

L Ubiquitous Computing Laboratory Kyung Hee University, Korea

Ph.D Dissertation Presentation 3rd , May, 2019

Robust Speaker Adaptation Framework for Personalized Emotion Recognition in Emotionally-Imbalanced Small-Sample Environments

Jaehun Bang

Department of Computer Science and Engineering Kyung Hee University

> Advised by Prof. Sungyoung Lee, PhD

Table of Contents

Introduction

- Background
- Motivation & Problem Statement
- Related Works

Proposed Idea & Methodologies

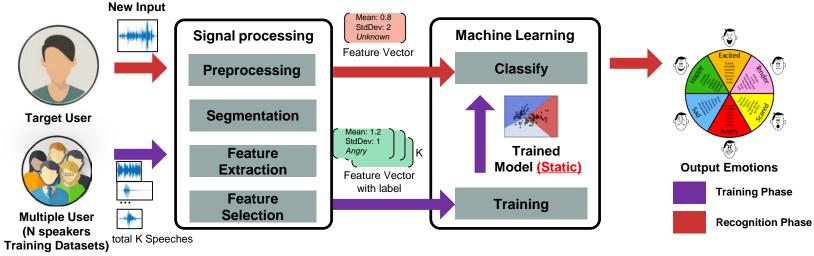
- Robust Speaker Adaptation Framework Overview
- **Solution I** : Similar data selection based on Maximum Threshold Distance
- > Solution II : Other similar user emotional speech mapping based on Data Distribution Factor
- > Solution III : Virtual Case Data Augmentation based on SMOTE

• Experiment

- Environment
- Result
- Conclusion & Future work
- Publications
- References

Background

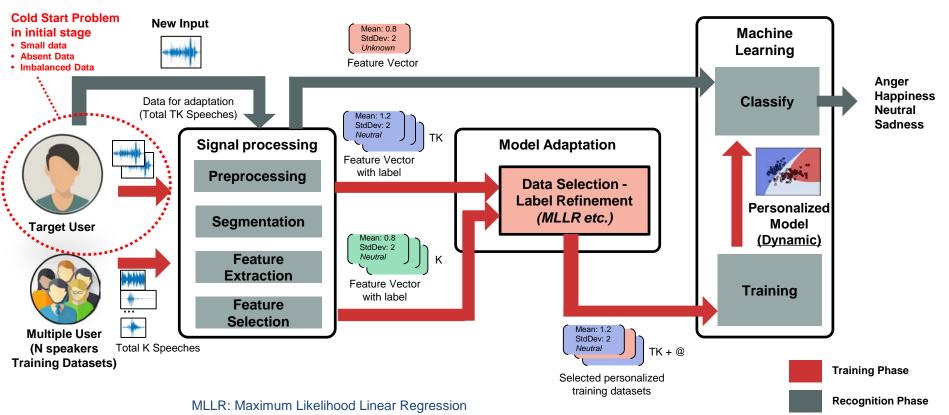
Traditional Speech Emotion Recognition



- Limitation of Traditional Frameworks
 - Performed low accuracy in speaker independent evaluations
 - Impossible to modify training model due to implement by static model
- Recently, the emotion recognition researches are studying on creating a personalized emotion recognition model suitable for target user [1]

Background

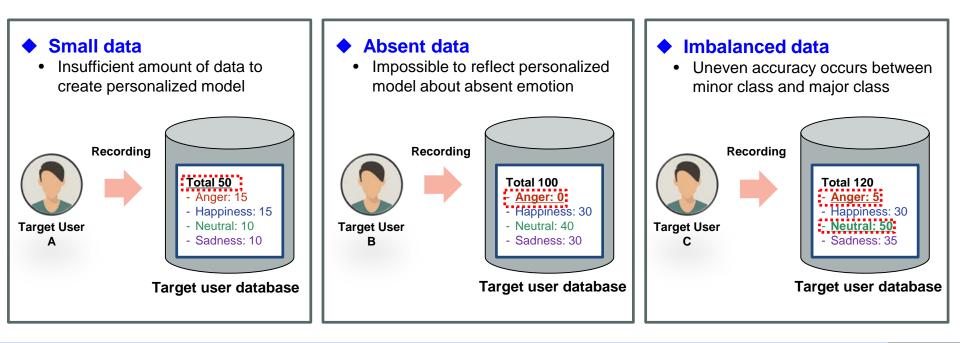
Speaker adaptation for personalized emotion recognition



Motivation & Problem Statement

Issues in the personalized emotion recognition

In real environments, the acquired target user speech in the initial stage cannot guarantee a sufficient number of samples with balanced emotion due to imbalanced emotion expression as seen in daily life. (Cold-Start Problem)



Related works

Personalized emotion recognition comparison

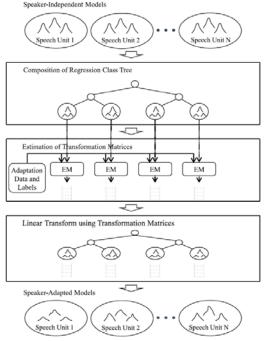
• Proposed Methodology in comparison with other approaches

		<u>3 col</u>	d-start problems		
Categories	Methodologies	Small Data Environment	Absent Data Environment	Imbalanced Data Environment	Emotions
	conventional MLLR [2]	X (about 700 data required)		х	Neutral, Anger, Happiness, Sadness
	MLLR-SLR [3]	X (about 700 data required)	 (Utilize Initial Model)	х	Neutral, Anger, Happiness, Sadness
Small & Absent Data	LDM-MDT MLLR [4]	△ (about 360 data required)	 (Utilize Initial Model)	х	Neutral, Anger, Happiness, Sadness
	Incremental Adaptation [5]	(300 data required)	x	x	Neutral, Anger, Happiness, Sadness
	Domain Adaptation [6]	Over 200 data required)	x	х	Arousal, Valance
Small & Imbalanced Data	Iterative Feature Normalization [7]	Over 400 data required)	x	Δ	Neutral, Emotional
Imbalanced Data	SMOTE [8]	X (Over 500 data required)	x	0	Negative, Positive
Small & Absent & Imbalanced Data	Proposed method	O (Real case data selection & virtual case data augmentation)	O (Replacing similar user emotional speech)	O (Virtual case data augmentation)	Neutral, Anger, Happiness, Sadness

