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 To enhance the operation of distributed system, monitoring

tool is often used

 Monitor the state

 Reconfigure internal components

 Orchestrate the operation

 Monitoring information is data source for decision making.

 Ordered in time: time-series data.

 However, monitoring system always provides delayed

information.

 Delay makes data obsolete.

 Affect the precision of decision.

 Need for data prediction to make the information more

updated.

 Better information produces better decision.

Introduction Background (1/2)

Monitoring data on networking.

A typical distributed system.
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 Definition of prediction: regression technique

 Statistical technique.

 Explore the relationships between variables.

 Use to predict/estimate futuristic values.

 Type of regression technique is various

 Linear regression

 Bayesian regression

 Ridge regression

 …

 How to choose: based on the characteristic of the data

 Definitions: Gaussian process regression

 Underlying function: y = f(x)

 f(x): linear, quadratic, cubic, non-polynomial…

 Use model selection to choose the best-fit function.

 Better solution: Gaussian process regression (GPR).

 Consists of two phases:

 Hyper-parameters learning phase.

 Training phase.

 Let data ‘speak’ clearly about themselves.

 To be more accurate prediction technique.

Introduction Background (2/2) 

Training 

points

Predictive 

value
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 Characteristic of monitoring data in distributed

system: related to the arrival rate of tasks coming to

servers.

 Distribution of tasks follows Poisson distribution

 According to the relationship between

probabilistic distributions[*], when arrival rate (λ)

increases, Poisson distribution converges to

Gaussian distribution.

 Gaussian distribution over time establishes

Gaussian process.

 Using GPR to handle the monitoring data is

natural.

 Why choose Gaussian process?

 Accuracy [**]

 Linear regression

 K – nearest neighbor (knn)

 Multivariate adaptive regression splines

(MARS)

 Multilayer Perceptron Ensembles trained

with Early Stopping (MLP-ESE)

 Gaussian process regression - Maximum a

posteriori estimation (GPR - MAP)

 Gaussian process regression – Markov

chain Monte Carlo (GPR - MC)

 Multilayer Perceptron - Markov chain

Monte Carlo (MLP-MC)

[*] Gallager, R.G., 2013. Stochastic processes: theory for applications. Cambridge University

Press.

[**] Experiments from the publication: Rasmussen, C. E. (1996). Evaluation of Gaussian

processes and other methods for non-linear regression (Doctoral dissertation, University of

Toronto).

Introduction Motivation

(1)
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 Problem of Gaussian process regression

 Reaction rate: CPU time evaluated in second

for regression.

 Among the famous prediction techniques,

Gaussian process family suffer the critical

degradation in processing speed.

 Cause of problem

 GPR costs O(n3) for computational complexity

when calculating n training points of a dataset.

 Matrix inverse.

 Log determinant calculation for the

covariance matrix.

 Objective: solve the performance issue of

GPR.

 Research values

 Innovate the development of many applications

based on GPR.

 Improve the current GP-family approaches in

data communications, networking, signal

processing…

Experiments from the publication: Rasmussen, C. E. (1996). Evaluation of Gaussian processes and other methods for non-linear regression (Doctoral

dissertation, University of Toronto).

Introduction Problem statement

 Summary

 Among the approaches, Gaussian process regression (GPR)

 Accuracy: outperform, robust, adaptive to the input.

 Drawback: reaction rate is very slow.

 Reason?

 O(n3) computational complexity.

 O(n2) storage complexity.

 Unacceptable for large-dataset computation.

Training 

points

Predictive 

value
Gaussian process regression
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Introduction Taxonomy
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Research Technique Result Limitation

[eGPR] - Evolving Gaussian

process for predicting chaotic time

series [1]

Conjugate Gradient + Cholesky

decomposition.
O(n2/6)

_Hyper-parameter 

learning phase only.

[nGPR] - Nonparametric adaptive

control using Gaussian processes

with online hyper-parameter

estimation [2]

Entropy minimization + Kullback–Leibler

divergence maximization
O(n2)

_High computational 

complexity.

_Sensitive to local 

optima.

_Low accuracy

[lGPR] - Efficient Gaussian

Process Regression for large data

sets [3]

Random projection method + reduced 

rank matrix approx.

 reduce dimensions of dataset

O(mn2)
_High computational 

complexity.

[bGPR] - Gaussian process for Big

Data [4] Stochastic Variational Inference. O(nm2)

_Require additional 

parameters.

