

KYUNG HEE UNIVERSITY

Department of Computer Science & Engineering Ubiguitous Computing Lab

Hybrid Knowledge Modeling for Case Selection and Adaptation in CDSS

Ph.D. Defense Presentation

May 11th, 2022

Syed Imran Ali Dept. of Computer Science and Engineering Kyung Hee University

Advisor : Professor Sungyoung Lee

Co-Advisor : Professor TaeChoong Chung

Ph.D. Dissertation Spring 2022

Proposed Idea Experimentation Conclusion Publications

Presentation Agenda

Hybrid Knowledge

MODELING

INTRODUCTION

- o Background
- Motivation
- o Problem Statement
- o Taxonomy
- Related Work

PROPOSED IDEA

- Solution 1: Active Case Partitioning
- Solution 2: Case Selection
- Solution 3: Case Adaptation

EXPERIMENTATION & RESULTS

- Experimental Design
- System-centric Experimentation
- o User-centric Experimentation

CONCLUSION

Related Work

Proposed Idea Experimentation Conclusion Publications

Background

- Clinical Decision Support Systems (CDSS) are specialized software solutions that ingest data to provide a wide array of services for cognitive-intensive complex decision making e.g. *disease diagnosis and treatment*.^{1,2,3}
- CDSS increasingly leverage data-driven approaches for decision modeling along with expert-driven approaches for compliance with the domain processes.^{4,5,6}
- Hybrid knowledge modeling play an important role in generating accurate and domain relevant recommendations for complex scenarios such as medication recommendation.^{4,6,7}

Case-based Reasoning in CDSS

- New Case: Receive a test case comprised of problem component.
- Case Search: Search all the cases and retrieve a pre-defined set of nearest cases.
- Proposed Solution: Combine solution component of the retrieved cases e.g. majority vote or averaging.
- **Confirm Solution**: Domain expert finally accepts the generated solution or update the generated solution.
- Knowledge base contains past cases and newly retained cases.

Khan, M. J., Hayat, H., & Awan, I. (2019). Hybrid case-base maintenance approach for modeling large scale case-based reasoning systems. Human-centric Computing and Information Sciences, 9(1), 1-25.

Introduction	Proposed Idea	Conclusion
Related Work	Experimentation	Publications

Align consensus-based domain knowledge and experience-based routine clinical practice for multi-factor recommendations.

- Provide recommendation for complex cases with inherent data scarcity issues.
- Provide transparency and knowledge-based interpretability for the domain expert in recommendation generation.
- Reducing cognitive-load on the physician with intuitive and reliable decision support approach.

Motivation

UCL Ubiquitous Computing Laboratory Kyung Hee University, Korea **Related Work**

Conclusion Publications

Problem Statement

Clinical Practice Guidelines provide a **general framework** to guide clinicians but lack **operational details i.e.** cover the partial scope of the recommendation. How to incorporate **expert-model** in case-based reasoning for **domain compliant** complex **recommendation** generation e.g. medication prescription? ^{8,9,18,19}

Overall Goal

Design a hybrid knowledge modeling approach for both medication and dosage selection that can leverage both partial domain knowledge as well as routine clinical practice of clinicians.

Objectives

- 1. Leverage partial domain knowledge for active partitioning of clinical case base.
- 2. Select highly relevant subset of clinical reference cases from a general pool of the candidate cases.
- 3. Synthesize domain model with selected cases for multi-factor recommendation generation.

Challenges

- 1. How to identify **distinct neighborhoods** within a single clinical case base?
- 2. How to identify relevant high prospect clinical cases for **effective solution selection**?
- 3. How to provide **fine-grained solution** recommendations from a partial domain model?

e.g. SVM, RF, DT

Decision-level Fusioning

[10] Artificial Intelligence: A Modern Approach, 4th US ed. by Stuart Russell and Peter Norvig. 2021

Decision-level Fusioning

e.g. Random Forest

• [11] Alazzam, Malik Bader, et al. "Nursing care systematization with case-based reasoning and artificial intelligence." Journal of Healthcare Engineering 2022 (2022).

