1D and Table 

4-13 shows the result of CNN 2D respectively.

Learning 
rate

Batch Epoch Layers
Train 
loss

Validation 
loss

Validation 
accuracy

Test 
accuracy

1E-3 32 50 LSTM(50), Dense(100) 0.152 0.258 0.923 92.715

1E-3 32 50 LSTM(100), Dense(100) 0.065 0.221 0.947 94.817

1E-3 32 100 LSTM(100), Dense(100) 0.018 0.239 0.959 95.898

1E-4 32 50 LSTM(50), Dense(100) 0.583 0.606 0.757 76.700

1E-4 64 50 LSTM(50), Dense(100) 0.576 0.598 0.756 76.377

1E-4 128 50 LSTM(50), Dense(100) 0.721 0.738 0.686 70.638

1E-4 128 50 LSTM(100), Dense(100) 0.414 0.429 0.846 84.915

1E-4 128 100 LSTM(100), Dense(100) 0.230 0.298 0.900 89.724

1E-5 32 50 LSTM(50), Dense(100) 0.805 0.810 0.667 68.273

1E-5 64 100 LSTM(100), Dense(100) 0.753 0.760 0.686 69.718

1E-5 128 100 LSTM(100), Dense(100) 0.797 0.810 0.680 69.304

Table 4-11. Comparison by changing different parameters with test data in LSTM

The result from the LSTM shows that learning rate 1E-3, batch size 64 is the 

turning point of the loss. When learning rate is bigger, the train loss is much higher 
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than validation loss which shows underfitting. When the learning rate is smaller, the 

loss increases. When the batch size is smaller or larger than 64, the loss increases. 

Having the minimum gap between training loss and validation loss and showing the 

highest validation accuracy is 75.590% when the learning rate is 1E-3, batch size 64, 

epoch 50, and LSTM hidden layer 50 with dense layer 100. In this stage, the test 

data accuracy showed 76.377%. From this experiment, it is clear that RNN can well 

handle time series data.

Learning 
rate

Batch Epoch Layers
Train 
loss

Validation 
loss

Validation 
accuracy

Test 
accuracy

1E-3 32 50
con(32), con(64), 

con(128), con(256), 
Dense(100)

0.052 0.369 0.920 53.863

1E-3 32 100
con(32), con(64), 

con(128), con(256), 
Dense(100)

0.029 0.466 0.905 53.818

1E-4 32 50
con(32), con(64), 

con(128), con(256), 
Dense(100)

0.021 0.523 0.911 50.724

1E-4 32 100
con(32), con(64), 

con(128), con(256), 
Dense(100)

0.007 0.592 0.910 54.279

1E-5 32 50
con(32), con(64), 

con(128), con(256), 
Dense(100)

0.030 0.349 0.899 53.962

1E-5 32 100
con(32), con(64), 

con(128), con(256), 
Dense(100)

0.023 0.379 0.893 53.546

1E-6 32 50
con(32), con(64), 

con(128), con(256), 
Dense(100)

0.433 0.695 0.725 46.481

1E-6 32 100
con(32), con(64), 

con(128), con(256), 
Dense(100)

0.223 0.379 0.873 56.939

1E-6 256 100
con(32), con(64), 

con(128), Dense(100)
0.560 0.601 0.774 52.913

Table 4-12. Comparison by changing different parameters with test data in CNN 1D
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1E-6 256 100
con(32), con(64), 

Dense(100)
0.750 0.766 0.692 40.474

1E-7 32 50
con(32), con(64), 

con(128), con(256), 
Dense(100)

0.908 0.847 0.661 45.468

1E-7 32 100
con(32), con(64), 

con(128), con(256), 
Dense(100)

0.854 0.810 0.664 53.881

1E-7 64 50
con(32), con(64), 

con(128), con(256), 
Dense(100)

0.841 0.797 0.680 50.823

1E-7 64 100
con(32), con(64), 

con(128), con(256), 
Dense(100)

0.747 0.715 0.722 52.560

1E-7 128 50
con(32), con(64), 

con(128), con(256), 
Dense(100)

0.877 0.868 0.633 36.485

1E-7 128 100
con(32), con(64), 

con(128), con(256), 
Dense(100)

0.738 0.707 0.688 49.159

1E-7 256 50
con(32), con(64), 

con(128), con(256), 
Dense(100)

0.908 0.900 0.626 40.528

1E-7 256 100
con(32), con(64), 

con(128), con(256), 
Dense(100)

