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Introduction



• Human activity recognition is an attempt to recognize human actions by 
observations using various sensors.

• It has many different potential applications and the possible connection 
to many different fields of study.
 Healthcare Applications

 Games and Robotics Industry

 Virtual Reality

 Home and Office Automation

 Security and Surveillance
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Human Activity Recognition
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Indoor and Outdoor Activities
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Motivation
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• Consider the simple sensors to recognize the human activities.

• To overcome the domination of major over the minor activities, novel models 
are needed which make human activity recognition more significant.

• Previous approaches do not consider the activity structure, just utilized the 
sensor events sequence. Thus, considering activity structure would provide 
more vital information for better human activity recognition.

• There is a need for methodologies to recognize the human activities without 
domain experts knowledge: develop methodologies to embed experts 

knowledge from new models.
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Problem Statement
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We analyzed and wants to solve the following existing problems

• The domination of major activities over minor activities.
 Major Activities: Meal preparation, Bathing, or Walking etc.

 Minor Activities: Doing Laundry or Cleaning.

• To handle activities non-deterministic nature.
 Due to culture differences and lifestyles.
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Figure: Domination of major over the minor 
activities
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Problem Statement
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• Resolve the uncertainties which are associated with motion of the body 
related activities. For Instance:
 Fast Walking: is it jogging?

 Slow Jogging: is it walking?

• Requires human expert to remove uncertainties by defining boundaries and 
rules in Fuzzy Inference systems.

Figure: Uncertainties associated with the motion of the body.
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Thesis Contribution
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• We introduce ensemble learners to process the information by giving 
equal importance to minor and major activities.

• Our proposed model has ability to embed activity structures via Genetic 
Algorithm and provide viable information to recognize the activities.

• We measure the uncertainties associated with the motion of the body 
related activities by analyzing and estimating the natural grouping of 
data.

• Consequently, we relax the domain knowledge constrains to define the 
fuzzy sets and rules.
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Related Work
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Related Work
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• Tapia et al. [1] works on activity recognition in the home using simple 
and ubiquitous sensors. They highlight the activities with more 
examples were recognized more accurately.

• Similarly, Ravi et al. [2] also mentioned that it would be interested to 
find out how effectively recognized the “short activities”.
 Limitations: Low accuracy

• Evolutionary ensemble learning paradigm can solve the limitations of 
low accuracy rate.

• It has successfully solved well-known problems such as:
 Intrusion Detection [3]

 Classification and data mining tasks [4]

 Robot Control [5]

In order to apply evolutionary algorithms, problem is converted to genetic 
representation and then evolve by stochastic operators.
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Related Work
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• Uncertainties are associated with the motion of the body related activities and 
mix with each other near the boundaries.

• Preece et al. [6] provide detail comparison of position of the accelerometer 
with feature extraction methods to classify the activities.

• Lara et al. [7] system is composed of a wearable device and a Bluetooth-
enabled Android phone; experiments were performed in a sequential fashion 
which recognized walking, running and sitting activities.

• Helmi et al. [8] proposed human activity recognition using a fuzzy inference 
system to recognize walking, jogging and stairs.

• Limitations
 The rules and membership functions are defined manually.

 The are based on the experiences of domain experts.

 They used multiple accelerometers.

 Activities are performed in sequential manner (i.e., Restricted Environment).
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Proposed Solution
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Proposed Methodology



• Let Ω = 𝑆1, … , 𝑆𝑛 be a set of n embedded sensors.

• Characterized by m attributes 𝑎 = [𝑎1, … , 𝑎𝑚]
𝑇

• In order to recognize the performed activities, we divide the daily life activities 
into a set of c classes 𝐶 = 𝐶1, … , 𝐶𝑛

• For each ensemble node, search space is defined as 𝑆 = 𝑐, [𝑆1𝑎, … , 𝑆𝑛𝑎]

• Rule space is defined as 𝑅 = (𝑐, [𝑆1𝑎′ , … , 𝑆𝑛𝑎′])

• An evolutionary ensemble learner (EL) for class c
𝐸𝐿𝑒𝑛

𝑐 = 𝑆 → 𝑅

• The output of c-evolutionary ensemble learners are aggregated on the central 
node (cn) as rule profile (RP):

𝑅𝑃𝑐𝑛 = ⨆𝑐𝐸𝐿𝑒𝑛
𝑐

16/34

Evolutionary Ensemble Model* 
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* Muhammad Fahim, Iram Fatima, Sungyoung Lee, and Young-Koo Lee, 
“EEM: Evolutionary Ensembles Model for Activity Recognition in Smart 
Homes”, Applied Intelligence - Springer (SCI, IF: 1.853), vol. 38(1), 2012
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Proposed Architecture
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Ensemble Node
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No
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• The stopping criterion is either all 
training instances passed correctly or

• evolved over a fixed number of 
generations.