_Low accuracy.

[oGPR] - Optimization of Gaussian

process hyper-parameters using

Rprop [5]

Rprop-gradient-based optimization 

technique (CG+quasi-Newton).
O(n2)

_Hyper-parameter 

learning phase only.

[1] Petelin, D., & Kocijan, J. (2014, June). Evolving Gaussian process models for predicting chaotic time-series. In Evolving and Adaptive Intelligent Systems (EAIS), 2014 IEEE Conference on (pp. 

1-8). IEEE. 

[2] Grande, R. C., Chowdhary, G., & How, J. P. (2013, December). Nonparametric adaptive control using gaussian processes with online hyperparameter estimation. In 52nd IEEE Conference on 

Decision and Control (pp. 861-867). IEEE.

[3] Banerjee, A., Dunson, D. B., & Tokdar, S. T. (2012). Efficient Gaussian process regression for large datasets. Biometrika, ass068. 

[4] Hensman, J., Fusi, N., & Lawrence, N. D. (2013). Gaussian processes for big data. arXiv preprint arXiv:1309.6835.

[5] Blum, M., & Riedmiller, M. A. (2013, April). Optimization of Gaussian process hyperparameters using Rprop. In ESANN.

Related works Selected methodologies

[PE]
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 Summary

 Problem of existing works

 High complexity.

 Incomprehensive (apply only for hyper-parameters learning/training phase).

 Thesis proposes

 Complexity reduction before prediction.

Related works Summary

Training 

points
Hyper-parameters learning phase Training phase

Predictive 

value

Direct method & Indirect Pure conjugate gradient

Training 

points

Hyper-parameters 

learning phase
Training 

phase
Predictive 

value

Indirect method Divide & conquer

_No model compactness.

_No domain transformation.

_Use regular optimization.

Compact 

equation

Fast Fourier 

Transform

Optimize hyper-

parameters

Divide domain to 

n levels

Calculate each 

level 

Engage 

parallelism

AS IS:

TO BE:

 Comprehensively appropriate solution to both phases of GPR.

 Improve HPLP by proposing the complexity reduction.

 Improve Training phase by introducing “divide and conquer”

idea.

Gaussian process regression

Gaussian process regression
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 Thesis includes two phases

 Hyper-parameters learning phase: adapts the parameters

to the input data.

 Usually, hyper-parameters located in kernel function.

 Is used to build prediction model.

 Training phase: does the regression based on the

aforementioned hyper-parameters.

 Less complex than hplp.

 Usually performs much faster than hplp.

 Data source

 Time location x={x1, x2,…,xn}.

 Random variables y={y1, y2,…,yn}

 Represent joint Gaussian distribution of target input data.

 The distribution overtime forms the GP

Proposed method Domain analysis

m(x) : mean function.

k(x,x’) : kernel function, which consists of

desired hyper-parameters.

Training 

points

Predictive 

value

Gaussian process regression

Hyper-parameters learning 

phase
Training phase

(2)

(3)

(4)

Predictive memory utilization based on 20 time-

series training points collected from Ganglia.
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 Abstract

 The proposed approach

 Indirectly solves complexity by transforming the domain first, then optimize hyper-parameters.

 Transforms problem from spatial-temporal domain to frequency domain.

 Significantly reduces the computational complexity from O(n3) to O(nlogn).

 No need to store the inversed matrix on every step, reduce the storage complexity from O(n2) to O(n).

 Engage stochastic optimization to avoid local optima.

 Background theories

 Convergence law of log determinant.

 Possibility of kernel transformation.

 Effectiveness of Fast Fourier transform.

 Benefit: cut down hyper-parameters learning time more than 82% [*].

[*] Bui, Dinh-Mao, Shujaat Hussain, Eui-Nam Huh, and Sungyoung Lee. "Adaptive Replication Management in HDFS Based on Supervised Learning." IEEE Transactions 

on Knowledge and Data Engineering 28, no. 6 (2016), pp: 1369-1382.

Proposed method Phase one: HPLP (1/7)

Training 

points

Hyper-parameters 

learning phase
Training phase

Predictive 

value

Indirect method
Divide & conquer

Compact 

equation

Fast Fourier 

Transform

Optimize hyper-

parameters



Dinh-Mao Bui Korea, November 2017PhD Thesis Defense 12

 Proposed method: cooperation of 

 Fast Fourier transform

 Transform the domain

 Reduce the complexity to O(nlogn) while still maintain the integrity of the data.[*]

 Convergence law of log determinant

 Compact the negative marginal log likelihood.