0.784 0.786 0.690 48.354

1E-7 256 100
con(32), con(64), 

con(128), con(256), 
con(512),Dense(100)

0.640 0.684 0.732 47.449

1E-7 256 100

con(32), con(64), 
con(128), con(256), 

con(512),con(1024),Dens
e(100)

0.476 0.555 0.788 54.026

1E-7 256 100
con(32), con(64), 

con(128), Dense(100)
0.895 0.887 0.631 37.290

1E-8 32 50
con(32), con(64), 

con(128), con(256), 
Dense(100)

1.344 1.203 0.453 50.208

1E-8 32 100
con(32), con(64), 

con(128), con(256), 
Dense(100)

1.170 1.071 0.537 31.120
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The result from the CNN 1D shows that learning rate 1E-7, batch size 256 is the 

turning point of the loss. When learning rate is bigger, the train loss is much higher 

than validation loss which shows underfitting. When the learning rate is smaller, the 

loss increases. Increasing the batch size and epoch both affected to lower the loss. 

Increasing the layer also had increased the loss and decreasing the layer had 

increased underfitting. Having the minimum gap between training loss and validation 

loss and showing the highest validation accuracy is 69.030% when the learning rate 

is 1E-7, batch size 256, epoch 100, and four convolution layers where each layer has 

filter size 32, 64, 128 and 256, and dense layer 100 and 7. In this stage, the test 

data accuracy showed 48.354%. This results show that RNN shows better perfomance 

on handling time series data. And it also shows that time signal of commuting 

activity cannot be distinguished well even using deep learning approach as there are 

minimum difference among vehicles.

1E-8 256 100

con(32), con(64), 
con(128), con(256), 

con(512),con(1024),Dens
e(100)

0.953 0.957 0.606 38.990

1E-9 32 50
con(32), con(64), 

con(128), con(256), 
Dense(100)

2.300 2.194 0.192 16.790

1E-9 32 100
con(32), con(64), 

con(128), con(256), 
Dense(100)

1.799 1.686 0.337 36.611
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Learning 
rate

Batch Epoch Layers
Train 
loss

Validation 
loss

Validation 
accuracy

Test 
accuracy

1E-3 32 50
con(32), con(64), 

con(128), con(256), 
Dense(100)

0.1309 0.3089 0.8924 55.075

1E-3 32 100
con(32), con(64), 

con(128), con(256), 
Dense(100)

0.1524 0.3238 0.8904 56.495

1E-4 32 50
con(32), con(64), 

con(128), con(256), 
Dense(100)

0.1475 0.9569 0.8573 48.724

1E-4 32 100
con(32), con(64), 

con(128), con(256), 
Dense(100)

0.1507 0.3254 0.8841 55.428

1E-5 32 50
con(32), con(64), 

con(128), con(256), 
Dense(100)

0.5346 0.8006 0.7916 50.914

1E-5 32 100
con(32), con(64), 

con(128), con(256), 
Dense(100)

0.5788 0.5891 0.7675 52.379

1E-6 32 50
con(32), con(64), 

con(128), con(256), 
Dense(100)

0.9885 0.6054 0.651 51.348

1E-6 32 100
con(32), con(64), 

con(128), con(256), 
Dense(100)

0.9561 0.8402 0.6689 46.282

1E-7 32 50
con(32), con(64), 

con(128), con(256), 
Dense(100)

1.6208 1.4789 0.4005 34.947

1E-7 32 100
con(32), con(64), 

con(128), con(256), 
Dense(100)

1.5412 0.3867 0.4266 19.522

1E-7 64 50
con(32), con(64), 

con(128), con(256), 
Dense(100)

1.3966 1.3335 0.4579 19.540

1E-7 64 100
con(32), con(64), 

con(128), con(256), 
Dense(100)

1.3935 1.315 0.4587 29.917

1E-7 128 50
con(32), con(64), 

con(128), con(256), 
Dense(100)

1.3828 1.3606 0.4616 38.466

Table 4-13. Comparison by changing different parameters with test data in CNN 2D
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1E-7 128 100
con(32), con(64), 

con(128), con(256), 
Dense(100)

1.4421 1.3953 0.4165 18.337

1E-7 256 50
con(32), con(64), 

con(128), con(256), 
Dense(100)

1.2619 1.2385 0.4984 36.711

1E-7 256 100
con(32), con(64), 

con(128), con(256), 
Dense(100)