Hybrid Knowledge Modeling for Case Selection and Adaptation in CDSS

Hybrid Modeling

Hybrid-Case Based Reasoning (domain knowledge + clinical cases)

Introduction Related Work		Proposed Ide Experimentat	a ion	Conclusion Publications	UCL Ubiquitous Computing Laboratory Kyung Hee University, Korea		
Related \	Nork						
Reference	Domain	Modeling	Guideline Incorporation	Capture Clinical Practice	Feedback	Medication Selection	Medication Dosing
[7] S.L. Ting, 2011	General treatment	Case-based	No	Yes	No	Yes	No
[16] Branden, 2011	Lung cancer treatment	Case-based	No	Yes	No	Yes	Yes (single)
[20] Khussainova, 2015	Brain cancer treatment	Case-based	No	Yes	No	No	No
[17] Teodorović, 2013	Thyroid Cancer treatment	Case-based	No	Yes	No	Yes	Yes (single)
[12] Shemeikka, 2015	Kidney patients treatment	Expert Model	Yes	No	No	Yes	No
[13] Hellden, 2015	General treatment	Expert Model	Yes	No	No	Yes	No
[14] Awdishu, 2016	Kidney patients treatment	Expert Model	Yes	No	No	Yes	Manual
[15] Pirnejad, 2019	Kidney patients treatment	Expert Model	Yes	No	No	Yes	Manual
[8] Niazkhani, 2020	Kidney patients treatment	Expert Model	Yes	No	No	Yes	Manual
Proposed	Kidney patients treatment	Hybrid: Case-based	Yes	Yes	Yes	Yes	Yes (multiple)

Introduction Related Work	Proposed Idea Experimentation	Conclusion Publications	UCL Ubiq Kyz	uitous Computing Laboratory ng Hee University, Korea	
Research	n Map				
		Proposed Solutions			
	Solution 1	Solution 2	Solution 3		
Domain Model Clinical Cases	Active Case base Partitioning	Case Selection	Case Adaptation	Recommendation	
	Problem: User define neighborhood threshold value results in fixed size case base partitions. Appropriate neighborhood size selection is based on trial and error approach.	Problem: Similar candidate cases are selected primarily based on their proximity to the test case while outcome information is not accounted for case selection.	Problem: Domain knowledge is generally insufficient for generating recommendations for complex tasks such as medication dosage selection	Outcomes + Variable neighborhood size + Quantify efficacy of similar cases	
Challenges	Challenge 1	Challenge 2	Challenge 3	recommendation	
c1: Fixed size neighborhood	Existing Approach	Existing Approach	Existing Approach	Outcomes	
C2: Similar cases treated equally	Trial and error approach for neigh borhood size selection	Select all cases within a selected neighborhood	Primitive dosage estimation for a single medicine	Case uncertainty Similar case may be unrelated	
knowledge	 Pick top K nearest cases at the inference time (lazy-modeling) 	Assign weight to case dimensions based on domain experts	Manual dosage selection by domain expert (physician)	Generic recommendation	

Hybrid Knowledge Modeling for Case Selection and Adaptation in CDSS

14/50

Hybrid Knowledge Modeling for Case Selection and Adaptation in CDSS

15/50

Ali, Syed Imran, et al. "Clinical Decision Support System Based on Hybrid Knowledge Modeling: A Case Study of Chronic Kidney Disease-Mineral and Bone Disorder Treatment." International Journal of Environmental Research and Public Health 19.1 (2021): 226.