 Provide the convergence condition to preserve an acceptable accuracy level.

 Stochastic gradient descent

 Optimize the hyper-parameters.

[*] Schatzman, J. C. (1996). Accuracy of the discrete Fourier transform and the fast Fourier transform. SIAM Journal on Scientific Computing, 17(5), 1150-

1166.

Proposed method Phase one: HPLP (2/7)

TP Pv

Gaussian process regression

Training 

phase

Minimize 

rMLL

Hyper-parameters learning phase

Domain transform

Transform 

kernel

Transform 

rMLL

Pre-processing

Compact 

equations

Reduce nMLL

to rMLL

Step 1 Step 2 Step 3

Spatial-temporal domain Frequency domain
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 Objective: find hyper-parameters to build covariance matrix.

 Traditional method: minimizing negative marginal log likelihood (nMLL)

Take partial derivatives on negative marginal log likelihood and set to zero.

 Result: high complexity in calculating

 Matrix inverse

 Partial derivative matrix

 Possible solution: domain transformation

 Popular in mathematics.

TP Pv

Gaussian process regression

Training 

phase

Minimize 

nMLL

Hyper-parameters learning phase

Domain transform

Transform 

kernel

Transform 

rMLL

Pre-processing

Compact 

equations

Reduce nMLL

to rMLL

Step 1 Step 2 Step 3

Spatial-temporal domain Frequency domain

Proposed method Phase one: HPLP (3/7)

(5)
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 Observation

 Negative marginal log likelihood consists of two components

 Kernel function.

 Negative marginal log likelihood itself.

 Domain transformation

 Kernel transformation: is possible by engaging equivalent kernels [*]

 Negative marginal log likelihood transformation: really complicated and infeasible.

 Need a pre-processing step to compact the equations.

 Make it possible to transform.

TP Pv

Gaussian process regression

Training 

phase

Minimize 

rMLL

Hyper-parameters learning phase

Domain transform

Transform 

kernel

Transform 

rMLL

Pre-processing

Compact 

equations

Reduce nMLL

to rMLL

Step 1 Step 2 Step 3

Spatial-temporal domain Frequency domain

[*] Sollich, P. and Williams, C., 2005. Using the equivalent kernel to understand Gaussian process regression. In Advances in Neural Information Processing 

Systems (pp. 1313-1320).

Proposed method Phase one: HPLP (4/7)
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TP Pv

Gaussian process regression

Training 

phase

Minimize 

rMLL

Hyper-parameters learning phase

Domain transform

Transform 

kernel

Transform 

rMLL

Pre-processing

Compact 

equations

Reduce nMLL

to rMLL

Step 1 Step 2 Step 3

Spatial-temporal domain Frequency domain

 Observation

 Most of works focus on compacting negative marginal log likelihood (nMLL) to reduced version (rMLL).

 Compact equations

 Behind the scene: nMLL is reduced by compacting below corresponding equation

 After compactness and transformation, the minimization process is engaged to calculate the 

optimal hyper-parameters.

 Stochastic Gradient Descent.

Proposed method Phase one: HPLP (5/7)

(6)
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 Step 1: compact the equation based on

convergence law of log determinant [*].

 Step 2: transform the domain from spatial-

temporal to frequency.

 Computational complexity: O(n3) to O(nlogn).

 Storage complexity: O(n2) to O(n) because

no need to save the inversed matrix in each

step.

[*] Cai, T. Tony, Tengyuan Liang, and Harrison H. Zhou. "Law of log determinant of sample covariance matrix and optimal estimation of differential entropy for high-

dimensional Gaussian distributions." Journal of Multivariate Analysis 137 (2015): 161-172.

[**] Sollich, P. and Williams, C., 2005. Using the equivalent kernel to understand Gaussian process regression. In Advances in Neural Information Processing Systems (pp.

1313-1320).

Proposed method Phase one: HPLP (6/7)

(9)

(7)

(10)

Log 

determinant Constant

Estimation

Substitute

Convergence 

law

Drop
Preserve

Preserve


(8)

Spatial-temporal domain

Frequency domain

rMLLnMLL

rMLL

Fast Fourier Transform

Partial Derivatives
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 Step 3: compute the hyper-parameters 

based on stochastic gradient descent 

(SGD)

 Decay function [*]:

 Stop condition:

 SGD is less sensitive to local optima than the 

conjugate gradient. Thus, this technique can produce 

more accurate result.