1.2801 1.2593 0.5012 33.038

1E-7 256 100
con(32), con(64), 

con(128), con(256), 
con(512), Dense(100)

1.2785 1.2695 0.4758 38.05

1E-7 256 100

con(32), con(64), 
con(128), con(256), 

con(512), Dense(100)
paddingsame

0.8494 0.8489 0.6551 42.817

1E-7 256 100

con(32), con(64), 
con(128), con(256), 

con(512), 
con(1024),Dense(100),pa

ddingsame

0.714 0.7283 0.7201 48.607

1E-7 256 100

con(32), con(64), 
con(128), con(256), 

con(512), 
con(1024),con(2048),Den

se(100),paddingsame

0.6141 0.6427 0.7625 53.329

1E-7 256 100

con(32), con(64), 
con(128), con(256), 

con(512), 
con(1024),Dense(500),De

nse(100),paddingsame

0.5973 0.6277 0.7655 52.108

1E-8 32 50
con(32), con(64), 

con(128), con(256), 
Dense(100)

3.1244 3.1107 0.1361 9.960

1E-8 32 100
con(32), con(64), 

con(128), con(256), 
Dense(100)

2.4581 0.1767 0.1801 28.297

1E-9 32 50
con(32), con(64), 

con(128), con(256), 
Dense(100)

2.1854 2.1036 0.1896 6.649

1E-9 32 100
con(32), con(64), 

con(128), con(256), 
Dense(100)

2.4211 0.1459 0.151 25.882



- 91 -

The result from the CNN 2D also shows that learning rate 1E-7, batch size 256 is 

the turning point of the loss. When learning rate is bigger, the train loss is much 

higher than validation loss which shows underfitting. When the learning rate is 

smaller, the loss increases. Increasing the batch size and epoch both affected to lower 

the loss. Increasing the layer has decreased the loss even further but increased 

underfitting. Having the minimum gap between training loss and validation loss and 

showing the highest validation accuracy is 65.51% when the learning rate is 1E-7, 

batch size 256, epoch 100, and five convolution layers where each layer has filter 

size 32, 64, 128, 256 and 512, and dense layer 100 and 7. In this stage, the test 

data accuracy showed 42.817%. This results also show that RNN shows better 

perfomance on handling time series data, and that time signal of commuting activity 

cannot be distinguished well even using deep learning approach. In addition, CNN 

2D showed lower accuracy than CNN 1D about 5.537%. The reason for this might 

be that each axis of sensor are not correlated in commuting activities. 

4.2.5 Comparison of different research using optimized parameter 

Based on the optimized parameter, comparision experiment was conducted. As 

shown in the result in Table 4-14, proposed method shows the highest accuracy.

Research Accuracy (%)

Widhalm et al. 74.234

Hemminki et al. 73.287

Wang et al. 72.957

Fang et al. 73.190 

Proposed method 78.106

Table 4-14. Comparison with different research using different test data using RF



- 92 -

5. Conclusion

In this research, a human commuting activity recognition method using inertial 

sensors and GPS in a smartphone environment is proposed. Total seven activities were 

collected including stay, walk, jog, car, bus, subway and bicycle which all are common 

activities performed for commuting. 

Summing sensor signals of each axis is conducted to only refer magnitude for 

orientation independency. Also offsetting the gravity axis is performed to only refer the 

gravity axis for detecting natural vibration. Features are extracted from time domain and 

frequency domain. In time domain, general statistical features were selected and 

extracted. In frequency domain, natural vibration features were extracted. Before 

classfication based on statistical classifier, GPS speed based classification is undergone. 

If the speed is low, it could be one of all activities where whole activity based 

classification is made. If the speed is high, it would be one of car, bus, subway and 

bike. Stay is also included in here due to the possibility of misclassification. When the 

speed is high, coordinate data is used to distinguish subway and other vehicles when 

running ground section. After classifying activity, to revise errors from pre-defined 

classification, post-processing is undergone, namely activity correction. Then with 

proposed correction rule, current activity, previous activity and previously corrected 

activity result is referred for final revision.

Natural vibration features are proved to show better result when new test data is 

input, while other method showed lower accuracy. It is also proved that correction 

method increases the accuracy by correcting the error from classification. 
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The future work will be collecting more activity in different route for improved 

generalization, and setting the window in variable size that fixed size may contain 

erroneous data where the activity might be changed in the same window. Another future 

work is to increase the type of commuting activities such as motorcycle or kickboard. 