Related works

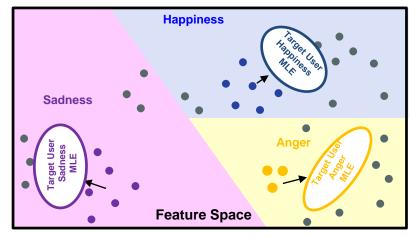
MLLR(Maximum Likelihood Linear Regression) based Model Adaptation [2]

MLLR based Model Adaptation



[Procedure for the conventional MLLR adaptation]

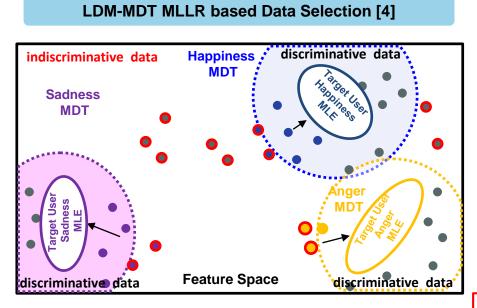
- MLLR Adaptation updates the Linear parameters of existing models based on acquired target user data.
- This approach <u>requires sufficient target user data</u> [9] to modify to personalized linear parameter value due to utilization all of the existing model data.



<Example of MLLR Adaptation>

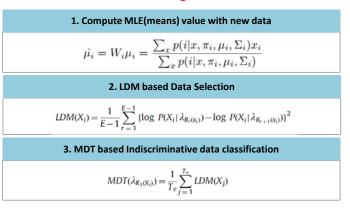
Related works

"Multistage data selection-based unsupervised speaker adaptation for personalized speech emotion recognition" Engineering Applications of Artificial Intelligence, Volume 52, p. 126-134, June 2016



<LDM–MDT MLLR Based Data Selection Example>

- This paper solved conventional MLLR adaptation problem
- Select useful data selection for target user from the initial model by discarding indiscriminative emotion data based on MDT after MLLR based global adaptation process
- Approximately <u>half of all of user adaptation data are determined to</u> <u>be indiscriminative and are disregarded</u>.



- Still requires sufficient target user data (about 360 samples)
- If absence data exists, utilize Initial model (Imbalanced Problem)
- There is no process to solve imbalanced data problem (Uneven Accuracy)

Existing Method [4] **Proposed Solutions** Small data Small data appine MDT iscriminative data MLE MLE Value Similar data selection based on Due to global adaptation and Sadnes MTD (Solution 1) ٠ MDT small threshold range, small Select relevant data based on Sadness Sadness amount of data is selected MLE Value more centroid and large range to target user

Absent Data Absent Data Target User No Target User Target User appiness 6 No Target user Anger Data! Then Other similar user emotional Anger Data! The Use Most Similar Utilize all of the existing Ise All of Exis ٠ User Anger Data speech mapping (Solution 2) emotional data set for absent Target User Target User Reinforcement absent data area Sadness 7 Sadness 7 data to extracted similar user Hear 2 Ann User 2 Anger emotional data Liker 3 Anger

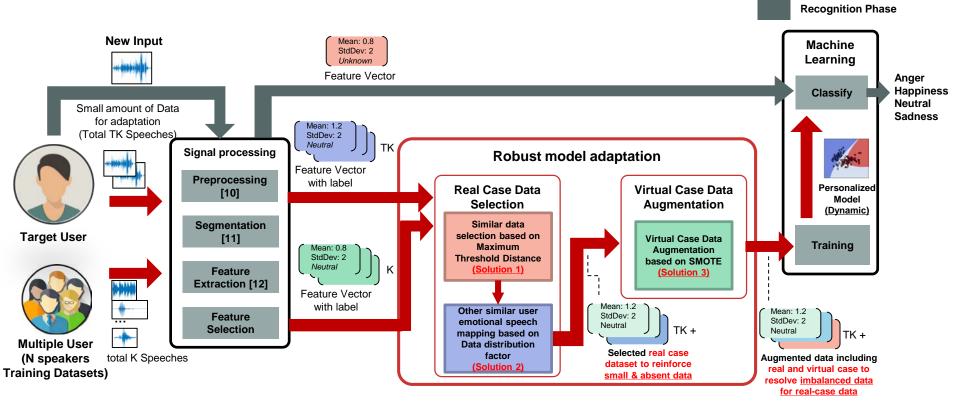
Imbalanced Data	Imbalanced Ratio = 2.6 Happiness Data 5 • • • • • • • • • • • • • • • • • •	• • • •
• <u>There is no Imbalanced</u> <u>solution process</u> , it depends on	Data 5 + 10 Sadness Data 8 Anger • • • • • • • • • • • • • • • • • • •	••••
the class of initial data ratio	Data 13 Data 13 Data 13	•••

Imbalanced Data

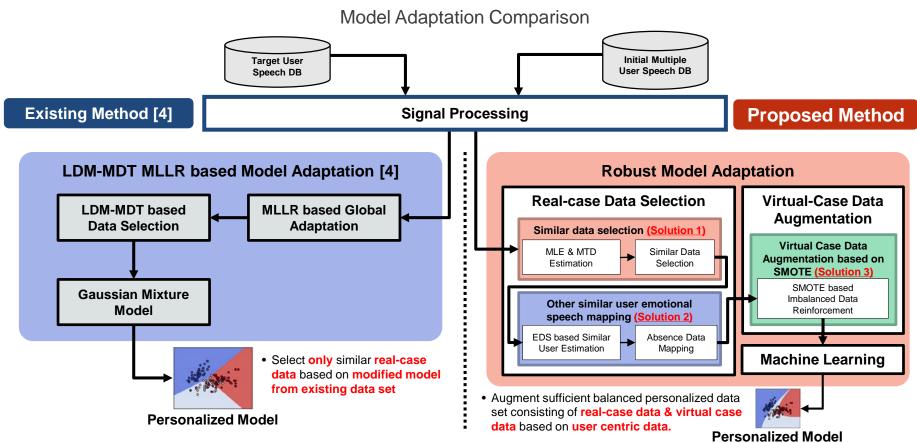
Virtual Case Data Augmentation based on SMOTE (Solution 3)

 Mitigate imbalanced ratio through Iterative SMOTE process

Robust Speaker Adaptation Framework - Overview



Training Phase



Problem statements / Goal / Challenges

Problem Statements

 Creating personalized emotion recognition model is very difficult in limited data environments such as having <u>1 small data</u>, <u>2 absent data and <u>3 imbalanced data</u> (Cold Start problems)
</u>