[*] Robbins-Monroe decay function is engaged to vanish the partial derivatives. This function helps to prevent the optimizing values jumping out of the 

designated boundary. Decay function is used instead of the exact line search or backtracking line search mainly due to the performance issue.

Proposed method Phase one: HPLP (7/7)

 Summary after phase one
 The improvement has been made due to

 Mathematical compactness of equation

 Data transformation

 Effective optimization

 By this improvement 

 The hyper-parameters can be found faster than 

the regular conjugate gradient technique which 

is mostly used most in other methods ([eGPR], 

[bGPR]).

 Less sensitive to the local optima, more 

accuracy [nGPR].

 No extra-parameters requirement ([bGPR]).

 The author’s contribution

 The mathematical derivations to compact and 

transform the marginal negative log likelihood.

 The appropriate engagement and adjustment to 

enhance the optimization process.

(0) (0) (0)( , )f l 

Initialize Compute partial

derivatives Compute rMLL
Evaluate 

RMSE

Accept

(*) (*) (*)( , )f l 

Update

( 1) ( 1) ( 1)( , )k k k

f l   

Converged

Not converged

(11)

(12)

(13)

(14)
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 Abstract
 Other conventional approaches

 Only use iterative gradient methods.

 Directly calculate the matrix inverse.

 The proposed approach

 Transforms the equation from matrix-vector product 

into sum of conjugacy.

 Engages “divide and conquer” idea.

[*] Bui, Dinh-Mao, Shujaat Hussain, Eui-Nam Huh, and Sungyoung Lee. "Adaptive Replication Management in HDFS Based on Supervised Learning." IEEE 

Transactions on Knowledge and Data Engineering 28, no. 6 (2016), pp: 1369-1382.

Proposed method Phase two: training (1/5)

 Reduces the computational complexity from O(n2) 

to O(m+n).

 Theoretical basis

 Improved fast Gauss transform technique.

 The mechanism of MapReduce.

 Benefit: cut down training time more than 54.23% [*].

Training 

points

Hyper-parameters 

learning phase
Training 

phase
Predictive 

value

Indirect method Divide & conquer

Divide domain to 

n levels

Calculate FGT in 

each level 

Engage 

parallelism

Gaussian process regression

Compact 

equation

Fast Fourier 

Transform

Optimize hyper-

parameters
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TP Pv

Gaussian process regression

Minimize 

rMLL

Hyper-parameters learning phase

Domain transform

Transform 

kernel

Transform 

rMLL

Pre-processing

Compact 

equations

Reduce nMLL

to rMLL

Step 1 Step 2 Step 3

Spatial-temporal domain Frequency domain

Training phase

Divide domain 

to n levels

Calculate FGT 

in each level

Engage 

parallelism

Step 4

Step 5

Step 6

 Objective: estimate the value of test input: y*

 Rewrite equation

where vector

multiply both sides of (17)  by K(x,x’).

 Equation (16) is the target. To achieve that, equation (17) needs to calculate first.

 Since K(x,x’) is symmetric and positive-definite, ξ can be found by solving equation (18) by using linear conjugate gradient. 

 Complexity: O(n2).

Covariance matrix can be retrieved by using previous hyper-parameters

Proposed method Phase two: training (2/5)

(15)

(16)

(17)

(18)
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[*] M is the number of target points and N is the number of source points.

[**] L. Greengard and J. Strain. The fast Gauss transform. SIAM J. Sci. Statist. Comput., 12(1): pp79–94, 1991.

Kpj Conjugate

gradient

Transform element

O(MN)[*]

O(N2)

O(M+N)

Fast 

Gauss 

Transform

Discrete 

Gauss 

Transform

Step 4

 Divide stage

xj

xi

x’i

xk

x1

x2

x3

xc

x5

x4

x6

x'1x'2
x'3

x’c

x'5 x'4

x'6

near

near
far

_Each element of sum on L.H.S is a

measurement of contribution

between two points.

_Points are independent if distance

between is too far (No contribution).

_Instead of calculating contribution

separately, clustering is used to

calculate contribution box to box.

_Level of precision decides how fine

grained to cluster the domain.

Idea: precision can be controlled.

wj

Wc

wj wj

wj

wj
wj

w'j w'j

w'j

w'j

w'jw'j

Proposed method Phase two: training (3/5)
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in which:

qi : adaptive weighted parameter related to the

current level of precision ε.
Wj : wrapped coefficient propagated from

neighbors.