Ph.D. Dissertation Spring 2022

Case Adaptation

Point estimation through Multiple Linear Regression

R square (R2) equals 0.623822. It means that the predictors (Xi) explain 62.4% of the variance of Y.

id 💌	/isit 💌	pth 🔄	albumi 🔻	calcium 🔻	phospha 💌	correct 💌	vascula 💌 valvular 📑	Cinacald 💌 Cla	citr 💌 Ca	alcitr 💌	Paricalci 💌 /	Alfacalci 💌 🤇	Calcium(🔨 C	Calcium 🔄 Sevelam 🛃	Lanthanu 💌	Dial	ysa 🔻 rec	1
1447227	3						0 Absent	0						4800	(
1447227	4						0 Absent	0						4800	(
1447227	5						0 Absent	0						4800	(
1447227	9						0 Absent	0						4800	(
1447227	12						0 Absent	0						7200	(
2251498	3						10 Present	0						1600	(
3380095	2						5 Absent	0						3200	(
3380095	6						5 Absent	0						3200	(
3618303	3		4.3	7.5	7.4	7.26	0 Absent	0	.0	. 0	C - 5	0	0	3200	(
4194253	9		5 4.	Ketere	ence C	ases ₆₂	1 Present	IVIE	aica	τιοη	от кет	erence	e Cases	2400	(
4194253	11						1 Present	0						2400	(
4194253	13		4.1				1 Present	0						2400	(
5032368	2						0 Absent	0						3200	(
5358846	3						0 Absent	0						3200	(
5358846	5		7 4.1				0 Absent	0						3200	(
5358846	8						0 Absent	0						4800	(
5358846	9						0 Absent	0						4800	(
5358846	10						0 Absent	0						4800	(
5358846	12						0 Absent	0						4800	(
7072932	1						0 Absent	0						1600				

Residuals: Histogram

Ph.D. Dissertation Spring 2022

Compare **previous** and **current** medications

Case Study: CKD-MBD Treatment

Hybrid Knowledge Modeling for Case Selection and Adaptation in CDSS

28/50

Proposed Idea Introduction Conclusion Ubiquitous Computing Laboratory Kyung Hee University, Korea **Related Work** Experimentation **Publications Extended Decision Tree based on Expert Model Chronic Kidney Disease** Extended Decision Tree PTH intest Pare Th Composite Condition Recommendation Atomic Condition Homone Ca: Corrected Calcium P: Phosphale Dr. Su Woong Jung (Kyungitiee Un LA Reflegaph owledge Engineers Team Synd Imran Ali Symbols C-PTH 130 - 581 Computation evious Assessme (85) -i.PTH (P-I.PT) CaPRI - 450 & (P-PTI) Process Previous Assessm (>300) -LPTH (P-LPT cess Ca & P le Process Ca & P leve CaPBi < 180 A CaPBi decreased by 8.75 times of P-IPBi Decision CaPBI + 158 & CaPBI decreased by 0.5 Series of PaPBI C+>10.2 & P> Ca 9.0-Ca+ 1024P35 **Final Outcome** Ca+1028P+1 Ca + 10 7 4 8 3 Ca+1024P+ Ca+10.28 P 3.8-1 Ca > 10 7 6 1 Ca75-1028P Ca>1028F+ Ca 7.54 116 C+ 90-10247 117 Ca75-1028P 117 Ca 7.54 # 80-1028 P31 Car7.5-102 & Pr T18 4-1025 #35-Comments Cer. T 18 C+9.0-10.2 & F T10 Ca+8.4-30.2 & P = 171 C+754P-55 T19 Ca + 7 Cas75.4458.5 Ca+7.5 & P3.5-129 C+75-004 P35 +75-846P35 Car7.5.5 C+75444P T 30 Ca>75-848P+ Group 2:Vascular Calcification (-) **Compound Conditions** Ca -75404P+55 131 Car755P Group 1:Vascular Calcification (+) Total Number of Rules: 432 132 Ca 1758P35-55 C++754935-**Overall Types of Recommendation: 33** 133 Ca + 7.5 & P-133

Ph.D. Dissertation Spring 2022

Proposed Idea Experimentation

Conclusion Publications

Generic Recommendation Template

e _	Recommendation Factors		Poss	ible Treatment Options		
nplat	Calcimimetics	Start or Increase	As It Is	Stop or Decrease	Decrease or Stop	
רפח ת	Calcium-based Phosphate Binder	Start or Increase CPB	As It Is	Decrease CPB	Stop CPB	
atior	Non-Calcium-based Phosphate Binder	Start or Increase NCPB	As It Is	Decrease NCPB	Stop NCPB	
pu	Vitamin D receptor activators	Start or Increase	As It Is	Decrease	Stop	Consider Vitamin D Analogs
nme	Calcitriol	Start or Increase	As It Is	Decrease	Stop	Consider Calcitroil
kecor	Dialysate Cal. Concentration	Increase by 0.25 n	nmol/L	Maintain the current dialysa concentration	te decrea	se by 0.25 mmol/L