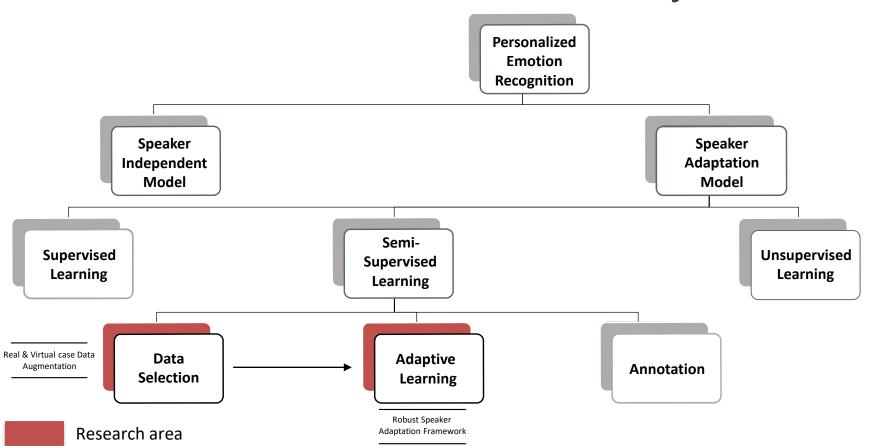
Goal

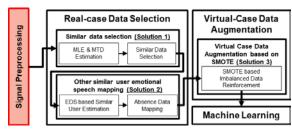
 Research the process and methodologies to create personalized emotion model to solve cold-start problems

Challenges

- Challenge 1 Increasing target user oriented training data set for small data
- Challenge 2 Reinforcing absent data to target user relevant data
- Challenge 3 Solving imbalanced data problem from selected real-case dataset

Research Taxonomy





Methodologies

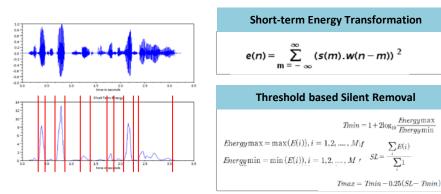
Preprocessing & Feature Extraction

Preprocessing

- Peak based Volume Normalization [10]
- The default approach to adjusting the data value based on the highest signal level present in the audio

STE based Silent Removal [11]

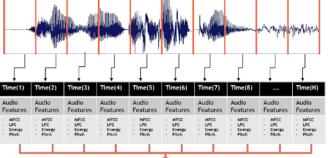
This approach divides audio into frames, where each duration is segmented in 15 ms by a hamming window. Then, speech boundaries are estimated based on the short time energy (STE) algorithm.



Feature Extraction

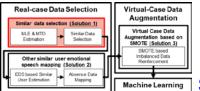
- **Statistical Feature Extraction [12]**
 - Extract the 100 statistical features with popular feature in SER
 - ✓ 13 MFCC Mean, StdDev, Min, Max (13 x 4 = 52)
 - ✓ 10 LPC Mean, StdDev, Min, Max (10 x 4 = 40)
 - ✓ Energy Mean, StdDev, Min, Max (1 x 4 = 4)
 - ✓ Pitch Mean. StdDev. Min. Max $(1 \times 4 = 4)$

MFCC - Mel frequency cepstral coefficient LPC - Linear predictive coding



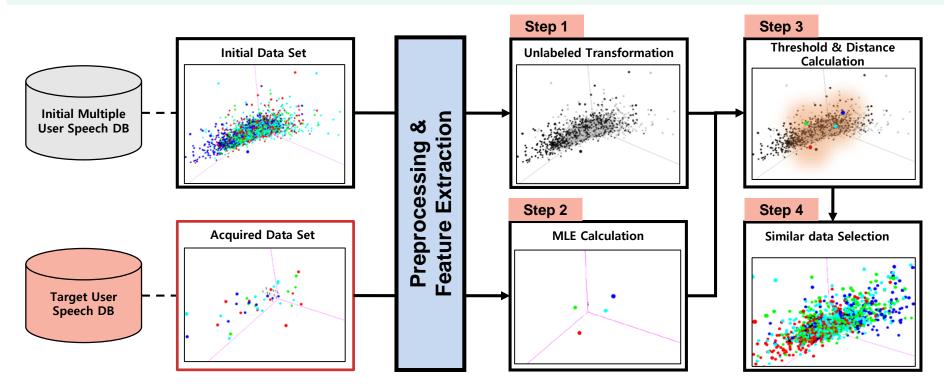
	Statistica	l Features	
MFCC	LPC	Energy	Pitch
- MFCC (1) Mean - MFCC (2) Mean - MFCC (1) StdDev - MFCC (2) StdDev 	- LPC (1) Mean - LPC (2) Mean - LPC (1) StdDev - LPC (2) StdDev 	Energy Mean Energy StdDev Energy Max Energy Min	 Pitch Mean Pitch StdDev Pitch Max Pitch Min

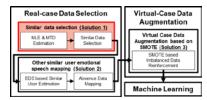
 $\sum E(i)$



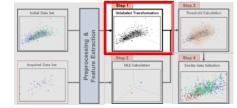
Similar data selection based on Maximum Threshold Distance

Reinforces the target user small data environment utilizing an initial constructed dataset



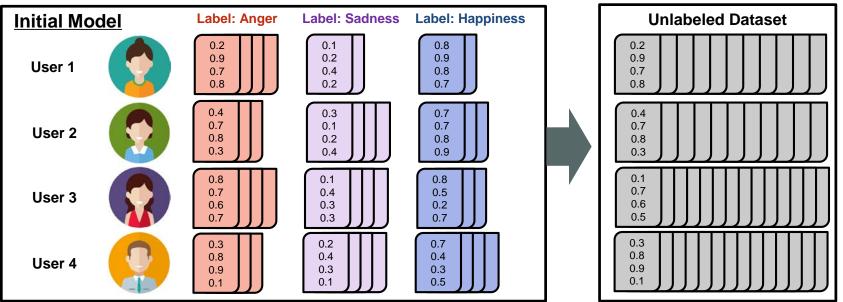


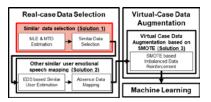
Step 1. Unlabeled transformation in initial model