Note: Adaptive weighted parameter qi in Improve Fast 

Gauss Transform [*] are used to preserve the accuracy.

 Conquer stage: FGT consists of three sub-steps

 S2W: calculate coefficient wj for each unit U,

then propagate to neighbors of U.

 W2L: update wj wj+ based on the

propagated values.

 L2T: calculate new Kpj in the neighbor square

based on the updatedwj

 Computational expense: O(M+N), linear. [**]

Step 5

coarse to fine grained levels

1

2

3

4

5

6

[*] Yang, C., Duraiswami, R., and Davis, L. Efficient kernel machines using the improved fast Gauss transform. In Advances in Neural Information Processing
Systems. pp1561 -1568, 2005. Size of box is 2\sqrt{l ln(1/ε)}.

[**] T. Feder and D. Greene. Optimal algorithms for approximate clustering. InProc. 20th ACM Symp. Theory of computing, pages 434–444, Chicago, Illinois,

1988. Farthest point clustering [O(nlogk) for k-centers] compared with kmc [O(n(dk+1))]

xj

xi

xk

wj

wj

xj

Wj

xj

wj

wj

xi

Wi+

xk

Wk+

xi

Wi+

xk

Wk+

S2W

W2L

L2T

Proposed method Phase two: training (4/5)
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Proposed method Phase two: training (5/5)

Training 

phase
Predictive 

value

Divide & conquer

Divide domain to 

n levels

Calculate FGT in 

each level 

Engage 

parallelism

Gaussian process regression

Compact 

equation

Fast Fourier 

Transform

Optimize hyper-

parameters

 Parallelism

 The idea of MapReduce.

 S2W to Map phase

 W2L to Combine phase

 L2T to Reduce phase

 Calculate the (Kq)j for each level in

parallel.

 Further enhance the performance.

 Summary after phase two

 The improvement has been made

due to

 Elimination of matrix inverse.

 Transformation from matrix-vector

product into sum of elemental DGT.

 Speed up DGT but still preserve the

accuracy by engaging IFGT method.

 Idea of utilizing the parallelism.

 By this improvement, the training

phase outperforms the iterative

method using in other technique.

 The author’s contribution

 Introduce “divide and conquer”

philosophy and parallelism in

reducing the complexity and

speeding computation.

Step 6



Dinh-Mao Bui Korea, November 2017PhD Thesis Defense 23

 Empirical experiment

 Dataset

 Boston housing dataset (small set)

 Contains information collected by U.S Census Service concerning housing in area of Boston Mass.

 Obtained from the StatLib archive (http://lib.stat.cmu.edu/datasets/boston)

 Has been used extensively by the machine learning community for regression purpose.

 Small size: 506 entries.

 The median value of home is the attribute of interest.

 UK land registry price paid dataset (large set)

 Monthly price paid data in UK (http://data.gov.uk/dataset/land-registry-monthly-price-paid-data/).

 Period of extraction: February to October 2012.

 Covered area: England and Wales.

 Large size: 75,000 entries.

 Randomly select 8,000 entries for testing.

 Divide into tenfold, each fold comprises 800 entries.

 Results are averaged.

 The changing cost of apartments is the attribute of interest.

 Candidate algorithms [RWs]

 eGPR

 nGPR

 bGPR

 Traditional GP (GP-MAP)

 Proposed method

Performance evaluation Bench-markings (1)

 Experiment facility

 CPU: Intel(R) Core(TM) i7-

3770 CPU @ 3.40GHz (8 

CPUs), ~3.4GHz

 Memory: 16GB

 Operating System: 

Windows 7 Ultimate 64-bit

 Experiment metrics

 Accuracy (measured 

by NMSE)

 Speed (measured by 

CPU time).
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Accuracy (lower NMSE, better accuracy) CPU time (lower is better)

 Accuracy measurement
 Most accuracy: traditional GP (GP-MAP)

 No degradation factor

 Second best: the proposed method

 Slightly degradation due to approx.

 The loss of accuracy is controlled by IFGT.

 Degradation: 2%7% depends on dataset.

 Worst accuracy: bGPR

 More data increases the accuracy of the algorithms.

Performance evaluation Bench-markings (1)

 Speed measurement
 Fastest: proposed method

 Cut down more than 82% of CPU time (compared

with Traditional GP).