Recommendation Factors
Calcimimetics
Calcium-based
Phosphate Binder
Non-Calcium-based
Phosphate Binder
Vitamin D receptor activators
Calcitriol
Dialysate Cal. Concentration

Treatment 1 (T1)	
Start or Increase	
Stop CPB	
Start or Increase NCPB	
Stop vitamin D analogs	
Stop Calcitriol	
Reduce by 0.25 mmol/L	

Treatment 2 (T2)	_
Start or Increase	l
Stop CPB	l
Maintain NCPB	l
Stop vitamin D analogs	I
Stop Calcitriol	l
Reduce by 0.25 mmol/L	I

	Treatment 33 (T33)
	Decrease of Stop
•	Decrease or Stop CPB
•	Decrease or Stop NCPB
•	Decrease or Stop
•	Start or Increase Calcitriol
•	Increase by 0.25 mmol/L

. .

. .

. .

. .

. .

Ph.D. Dissertation Spring 2022

Sample Recommendations

Hybrid Knowledge Modeling for Case Selection and Adaptation in CDSS

32/50

Proposed Idea Experimentation

Conclusion Publications

Step 1 : Laboratory Test Administration

- Laboratory tests are performed at three different time scales
- Patient may visits every month for the checkup/ dialysis treatment
- PTH test is valid for three months
- Both lateral radiography and echocardiogram are performed on annual basis

Proposed Idea Experimentation

Conclusion Publications

Step 2 : Patient Type Identification

- Patients are divided into two groups
- Group 1 deals with those patients who are diagnosed positive for vascular calcification
- Group 2 deals with patients whose vascular calcification is negative
- Group identification is based on lateral radiography and echocardiogram tests

Proposed Idea

Conclusion Publications

Experimentation

Step 2 : Generic Recommendation based on Guidelines

Ph.D. Dissertation Spring 2022

Proposed Idea Introduction Conclusion **Related Work** Experimentation

Publications

Step 3 : Dosage Recommendation based on Similar Patients

Hybrid Knowledge Modeling for Case Selection and Adaptation in CDSS

37/50

Experimentation

Introduction Related Work	Proposed Idea Experimentation	Conclusion Publications			Ubiquitous Computing Laboratory Kyung Hee University, Korea
Experimental S	Setup				
Dataset De	escription				
Total Patients: 66 Total Case-base: 850 Patient Type-I: 374 Patient Type-II: 476	Test Cases: 250 Initial Case-base: 600 Patient Type-I: 107 Patient Type-II: 143	<u>نه</u>	System a Exper	nd User-centric rimentation	
 System-centric Exper Case insufficien Compliance bet and clinical prace Concordance be clinical practice 	Timentation (250 cases) cy detection tween expert model ctice etween dosage and	Record Lab test results 1 Lab test Visit 1 2 Lab test Visit 2 3 Lab test Visit 3 4 Lab test Visit 4 5 Lab test Visit 5	Generate Recommendation Recommendation 2 Recommendation 3 Recommendation 4 Recommendation 5	Prescription 1 Prescription 2 Prescription 3 Prescription 4 Prescription 5	Record Evaluation Evaluation for Recommendation 1 2 Evaluation for Recommendation 3 Evaluation for Recommendation 4 Evaluation for Recommendation 5
 User-centric Experim Find out usabile the CDSS throut Participants: 13 	nentation lity experience of ugh a pilot study 1 (clinicians)	Lab test Visit 12	Recommendation 12	Prescription 12	Evaluation for Recommendation 12

CKDMBD-CDSS Evaluation (System-centric)

Experiment objective:

To find out case partitions having insufficient cases at data acquisition stage

Findings:

- Recommendations T¹⁶ and T¹⁷ mostly deal with maintaining the current medication prescription
- 2. Consistent with the clinical practice where abrupt changes in treatment are avoided

Findings:

- In general most of the recommendations have high compliance with routine clinical practice
- 77% compliance rate is recorded for recommendations factors matched 3 and above

Introduction	Proposed Idea	Conclusion	UCL Ubiquitous Computing Laboratory
Related Work	Experimentation	Publications	Kyung Hee University, Korea

CKDMBD-CDSS Evaluation (System-centric)

Experiment objective:

To evaluate breakdown of compliance rate of 6 medication classes

Findings:

 In non-compliant cases 'dosage decrease' slightly dominated i.e. the CDSS recommended to 'maintain' while the physician decreased the dosage

Medication Class Compliance

Conclusion

Publications

CKDMBD-CDSS Evaluation (System-centric)

Calcimima	atics	Predicted			
		Start/Increase	Maintain	Stop/Decrease	
a	Start/Increase	167	132	17	
ctu	Maintain	29	334	23	
Ă	Stop/Decrease	19	72	57	
Calcitriol			Predicted		
		Start/Increase	Maintain	Stop/Decrease	
a	Start/Increase	173	31	13	
ctu	Maintain	18	448	11	
Ă	Stop/Decrease	14	74	68	
Vitamin D	& Analogs		Predicted		
		Start/Increase	Maintain	Stop/Decrease	
a	Start/Increase	154	31	13	
ctu	Maintain	18	448	11	
Ă	Stop/Decrease	14	74	68	

Confusion Matrix

Calcium-b	ased				
Phosphate Binders		Predicted			
		Start/Increase	Maintain	Stop/Decrease	
a	Start/Increase	140	66	8	
ctu	Maintain	16	488	19	
Ă	Stop/Decrease	3	41	69	
Non-Calci	um-based				
Phosphate Binders			Predicted		
		Start/Increase	Maintain	Stop/Decrease	
a	Start/Increase	71	101	19	
ctu	Maintain	49	259	52	
Ā	Stop/Decrease	9	187	103	
Calcium Dialysate					
Concentration			Predicted		
		Start/Increase	Maintain	Stop/Decrease	
a	Start/Increase	45	7	0	
ctu	Maintain	2	766	0	
Ă	Stop/Decrease	0	8	22	

Related Work	Experimentation	Publications	Kyung Hee University, Korea
	_		

CKDMBD-CDSS Evaluation (System-centric)

Experiment objective:

To evaluate concordance between dosage recommendation and routine clinical practice

Concordance Findings:

- 1. Cinacalcet = 85.71%
- 2. Calcitriol (po) = 81.81%
- 3. Calcitriol (iv) = 66.66%
- 4. Paricalcitrol (iv) = 82.24%
- 5. Calcium Carbonate = 76.47%
- 6. Calcium Acetate = 81.81%
- 7. Sevelamer = 76.12%
- 8. Lanthanum = 55%
- 9. Dialysate Cal. Concent. = 98.40%

Concordance evaluation for the medication dosage recommendation

Management Class	Total Cases	Present Cases	In-Range Cases	Out-of-Range Cases
⁺ Cinacalcet	250	49	42	7
Calcitriol, po	250	11	9	2
Calcitriol, iv	250	15	10	5
Paricalcitol, iv	250	148	122	26
⁺ Alfacalcidol	250	0	0	0
[†] Calcium Carbonate	250	34	26	8
⁺ Calcium Acetate	250	11	9	2
⁺ Sevelamer	250	155	118	37
⁺ Lanthanum	250	20	11	9
Dialysate Calcium Concentration	250	250	246	4

⁺ Cinacalcet, alfacalcidol, calcium carbonate, calcium acetate, sevelamer, and lanthanum are orally taken tablets.