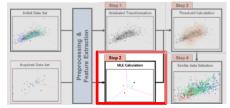
Use the unlabeled data to ignore label information in initial model

- Unlabeled transformation
 - The reason for using an unlabeled transformation is that emotional expressions are different for each user.
 - The target user's particular emotional speech can be similar to different emotional speech in other users' emotional speech when the acoustic pattern is almost the same. (User 1 Happiness ≒ User 3 Anger)

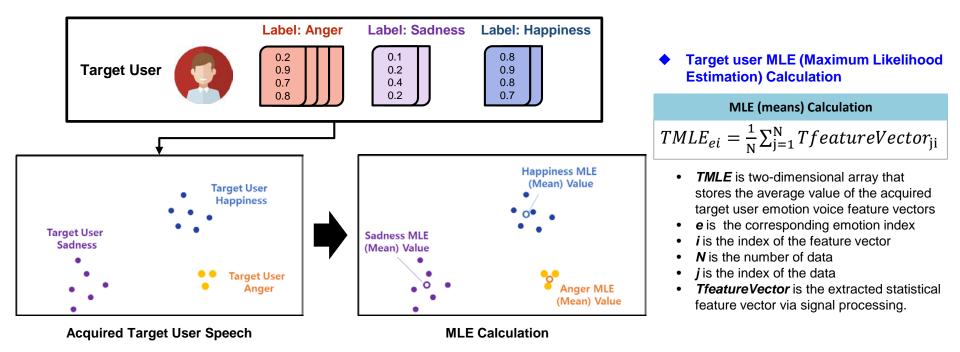


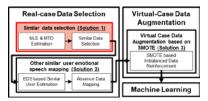


Step 2. MLE value calculation based on target user data

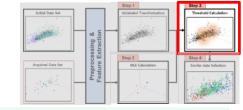


Calculate target user MLE value from feature vector based on only target user samples



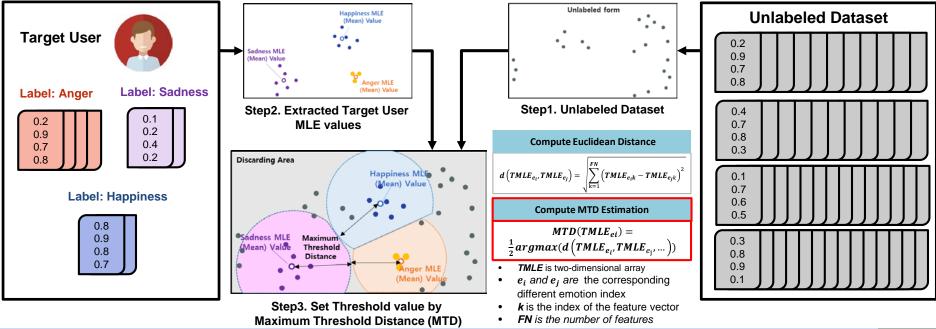


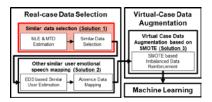
Step 3. Maximum Threshold Distance Calculation



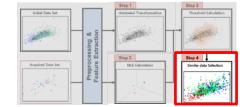
Set thresholds to select as much similar data as possible.

- Maximum Threshold Distance Calculation
 - The Maximized Threshold value is computed by half of maximum distance of the means values and decide which data is discarded for data selection

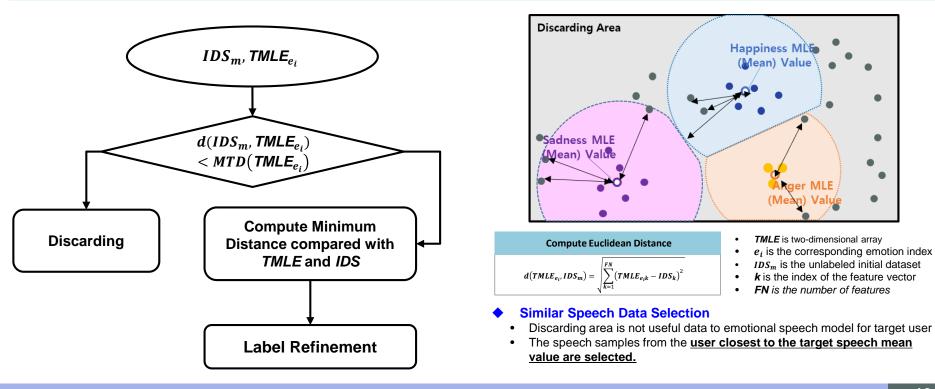


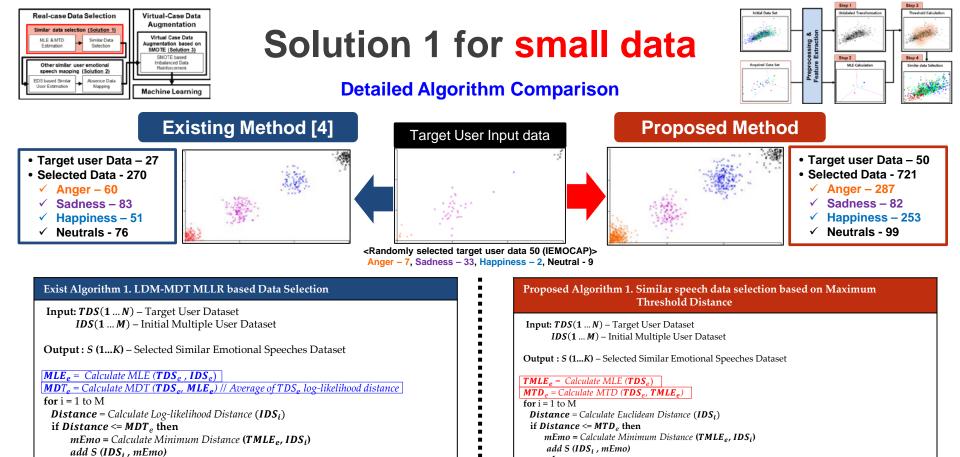


Step 4. Similar Speech Data Selection



The process of sequentially selecting similar data to reinforce the insufficient data according to distance is performed