 Second best: bGPR

 Slowest: Traditional GP (GP-MAP)

 Summary
 Proposed method: tradeoff between accuracy and speed.

 Accuracy degradation is controlled.
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 Synthetic experiment: Multiuser 

detection in DS-CDMA

 Target system: synchronous DS-

CDMA.

 Number of user: 8 users 

spreading by Gold sequences.

 Length of binary sequences: 31.

 Power of all users: SNR= 4dB.

Bui, Dinh-Mao, and Sungyoung Lee. "Fast Gaussian Process Regression for Multiuser Detection in DS-CDMA." IEEE Communications Letters (2016).

Performance evaluation Bench-markings (2)

Figure 6.3: Relationship between BER and the number of training points

Figure 6.5: Bit-error-rate at each signal-to-noise ratio

Figure 6.4: Time complexity enhancement 

of the proposed method.

 Accuracy measurement

 Little degraded but closely approach the Traditional GP (under 2%).

 More training points improve the accuracy.

 Speed measurement

 Much outperforms the Traditional GP.
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 Energy efficiency for cloud computing system [*].

 The fact: power used for turning-off and turning-on

PMs is much less than maintaining idle PMs.

 Problem-to-solve: achieving energy savings

while ensuring the quality of services.

 Power saving logic

1. Monitoring component (Ganglia) collects

desired system statistics (SS).

2. SS is provided as input to the Predictor to

produce predictive statistics (PS)

3. PS is engaged in Energy Optimizer to

create near optimal number (NON) of

hosting physical machines w.r.t quality of

services.

4. Based on NON, power manager creates VM

Migrating Instruction to consolidate VMs.

5. Size of pool of active PMs is closely reduced

to NON. Idle PMs are shut down to save

power consumption.

 Proposed method is applied to the prediction

technique enhance the usefulness of

monitoring data.

 Measurement: various.

 Quality of services: according to SLA document.

 Dataset: Google traces [**]

Bui, Dinh-Mao, YongIk Yoon, Eui-Nam Huh, SungIk Jun, and Sungyoung Lee. "Energy efficiency for cloud computing system based on predictive optimization."

Journal of Parallel and Distributed Computing, Vol 102, April, 2017, pp: 103-114.

[**] https://github.com/google/cluster-data/

Performance evaluation Potential applications (1)

https://github.com/google/cluster-data/
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Performance evaluation Potential applications (1)

 Result - utilization analysis

 Metrics: CPU & Memory utilization.

 Benchmark

 Lowest: default scheme.

 Highest: optimal scheme.

 2nd highest: E2M

 Reason

 Default scheme: too many idle

PMs low utilization.

 Optimal scheme: too much

focus on energy saving

regardless system overhead.

 E2M: focus on energy saving

w.r.t system latency. (54.72%

less latency than optimal

scheme.)

 Experiment design

 Metrics:

 CPU & Memory utilization.

 System latency.

 Power consumption.

 Prediction accuracy

 Algorithms in experiments

 Default scheme: no power

saving.

 Greedy first fit decreasing

(FFD).

 Proposed approach (E2M).

 Optimal scheme: optimize

energy only.

 Dataset: choose the biggest

homogeneous set (6732 PMs).
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Performance evaluation Potential applications (1)

 Result - power consumption analysis

 Default scheme: burns huge amount of electricity.

 Keeping all machines running even without any workload.

 FFD: burns less than default scheme but still wastes energy.

 Leave many PMs under-utilized.

 Unable to flexibly balance the resource pool at high workload period.

 Optimal scheme: performs pre-calculated optimal scheme to achieve great 

energy saving (37.08%).

 Does not consider system overhead very high utilization.

 Tend to violate quality of services.

 Proposed scheme: achieve near-optimal energy saving scheme (34.89%), 

but proactively control system utilization.

 Result - enhancement of monitoring statistics

 Proposed method outperform polynomial fitting interpolation.

 Provide better input for optimization scheme.
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 Adaptive replication management in HDFS

 The fact: over 80% data accesses go toward less

than 10% of stored data.

 Problem-to-solve: Identify and replicate the 10%

active data with adaptive factor of replication.

 Reduce overhead on data transfer and storage

than default scheme (triplication)

 Improving Map phase (especially long tasks) in

Hadoop system by enhancing data locality.

 Definitions

 Access potential: the predictive rate that a

specific file would be accessed in a given unit of

time.