Evaluation Metric:

 $Concordance = \frac{\sum_{i}^{j}(System \cap Physician)}{\sum_{i}^{j}(System \cap Physician)}$

CKDMBD-CDSS Evaluation (User-centric)

Experiment objective: User Experience of the CDSS with other services

Findings:

- CDSS provides higher dependability due to transparency and incorporating domain knowledge
- 2. Shows general acceptance across participants

Conclusion Publications

Ubiquitous Computing Laboratory Kyung Haa University, Korea

Conclusion

- Lack of operational details can be complemented by clinicians' experience gained through trial and error
- Domain knowledge guided clinical case selection and adaptation provide clinician with insights into the complex recommendation generation process
- CKD-MBD CDSS based on proposed methodology demonstrated both high-level of conformance with clinicians' decision and usability of the system

Contributions:

- **Case insufficiency detection** through active case-base partitioning
- **Case selection** based on feedback information
- Case adaptation based on domain knowledge and selected cases

Proposed Idea Experimentation	Conclusion Publications			Ubiquitous Computing Laboratory Kyung Hee University, Korea
 SCIE Journals (11) First Author: 3 Published Co-author: 8 Published Local Journals (3) Co-Author: 3 Published Conferences (10) First Author International: 6 Co-Author International: 1 Local Conferences: 3 Domestic Patents (2) Registered: 1 Applied: 1 		PublicationTotal Publications (26)First Author Publications (10)		
	Proposed Idea Experimentation Ablished papers SCIE Journals (11) First Author: 3 Published Co-author: 8 Published Local Journals (3) Co-Author: 3 Published Conferences (10) First Author International: 6 Co-Author International: 1 Local Conferences: 3 Domestic Patents (2) Registered: 1 Applied: 1	Proposed Idea Conclusion Experimentation Publications Published papers - SCIE Journals (11) • First Author: 3 Published • Co-author: 8 Published • Co-author: 8 Published • Co-Author: 3 Published • Co-Author: 3 Published • Co-Author International: 6 • Co-Author International: 1 • Local Conferences: 3 • Domestic Patents (2) • Registered: 1 • Applied: 1	Proposed Idea Conclusion Experimentation Publications ublished papers - - SCIE Journals (11) • First Author: 3 Published • Co-author: 8 Published - Local Journals (3) • Co-Author: 3 Published - Conferences (10) • First Author International: 6 • Co-Author International: 1 • Local Conferences: 3 - Domestic Patents (2) • Registered: 1 • Applied: 1	Proposed Idea Conclusion Experimentation Publications

Introduction	Proposed Idea	Conclusion		UCL Ubiquitous Computing Laboratory
Related Work	Experimentation	Publications	V.	Kyung Hee University, Korea

REFERENCES

[1] Souza-Pereira, L., Pombo, N., Ouhbi, S., Felizardo, V., & Garcia, N. (2020). Clinical decision support systems for chronic diseases: A systematic literature review. Computer Methods and Programs in Biomedicine, 195, 105565.

[2] Sutton, R. T., Pincock, D., Baumgart, D. C., Sadowski, D. C., Fedorak, R. N., & Kroeker, K. I. (2020). An overview of clinical decision support systems: benefits, risks, and strategies for success. NPJ digital medicine, 3(1), 1-10.

[3] Laka, M., Milazzo, A., & Merlin, T. (2021). Factors That Impact the Adoption of Clinical Decision Support Systems (CDSS) for Antibiotic Management. International journal of environmental research and public health, 18(4), 1901.

[4] Choi, D. J., Park, J. J., Ali, T., & Lee, S. (2020). Artificial intelligence for the diagnosis of heart failure. NPJ digital medicine, 3(1), 1-6.

[5] Hussain, M., Afzal, M., Malik, K. M., Ali, T., Khan, W. A., Irfan, M., ... & Lee, S. (2020). Acquiring guideline-enabled data driven clinical knowledge model using formally verified refined knowledge acquisition method. Computer Methods and Programs in Biomedicine, 197, 105701.

[6] Ali, S. I., Jung, S. W., Bilal, H. S. M., Lee, S. H., Hussain, J., Afzal, M., ... & Lee, S. (2021). Clinical Decision Support System Based on Hybrid Knowledge Modeling: A Case Study of Chronic Kidney Disease-Mineral and Bone Disorder Treatment. International Journal of Environmental Research and Public Health, 19(1), 226.