• Apply ranked-based selection method
• After ranking, one parent is randomly 

selected from the top 50%.
• While the other is randomly selected from 

the remaining population. 
• This guarantees exploration of the whole 

search space for producing better 
offspring in the next generation.

Sensor Encoding

Stopping Criteria
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Central Node
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• n ensemble nodes are aggregated on 
the central node.

Recognition phase

• For a particular set of sensor observations, rules are fired to recognize activity 
class labels

• In the special case when more than one rule is fired then conflicting class labels 
are resolved by majority voting.



20/34

Ubiquitous Computing Lab, Kyung Hee University, Korea

Evolutionary Fuzzy Model*
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Muhammad Fahim, Iram Fatima, Sungyoung Lee, and Young-Tack Park, “EFM: Evolutionary 
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Applied Intelligence - Springer (SCI, IF: 1.853), 2013.
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Features Extraction
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Fuzzifier
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Fuzzifier…

f1

f2

f3

fn

Linguistic 
Variables

Very low | Low | Medium | High | Very high

Low | Medium | High

Very low | Low | Medium | High | Very high

Hedge Hedge

Human expert’s define the boundaries 
of membership functions

• Fuzzifier change the real scalar features into 
fuzzy values over the defined fuzzy sets.
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Walking

Assumption

𝛿

𝜇

• The acceleration pattern of an activity has a Gaussian-like distribution. 

• Although the assumption is not always true but it is reasonable.
• Since, most activities have a fairly consistent mean value around the 

distinguishing features.

Fuzzifier
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Gaussian Membership Functions Estimation
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Initialization and Estimation

• Numbers of Gaussian distributions are equal to the number of defined fuzzy sets.
• Initialization is done by finding the range and dividing it into equal parts.
• To estimate the parameters of each Gaussian, an Expectation-Maximization (EM) 

algorithm is applied.

Figure: Fuzzy input variable with five fuzzy sets
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• A set of rules are fired during the fuzzy inference.
• The output of each rule is aggregated by an implication method that is 

based on a union operator.
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Fuzzy Inference and Defuzzification

• We apply the fuzzy Centroid method. 
• Each membership function is clipped at the 

corresponding strengths of the activated 
rules.

• The centroid of the composite area is 
calculated and the horizontal coordinate is 
the recognized activity.

Defuzzification

Table: Activity recognition from 
the crisp output
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Experiment and Results
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Data Sets Description
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• Experiments are performed on three 
smart home datasets

• MIT’s House N

 Dataset: MITADS1

 Apartment: 1-Bedroom

 Duration: 14 Days

 Participant: 30-year-old woman

 Dataset: MITADS2

 Apartment: 1-Bedroom

 Duration: 14 Days

 Participant: 80-year-old woman

• Intelligent System Laboratory

 Dataset: ISL dataset

 Apartment: 3-rooms

 Duration: 28 Days

 Participant: 26-year-old man
Table: ISL activity dataset statistics

Table: MITADS1 and MITADS2 activity dataset statistics
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Results and Analysis
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Figure: The MITADS1 activity recognition results Figure: The MITADS2 activity recognition results

• We achieved remarkable improvement for “Bathing”, “Grooming” and “Toileting” as major activities.
• For minor activity “Washing dishes” and “Cleaning” as compared to existing methods.

• The most noticeable improvements for major activities are in case of “Preparing breakfast” 
,“Preparing a snack”, “Watching TV” and “Listening to music”.

• In case of minor activity “Preparing Dinner”, our accuracy is high as compared to existing methods.

MITADS1

MITADS2
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Results and Analysis
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Figure: The ISL activity recognition results

Table: Model, Precision, Recall, F-measure and Accuracy

Figure: Accuracy comparison (Avg, Max and Min)

Stability Test
Statistical Significance Test 

We performed the statistical significance test 
and our EEM achieves significant improvement 
(p-value < 0.005) regarding to the classification 
accuracy.
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Results and Analysis
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We used “10-fold cross validation” method to 
perform the experiments.