 Data locality metric: the average ratio between

local accesses and total accesses on HDFS

files.

 Replicating logic

 Logging system collects heartbeat of HDFS,

which consists of access information (time,

rate (read/write), type(remote/local access)…).

Heartbeat is cleaned and sent to predictor.

 Predictor calculates access potential of files

and sends to replication management.

 Replication management calculates suitable

replication factor based on access potential

and assigns to corresponding files.

Bui, Dinh-Mao, Shujaat Hussain, Eui-Nam Huh, and Sungyoung Lee. "Adaptive Replication Management in HDFS Based on Supervised Learning." IEEE 

Transactions on Knowledge and Data Engineering 28, no. 6 (2016), pp: 1369-1382.

[*] https://github.com/SWIMProjectUCB/SWIM

Performance evaluation Potential applications (2)

 Datasets:

 Modified Statistical Workload Injector for

MapReduce (SWIM) based on FB traces [*]

 Built-in TeraSort developed by Yahoo!.

https://github.com/SWIMProjectUCB/SWIM
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Performance evaluation Potential applications (2)

 Experiment design

 Metrics:

 Data locality.

 Execution time.

 Network traffic.

 Algorithms in experiments

 Default scheme: triplication.

 ERMS.

 OPTIMIS.

 Proposed method (ARM)

 Dataset:

 Modified SWIM (FB traces): 24 historical traces

sampled on 600-machines cluster following Zipf-

like distribution. (FB-2009 & FB-2010).

 TeraSort: performed on 1TB input data.

 Result - availability analysis

 Metric: averaged data locality

 Benchmark

 Lowest: default scheme.

 Highest: proposed approach (ARM, 2.84

times better than default scheme).

 2nd highest: ERMS

 Result - performance gain

 Metric: execution time.

 Benchmark: ARM reduces 52% and 37.98%

mapping time compared with default scheme and

second best approach (ERMS)

 Notice: enhancement only takes effect on the Map

task only.
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 Result - other observations

 Network traffic evaluation

 ERM achieves second best in availability via over-replication. 

 delivers a lot of overhead to the network (39.96% higher 

than proposed approach – ARM).

 OPTIMIS achieves low network contention due to under-

replication strategy  limits data locality.

 Proposed approach – ARM has similar network load 

compared to default scheme (triplication) but achieves 

much better data locality.

 Reason: ARM chooses right set of active data to replicate.

 Data locality vs Map-task durations

 TeraSort benchmark: size of task increase gradually.

 Compared with state-of-the-art - delay scheduling algorithm 

(delay-sched).

 Result

 Map-task duration < 20s: delay-sched achieves 4.71% 

better data locality than ARM.

 Map-task duration = 22s: delay-sched and ARM score 

analogous result.

 Map-task duration > 22s: ARM step by step overcome 

delay-sched.

 Summary

 Proposed approach (ARM) identifies right set of active data and 

appropriately increases corresponding replication.

 ARM deals well with long Map-tasks. In case of short tasks, delay 

scheduling algorithm is better.

Performance evaluation Potential applications (2)
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 In this thesis, the PhD candidate

 Thoroughly analyze the nature of

Gaussian process regression with

regard to popularly used prediction

techniques.

 Propose the complexity reduction in

hyper-parameter learning phase.

 Introduce the “divide and conquer”

idea into algorithm design in training

phase.

 Quantitative improvement

 The propose method outperforms

other methods and achieves the

significant improvement (more than

82% compared with traditional GP) in

terms of completion time.

 The degradation of accuracy is

controlled under 7%, which is

acceptable in most of GP

applications.

 Future works

 Engage parallel computing to the

hyper-parameters learning phase.

 Improve the proposed method to deal

with heterogeneous system.

 Consider extending the proposed

method to the high-dimensional

space.

Conclusion & Achievements

 SCI Journals – First author

 IEEE Transactions on Knowledge and

Data Engineering (IF: 3.438,

published, 2016).

 IEEE Communications Letters

(IF:1.988, published, 2017).

 Elsevier journal of parallel and

distributed computing (IF:1.93,

published, 2017).

 Journal of supercomputing (IF:1.326,

published online, 2017).

 Applied Intelligence (IF:1.215,

published, 2015).

 SCI(E) Journals – Co-author

 2 MDPI Sensors.

 IETE Review.

 Patents:

 2 patents in application.

 1 patent registered.

 Conferences

 6 international conferences.

 2 KCC conferences.
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