[7] Ting, S. L., Kwok, S. K., Tsang, A. H., & Lee, W. B. (2011). A hybrid knowledge-based approach to supporting the medical prescription for general practitioners: Real case in a Hong Kong medical center. Knowledge-Based Systems, 24(3), 444-456.

[8] Niazkhani, Z., Fereidoni, M., Rashidi Khazaee, P., Shiva, A., Makhdoomi, K., Georgiou, A., & Pirnejad, H. (2020). Translation of evidence into kidney transplant clinical practice: managing drug-lab interactions by a context-aware clinical decision support system. BMC medical informatics and decision making, 20(1), 1-13.

[9] Demner-Fushman, D., Mork, J. G., Rogers, W. J., Shooshan, S. E., Rodriguez, L., & Aronson, A. R. (2018). Finding medication doses in the liteature. In AMIA Annual Symposium Proceedings (Vol. 2018, p. 368). American Medical Informatics Association.

[10] Russell, S., & Norvig, P. (2002). Artificial intelligence: a modern approach.

Introduction	Proposed Idea	Conclusion
Related Work	Experimentation	Publications

REFERENCES

[11] Alazzam, Malik Bader, et al. "Nursing care systematization with case-based reasoning and artificial intelligence." Journal of Healthcare Engineering 2022 (2022).

[12] Shemeikka, T., Bastholm-Rahmner, P., Elinder, C. G., Vég, A., Törnqvist, E., Cornelius, B., & Korkmaz, S. (2015). A health record integrated clinical decision support system to support

prescriptions of pharmaceutical drugs in patients with reduced renal function: design, development and proof of concept. International Journal of Medical Informatics, 84(6), 387-395.

[13] Helldén, A., Al-Aieshy, F., Bastholm-Rahmner, P., Bergman, U., Gustafsson, L. L., Höök, H., ... & Odar-Cederlöf, I. (2015). Development of a computerised decisions support system for renal risk drugs targeting primary healthcare. BMJ open, 5(7), e006775.

[14] Awdishu, L., Coates, C. R., Lyddane, A., Tran, K., Daniels, C. E., Lee, J., & El-Kareh, R. (2016). The impact of real-time alerting on appropriate prescribing in kidney disease: a cluster randomized controlled trial. Journal of the American Medical Informatics Association, 23(3), 609-616.

[15] Pirnejad, H., Amiri, P., Niazkhani, Z., Shiva, A., Makhdoomi, K., Abkhiz, S., ... & Bal, R. (2019). Preventing potential drug-drug interactions through alerting decision support systems: a clinical context based methodology. International journal of medical informatics, 127, 18-26.

[16] Van den Branden, Martijn, et al. "Integrating case-based reasoning with an electronic patient record system." Artificial Intelligence in Medicine 51.2 (2011): 117-123.

[17] Teodorović, Dušan, Milica Šelmić, and Ljiljana Mijatović-Teodorović. "Combining case-based reasoning with Bee Colony Optimization for dose planning in well differentiated thyroid cancer treatment." Expert Systems with Applications 40.6 (2013): 2147-2155.

[18] El-Sappagh, Shaker, and Mohammed Mahfouz Elmogy. "Medical case based reasoning frameworks: Current developments and future directions." Virtual and Mobile Healthcare: Breakthroughs in Research and Practice (2020): 516-552.

[19] Bichindaritz, Isabelle, and Cindy Marling. "Case-based reasoning in the health sciences: Foundations and research directions." Computational Intelligence in Healthcare 4. Springer, Berlin, Heidelberg, 2010. 127-157.

[20] Khussainova, Gulmira, Sanja Petrovic, and Rupa Jagannathan. "Retrieval with clustering in a case-based reasoning system for radiotherapy treatment planning." Journal of Physics: Conference Series. Vol. 616. No. 1. IOP Publishing, 2015.

Ph.D. Dissertation Spring 2022