end

end

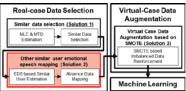
Return S

end

end

Return S

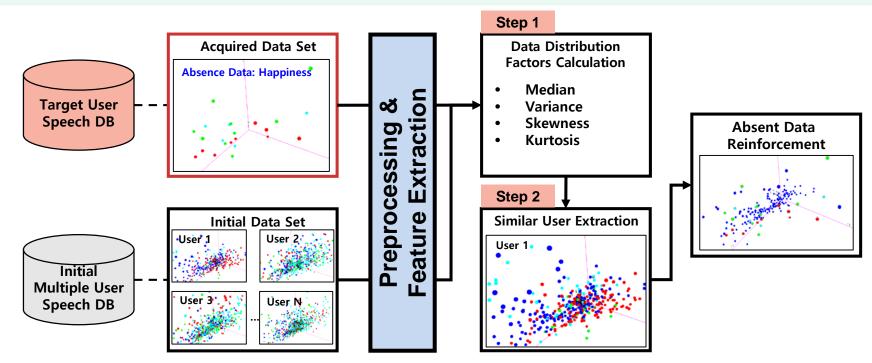
end

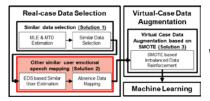


Solution 2 for absent data

Other similar user emotional speech mapping based on data distribution factor

Reinforce absent data environment in target user emotional dataset to add the similar user emotional data





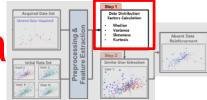
User N

Solution 2 for absent data

Step 1. Compute Statistical Data Distribution Factors

Calculate Data Distribution Factors without absent data part from target user

Acquired data	<u>No Happiness</u>	An	ger		Sadr	ess	
	n p	Distribution Factor	f1	f2	Distribution Factor	f1	F2
	14 14 19 20 20 y o 15 21 12 19 y o 1	Median	-6.74	-5.91	Median	4.46	0.35
Target	ี่สม 78 เม] (กษ 28 เม] ท ม	Variance	72.0	13.6	Variance	19.7	9.76
User		Skewness	-0.29	-0.40	Skewness	-3.25	-1.37
	22.52 4.52 11.49 1154 0.40 4.71	Kurtosis	-0.71	-0.78	Kurtosis	14.6	2.47
				10			60
Initial Model		An	ger		Sadr	ess	
	n 12	Distribution Factor	f1	f2	Distribution Factor	f1	f2
	<u>,</u>	Median	-8.36	-4.78	Median	6.54	2.29
User 1	13439 -1134 9.21 1.49.79 4.15 4.47 1. H	Variance	99.9	18.4	Variance	7.64	7.57
	<u></u>	Skewness	-0.30	-0.02	Skewness	-2.29	-1.22
	480 678 804 (0.1 - 634 - 636)	Kurtosis	-0.74	-0.34	Kurtosis	8.04	2.16
		An	ger		Sadn	ess	
		Distribution Factor	f1	f2	Distribution Factor	f1	f2
	<u>4 4 11 11 12 12 12 12 12 12 12 12 12 12 12 </u>	Median	-3.33	-7.01	Median	1.12	-3.66
User 2		Variance	46.2	8.58	Variance	11.5	8.95
	2 . 2	Skewness	-0.96	-0.34	Skewness	-0.70	-0.32
		Kurtosis	0.80	0.44	Kurtosis	1.03	-0.34



Data Distribution Calculation

- Assume that the target user's absent emotion data will be similar to that of another user's emotional speech if they have a similar data distribution.
- Utilize 4 most commonly used values for data distribution Factors including <u>median, variance</u>, <u>skewness, and kurtosis</u>

Data Distribution Factor Extraction

 $Median (SortedFeatureVector_{fi}) = SortedFeatureVector_{fi_{N/2}}$

$$\textit{Variance}\left(\textit{FeatureVector}_{fi}\right) = \frac{1}{N}\sum_{k=1}^{N}\textit{FeatureVector}_{fi_k} - \textit{means}_i\right)^2$$

$$\textit{Kurtosis}\left(\textit{FeatureVector}_{fi}\right) = \frac{\frac{1}{N} \sum_{k=1}^{N} \left(\textit{FeatureVector}_{fi_k} - \textit{means}_{fi}\right)^4}{\left(\frac{1}{N} \sum_{k=1}^{N} \left(\textit{FeatureVector}_{fi_k} - \textit{means}_{fi}\right)^2\right)^2} - 3$$

$$Skewness\left(FeatureVector_{fi}\right) = \frac{\frac{1}{N}\sum_{k=1}^{N} (FeatureVector_{fi_{k}} - means_{fi})^{3}}{\left(\frac{1}{N}\sum_{k=1}^{N} (FeatureVector_{fi_{k}} - means_{fi})^{2}\right)^{\frac{3}{2}}}$$

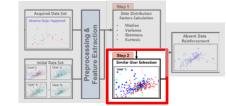
- fi is the index of the feature vector
- FeatureVector_{fi} is particular feature values
- mean is the average value in FeatureVector_{fi}
- **N** is the number of data

[21] Bang, J., Hur, T., Kim, D., Lee, J., Han, Y., Banos, O., ... & Lee, S.. Adaptive Data Boosting Technique for Robust Personalized Speech Emotion in Emotionally-Imbalanced Small-Sample Environments. Sensors, 18(11), 3744.

Г	Real-case Data Selection Similar data selection (Solution 1)		Virtual-Case Data Augmentation
[MLE & MTD Estimation Similar Data Selection	hl	Virtual Case Data Augmentation based on SMOTE (Solution 3)
	Other similar user emotional speech mapping (Solution 2)	Īł	SMOTE based imbalanced Data Reinforcement
4	EDS based Simiar User Estimation Absence Data Mapping	H	Machine Learning