This may require to use additional sensors that smartphone cannot reflect the movement 

of limbs. Therefore, future work will try to use smartwatch, which complies the usage 

of minimum sensor devices with unobtrusiveness. 
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Appendix: B. Korean Abstract

초  록
기존의 사용자 행위인지는 웨어러블 센서를 방향과 위치를 고정한 채 몸에 부착

하는 형태로 진행되었다. 그러나 기술의 발전으로 스마트폰이 출시되었으며, 이는 
다양한 종류의 센서를 지니고 있어 기존 행위인지에서 사용되던 센서를 대체하게 
되었다. 스마트폰은 특성상 사람들이 위치와 방향을 고려하지 않고 가지고 다니기 
때문에 기존 센서와는 달리 위치와 방향 독립성을 보장해야 한다.

한편 현대의 사람들은 평일에는 핸드폰을 소지하고 차량을 이용하여 통근하는 
등의 비슷한 생활양식을 보이고 있다. 이에 따라 통근 활동 인지를 위한 최적의 환
경이 구성되었다. 통근 활동은 통근 중에 일어나는 행위로써 서기, 앉기, 걷기, 조깅  
및 자동차, 버스, 지하철, 기차, 오토바이, 자전거 등을 탑승하는 행위를 일컫는다. 
대부분의 사람들이 스마트폰을 소지하고 다니기 때문에, 스마트폰의 센서로부터 가
속도, 각속도, 속도, 좌표, 소리, 영상 등의 데이터를 습득할 수 있다. 이러한 데이
터로부터 특징을 추출하고 분류하여 사용자의 행위가 무엇인지 파악 가능하다. 

통근 활동을 자동으로 인지할 경우의 장점으로 1) 이동 수단 이용에 대한 통계 
데이터를 자동으로 획득 가능하여 설문 등의 수동 방법에 비해 시간과 비용 절약이 
가능하고, 2) 사용 중인 이동 수단에 따라 사용자 맞춤형 서비스나 광고가 즉시에 
전달 가능하며, 3) 건강 상태, 안전 문제, 소모 칼로리량 등이 모니터링 가능하여 
건강 관련 서비스가 가능하고, 4) 온실 가스 탄소 발자국 예측 등이 있다. 

통근 활동 중에서는 차량 인지가 가장 큰 문제를 야기한다. 이는 차량 안에서는 
사람이 서 있거나 앉아 있는 등 움직을 보이지 않으며, 이는 정적 행위이기 때문이
다. 이에 따라 시계열 센서 신호에서는 수치에 큰 변화가 나타나지 않으며 특정한 
패턴을 가지지도 않는다. 이러한 문제를 해결하기 위해 몇몇 연구에서는 주파수 신
호에서 특징을 추출하였다. 주파수는 단위 시간 당 반복적인 이벤트 발생 횟수를 
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나타내는 단위이다. 주로 추출되는 특징으로는 통계적 특징인 평균이나 표준 편차, 
그리고 최대 진폭을 보이는 주파수 등이 있다. 그러나 통계적 특징의 경우 주파수 
자체가 서로 다른 차원을 나타내기 때문에 이에 대한 통계를 내어서는 안되며, 최
대 진폭 주파수의 경우 고정되지 않고 변화하는 문제점을 가지고 있다. 또다른 고
려 사항으로는 실제 환경에서 발생하는 예측되지 못한 변수에 대하여 기계학습 기
법에서는 오류가 발생한다는 사실이다. 이러한 오류를 보정하기 위해서 기계학습 
기반 분류 이후에 휴리스틱 기반 후처리 방법이 요구된다. 

따라서 본 논문에서는 이를 해결하기 위한 두 가지 방안을 제안한다. 첫 번째는 
소지위치 문제와 차량 분류 문제를 위한 차량의 고유진동 특징을 이용하는 것이다. 
모든 물체는 고유진동을 가지고 있으며, 이는 차량도 마찬가지로써 소지위치에 영
향을 끼치지 않는다. 두 번째는 행위 보정으로 현실 세계를 반영하여 분류 결과는 
조정하는 것이다. 여기서는 GPS를 이용하여 지하철과 지상 차량을 분류하는 것, 상
호 변환 규칙의 사용, 그리고 현재 행위, 이전 행위, 이전 보통 행위를 이용한 행위 
보정 방법이 사용된다. 실험 결과에 따라 제안하는 방법이 기존의 통근 활동 인지 
방법보다 높은 결과를 나타냄을 입증하였다. 
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