Table: Confusion Matrix of recognized activities

Table: Comparisons of EFM and Naïve Bayes Classifier

Figure: Accuracy comparison (Avg, Max and Min)

Table: Model, Precision, Recall, F-measure and Accuracy

Wilcoxon Signed-Ranks Test 
• The p-value is computed (i.e., p-value=0.0313) for the 

pairwise comparison.
• It shows our model achieves a significant improvement over 

the existing Naïve Bayes method with a level of significance 
α=0.05

Stability Test
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Conclusion
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• To solve the limitations of learning major/minor activities, evolutionary 
ensemble learners are proposed.

• Existing methods unable to model the activity structure such as location, and 
type of sensors, thus, GA based method is designed for learning.

• During fuzzy inference system, defining rules and fuzzy sets through domain 
experts is not feasible method. Thus natural grouping of data is estimated by 
assuming Gaussian like distribution.

• Experimental results demonstrated that handling the discussed issues 
consistently increased accuracy for indoor and outdoor activities.
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Achievements
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Korean Patents Two Patents

SCI/E Journal Papers

Non-SCI/E Journal Papers

International Conference Paper

Domestic Conference Paper

Two Frist Author | Four Co-author

Two Co-author

Six First Author | Six Co-author

One First Author | Two Co-author

Total Publications: 25

2

6

2

12

3

A Light-weight Physical Activity Recognizer based on Multimodal Sensors in Smartphone

IEEE Transactions on Mobile Computing

ATHENA: A Platform to Support Ambient Assisted Living based on Activities, Emotions 
and Social Interactions

Journal of Sensors

Work in progress!
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Thank you
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• For Indoor activity recognition, only a single inhabitant is considered at 
a time.

• Our future plan includes handling multiple residents and recognize the 
activities under the framework of evolutionary ensembles. 

• In outdoor activity recognition study, We consider fixed position of a 
smartphone. Complications may arise due to different positions

• However, the generic nature of training and implementation will lead to 
the success of EFM for conceivable complex situations.

• Our future plan includes handling position-independent recognition by 
deriving novel features using the proposed framework.
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Future Directions
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Data Collection
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• Samsung Galaxy S

• Google Android OS version Gingerbread

• 10 healthy adult subjects (7 male and 3 females) 
participated in this study

• Walking, Jogging, Running, Cycling, Going up stairs, Going 
down stairs, and Hopping

• We analyzed and recorded the data at 50 Hz

• We collected approximately 18,794 data samples over the 
two months.

Table: Characteristics of the participants

Figure: Dataset collection
application

Figure: Representative raw signals of activities
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Parameter Estimation
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Parameter Estimation
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Membership Estimation (EFM)
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Results and Analysis (EFM)
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Table: Individual subject activity recognition
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Representation
• Each fuzzy variable-defined linguistic value of the fuzzy set is mapped onto a value 1–5 to 

represent each of the five terms and 0 for the “don’t care” term.

• A dynamic single point crossover is applied as a reproduction operator. 

Fitness function 

Rule Learner using Genetic Algorithm

EFM

Figure: Chromosome Encoding

• The whole population is sorted from best to worst according to the ranked fitness values.

• After ranking, one parent is randomly selected from the top 50% of the ranked population, 
while the other is randomly selected from the remaining population. 

Selection
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Crossover
• Crossover is performed on the selected parents to create new offspring.
• A dynamic single point crossover is applied as a reproduction operator. 

Mutation
• The proposed approach also inaugurates diversity in activity rules by using a uniform 

mutation operator.
• It assigns a “don’t care” term— a value of 0 or any other membership value—on randomly 

selected genes of the activity rule.

Stochastic Operators

EFM

• Crossover Rate: 0.8 
• Mutation Rate: 0.1

Stopping Condition
• The stopping criterion is either a fixed number of generations or 
• all training instances passed correctly.

GA Optimal Parameters 

• Population Size: 55
• Generation Size: 500
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Ensemble Optimal Parameters
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• Population Size: 35 
• Generation Size: 125

• Crossover Rate: 0.4
• Mutation Rate: 0.005

Population Size Crossover Rate

Generation Size Mutation Rate