Solution 2 for absent data

Step 2. Similar user estimation and reinforcement



Replace the target user absent emotional data area to similar user's speeches

Acquired data	An	ger		Sadn	ess	
	Distribution Factor	f1	f2	Distribution Factor	f1	F2
Target	Median	-6.74	-5.91	Median	4.46	0.35
User	Variance	72.0	13.6	Variance	19.7	9.76
	Skewness	-0.29	-0.40	Skewness	-3.25	-1.37
No Happiness	Kurtosis	-0.71	-0.78	Kurtosis	14.6	2.47
Initial Model	An Distribution Factor	ger	f2	Sadn Distribution Factor	ess f1	f2
			f2			f2
	Median	-8.36	-4.78	Median	6.54	2.29
User 1	Variance	-8.36 99.9	-4.78 18.4	Median Variance	6.54 7.64	2.29 7.57
User 1						-
User 1	Variance	99.9	18.4	Variance	7.64	7.57
User 1	Variance Skewness Kurtosis	99.9 -0.30	18.4 -0.02	Variance Skewness	7.64 -2.29 8.04	7.57
User 1	Variance Skewness Kurtosis	99.9 -0.30 -0.74	18.4 -0.02	Variance Skewness Kurtosis	7.64 -2.29 8.04	7.57
	Variance Skewness Kurtosis	99.9 -0.30 -0.74	18.4 -0.02 -0.34	Variance Skewness Kurtosis Sadn	7.64 -2.29 8.04	7.57 -1.22 2.16
User 1	Variance Skewness Kurtosis An Distribution Factor	99.9 -0.30 -0.74 ger	18.4 -0.02 -0.34	Variance Skewness Kurtosis Sadne Distribution Factor	7.64 -2.29 8.04 ess	7.57 -1.22 2.16
	Variance Skewness Kurtosis An Distribution Factor Median	99.9 -0.30 -0.74 ger f1 -3.33	18.4 -0.02 -0.34 f2 -7.01	Variance Skewness Kurtosis Sadn Distribution Factor Median	7.64 -2.29 8.04 ESS f1 1.12	7.57 -1.22 2.16 f2 -3.66

Similar User Estimation

 Calculate each <u>Euclidean Distance Similarity</u> of data distribution factors to estimate similar user

Target User – User 1

Anger	f1	f2
Distance	26.0	5.22
Similarity	3.6	16
Sadness	f1	f2
Distance	16.3	5.08
Similarity	5.7	16.4
Avg. similar	ity = 10).48

Target User – User 2

Anger	f1	F2
Distance	66.4	10.4
Similarity	1.4	8.7
Sadness	f1	f2
Distance	12.5	2.23
Similarity	7.4	30.9

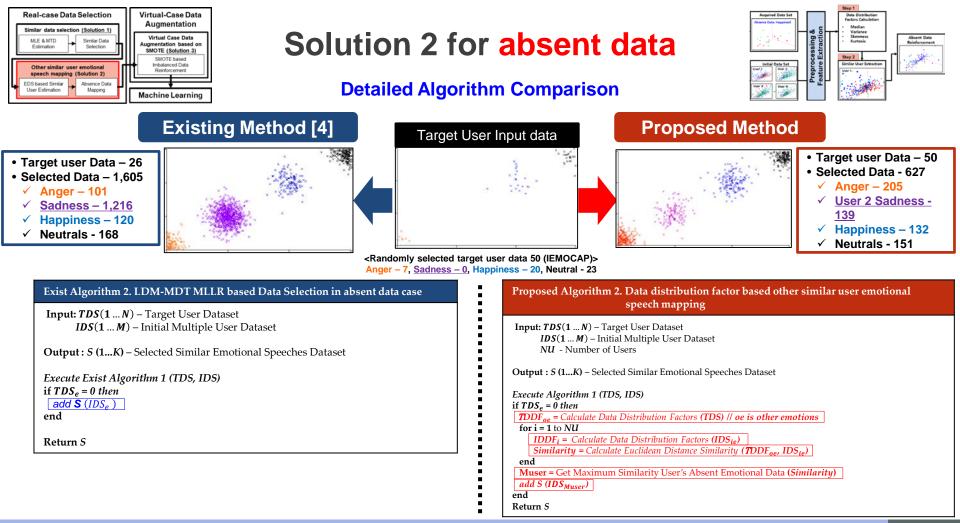
<u> Avg. similarity = 12.14</u>

Euclidean Distance Similarity

$$d\left(TDDF_{e_{i}}, IDSDDF_{u_{e_{i}}}\right) = \sqrt{\sum_{k=1}^{DFN} \left(TDDF_{e_{i}k} - IDSDDF_{u_{e_{i}}k}\right)^{2}}$$

Similarity $\left(TDDF_{e_{i}}, IDSDDF_{u_{e_{i}}}\right) = \frac{1}{1 + d(TDF_{e_{i}}, IDSDDF_{u_{e_{i}}})} * 100$

- $TDDF_{e_i}$ is the target user data distribution factors
- $IDSDDF_{u_{e_i}}$ is the initial model data distribution factors
- **DFN** is the number of data distribution factors

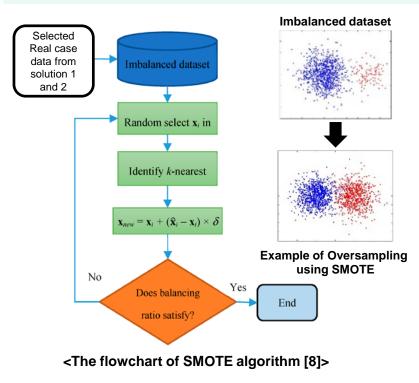


Г	Real-case Data Selection	Virtual-Case Data Augmentation
	MLE & MTD Estimation	Virtual Case Data Augmentation based on SMOTE (Solution 3)
Γ	Other similar user emotional speech mapping (Solution 2)	SMCTE based Imbalanced Data Reinforcement
ų	EDS based Similar User Estimation Absence Data Mapping	Machine Learning

Solution 3 for imbalanced data

Virtual Case Data Augmentation based on SMOTE

Reinforce imbalanced environment to augment virtual data through iterative process of SMOTE



•	SMOTE (Synthetic Minority Oversampling Technique) based
	oversampling to solve imbalanced data environment

- SMOTE is the method used to generate the dataset for a minority number of particular class samples in the classification model.
- Iterative augmentation using conventional SMOTE algorithm based on the selected real case data from Solution 1 and 2
- The imbalance ratio is satisfied (IR < 2.0) stop the virtual data augmentation

Proposed Algorithm 3. Virtual Case Data Augmentation based on SMOTE

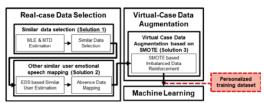
```
Input: S(1 ... N) – Selected Real Case Dataset from Solution 1 and 2
C – Number of Class
```

Output : AD (1...K) – Augmented real & case Dataset

add AD (S) for i = 1 to C VC = augment data using SMOTE (AD, 50) add AD (VC) end

IR = calculate imbalanced ratio (AD)

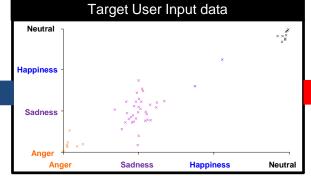
While IR < 2.0 VC = augment data using SMOTE (AD, 200) add AD (VC) IR = calculate imbalanced ratio (AD) end Return AD



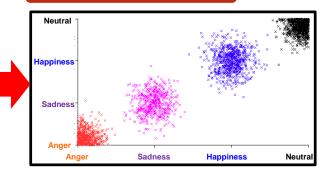
Personalized Model

Model Comparison

Existing Method [4]



Proposed Method



<Randomly selected target user data 50 (IEMOCAP)>

Anger – 7, Sadness – 32, Happiness – 2, Neutral - 9

[21] Bang, J., Hur, T., Kim, D., Lee, J., Han, Y., Banos, O., ... & Lee, S.. Adaptive Data Boosting Technique for Robust Personalized Speech Emotion in Emotionally-Imbalanced Small-Sample Environments. Sensors, 18(11), 3744.

Experimental Environments

Evaluation Dataset

Evaluation dataset selection

- Evaluation Dataset: IEMOCAP (Interactive Emotional Dyadic Motion Capture)
 - 10 actors (5 male, 5 female), 10 Emotions <u>(Anger, Happiness, Sadness, Neutral,</u> Frustrated, Excited, Fear, Disgust, Surprise, Others)
- Initial Model Dataset: CREMA-D (Crowd-sourced Emotional Multimodal Actors Dataset)
 - 91 actors (48 male, 43 female), 6 Emotions (Anger, Happiness, Sadness, Neutral, Fear, Disgust)

• Why IEMOCAP and CREMA-D dataset?

Emotional Database	Total Samples	Emotions	Speakers	Avg. Samples per Person	Avg. Samples of Each Emotion per Person
Emo-DB [13]	535	7	10	53.5	7.6
eNTERFACE [14]	1166	6	42	27	4.5
SAVEE [15]	480	8	4	120	15
RAVDESS [16]	1,440	8	24	60	7.5
CREMA-D [17]	7,442	6	91	81.7	13.61
IEMOCAP [18]	10,038	10	10	1003.8	100.3

Experimental Environments

Evaluation Methodologies

	Select Training Data Randomly and Progressively Increase The Training Data	Test Data	3	
Subject 1	300	. 131		
Subject 2	300	79		
Subject 3	300		333	
Subject 4	300		405	
Subject 5	300		435	
Subject 6	300		586	
Subject 7	300		561	
Subject 8	300		413	
Subject 9	300		849	
Subject 1	0 300		433	

IEMOCAP Dataset

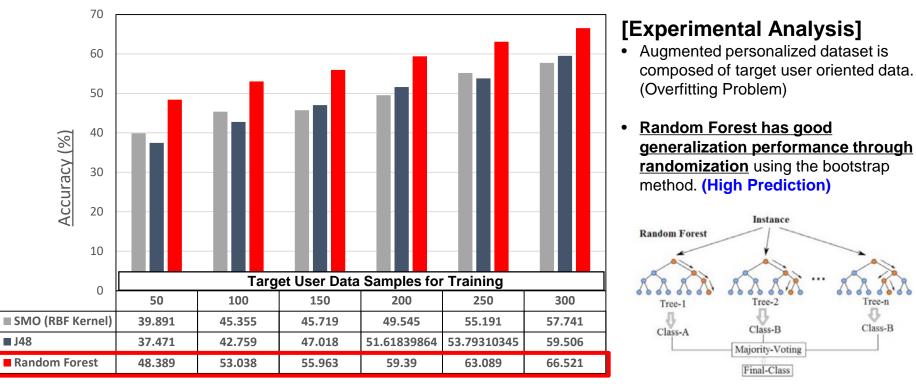
[Evaluation Criteria]

- 1. Machine learning accuracy comparison evaluation using proposed method (SMO, J48, Random Forest)
- 2. Avg. accuracy with comparison evaluation of existing method (Evaluation Data: IEMOCAP, Initial Model: CREMA-D)
- 3. Avg. Imbalanced Ratio with comparison evaluation of existing method

Repeat 10 times [Comparison Evaluation] 1) SI (Speaker Independent – baseline) 2) PM (Personal Model – self learning) 3) SMOTE with RF [8] 4) Conventional MLLR with HMM [2] 5) LDM-MDT MLLR with GMM [4] 6) Proposed method

Experimental Results

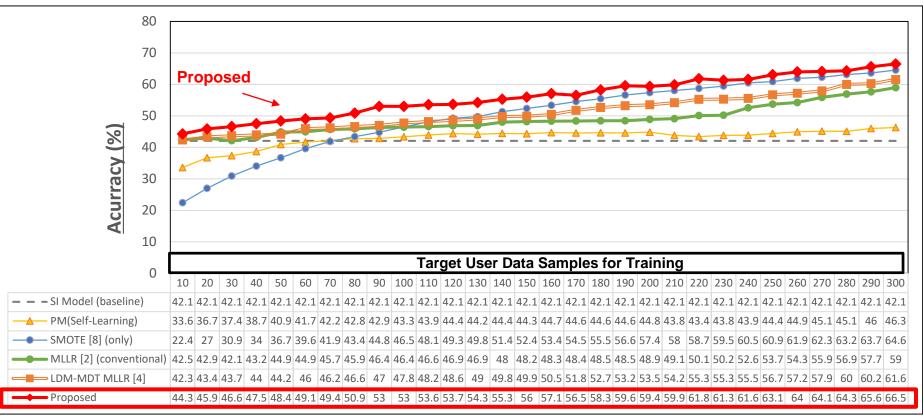
1. Machine learning comparison evaluation using proposed speaker adaptation framework



■ SMO (RBF Kernel) ■ J48 ■ Random Forest

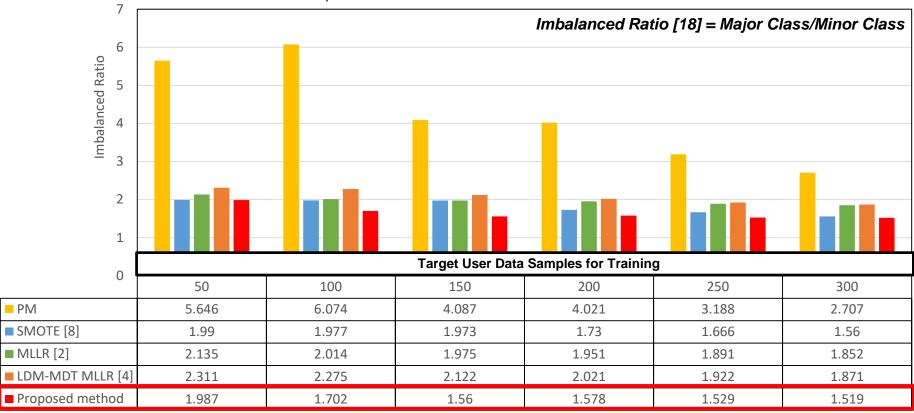
Experimental Results

2. Comparison evaluation of average accuracy (Evaluation Data: IEMOCAP, Initial Model: CREMA-D)



Experimental Results

3. Comparison evaluation of imbalanced ratio



Conclusion & Future work

This thesis contributes to research the robust speaker adaptation framework that can resolve the cold-start problem

- Improve the accuracy and imbalanced ratio in limited data environment
 - ✓ Higher accuracy than existing methods in small samples environment as 10 to 150 (2.2% ~ 6%)
 - ✓ Reduce imbalanced difference from original target user training dataset (178% ~ 356%)
 - ✓ The proposed method can fastly create personalized model speaker adaptation in limited data environment such as small samples and absent data environment.

Future Work

- Research on effective personalized data acquisition mechanism.
- Research on suitable re-training time to create personalized model.

Publications

Journal : 16		
SCI/E	First author 1 (SCIE)	Co-author 12 : 2(SCI) / 10 (SCIE)
Non SCI/E	First author 2	Co-author 1
First author	• SCIE : Sensors (IF: 2.475 , published, 2018)	
Conference : 9		
International	First author : 1	Co-author : 5
Domestic	First author : 3	
Patents : <mark>3</mark>		
Domestic	First author : 2	Co-author : 1
Total publications : 28 First author : 9		

References

- [1] Poria, S.; Cambria, E.; Bajpai, R.; Hussain, A. A review of affective computing: From unimodal analysis to multimodal fusion. Inf. Fusion 2017, 37, 98–125.
- [2] Leggetter, C.J., Woodland, P.C., 1995. Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models. Comput. Speech Language 9 (2), 171–185.
- [3] Kim, J. B., Park, J. S., & Oh, Y. H. (2011, May). On-line speaker adaptation based emotion recognition using incremental emotional information. In 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 4948-4951). IEEE.
- [4] Kim, J.B.; Park, J.S. Multistage data selection-based unsupervised speaker adaptation for personalized speech emotion recognition. Eng. Appl. Artif. Intell. 2016, 52, 126–134.
- [5] Abdelwahab, M.; Busso, C. Incremental adaptation using active learning for acoustic emotion recognition. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 5160–5164.
- [6] Abdelwahab, M., & Busso, C. (2015, April). Supervised domain adaptation for emotion recognition from speech. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5058-5062). IEEE.
- [7] Busso, C.; Mariooryad, S.; Metallinou, A.; Narayanan, S. Iterative Feature Normalization Scheme for Automatic Emotion Detection from Speech. IEEE Trans. Affect. Comput. 2013, 4, 386–397
- [8] Deng, Jun. Feature Transfer Learning for Speech Emotion Recognition. Diss. Technische Universität München, 2016.
- [9] Goronzy, Silke. Robust adaptation to non-native accents in automatic speech recognition. Vol. 2560. Springer, 2003.
- [10] McKay, C.; Fujinaga, I.; Depalle, P. jAudio: A feature extraction library. In Proceedings of the International Conference on Music Information Retrieval, London, UK, 11–15 September 2005.
- [11] Sahoo, T.R.; Patra, S. Silence Removal and Endpoint Detection of Speech Signal for Text Independent Speaker Identification. Int. J. Image, Graph. Signal Process. 2014, 6, 27–35.
- [12] Anagnostopoulos, C.N.; Iliou, T. Towards emotion recognition from speech: Definition, problems and the materials of research. In Semantics in Adaptive and Personalized Services; Springer: Berlin/Heidelberg, Germany, 2010; 127–143.
- [13] Busso, C.; Bulut, M.; Lee, C.C.; Kazemzadeh, A.; Mower, E.; Kim, S.; Chang, J.N.; Lee, S.; Narayanan, S. IEMOCAP: Interactive emotional dyadic motion capture database. Language Resour. Eval. 2008, 42, 335–359.
- [14] Martin, O.; Kotsia, I.; Macq, B.; Pitas, I. The enterface'05 audio-visual emotion database. In Proceedings of the 22nd International Conference on IEEE Data Engineering Workshops, Atlanta, GA, USA, 3–7 April 2006; 8.
- [15] Schuller, B.; Steidl, S.; Batliner, A. The interspeech 2009 emotion challenge. In Proceedings of the Tenth Annual Conference of the International Speech Communication Association, Brighton, UK, 6–10 September 2009.
- [16] Jackson, P.; Haq, S. Surrey Audio-Visual Expressed Emotion (Savee) Database; University of Surrey: Guildford, UK, 2014.
- [17] Livingstone, S. R., & Russo, F. A. (2018). The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English. PloS one, 13(5), e0196391.
- [18] Cao, H., Cooper, D. G., Keutmann, M. K., Gur, R. C., Nenkova, A., & Verma, R. (2014). CREMA-D: Crowd-sourced emotional multimodal actors dataset. IEEE transactions on affective computing, 5(4), 377-390.
- [19] Lele, S.; Richtsmeier, J.T. Euclidean distance matrix analysis: A coordinate-free approach for comparing biological shapes using landmark data. Am. J. Phys. Anthropol. 1991, 86, 415–427
- [20] Hoens, T. R.; Chawla, N. V. Imbalanced datasets: from sampling to classifiers. Imbalanced Learning: Foundations, Algorithms, and Applications. Wiley, 2013
- [21] Bang, J., Hur, T., Kim, D., Lee, J., Han, Y., Banos, O., ... & Lee, S. Adaptive Data Boosting Technique for Robust Personalized Speech Emotion in Emotionally-Imbalanced Small-Sample Environments. Sensors, 18(11), 3744.

Thank you

for your attending

Q&A?