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• Introduction, background and motivation
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• Rough Set Classification Model (H2RM): a model for semantics-preserved accurate classification in real-
world applications 

• Hybrid-CBR Model (Hybrid-CBR): a model for accurate and precise wellness recommendations

• Accurate multi-criteria decision making (AMD): a methodology for accurate empirical analysis and 
evaluation of classifiers



Introduction

Organizations make informed-decisions, interest of corporates

Data mining processes, managed by machine learning technology

Classification, a data mining function, accurately predicting/decision making of target decision [1a]

Correct data preparation , model is built right, right decision [1b]

Data preparation and model creation, as per domain requirements
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[1a] https://docs.oracle.com/cd/B28359_01/datamine.111/b28129/classify.htm
[1b] Pyle, D., 1999. Data preparation for data mining (Vol. 1). Morgan Kaufmann.

Dataset Preparation

Dataset/Case Base Preparation

Data Preparation

A1, A2, .., An

Classification Model Creation

Decision 
Making

Model Evaluation

Evaluation 
Metrics

Informed-
Decision

Data 
Sources

Classification OR 
Recommendation

Available as Rule-based(e.g., Rough Set), Instance-based(e.g., CBR), Meta-learning, Probabilistic, etc.

https://docs.oracle.com/cd/B28359_01/datamine.111/b28129/classify.htm


Background and Motivation 
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Decision Making Process

Methodology of Algorithms’ Performance Evaluation

Recommendations

Decision Making Algorithms

Method/
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Decision

Domain 
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Correct data preparation

Accurate analysis algorithms performance

Accurate model creation

O

O

O

A

A

A

Correct dataset

Suitable algorithm

Accurate decision

R

R

Large number of algorithms available

Algorithm has capabilities, limitations, & constraints 

R Reasons O Characteristics A Advantages



Problem Statement

Accurate classification model creation based on correct dataset and accurately selected appropriate optimum
performance algorithm
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Goals 

Challenges

Correct dataset preparation and classification/recommendation model creation in real-world applications

Objectives
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Incorrect classification decisions are drawn based on poor prepared data and use of inappropriate 
algorithm– where the decisions have serious implications in real-world applications [1][[2][3]

 Classification decision: For classification, in real-world applications, data/dataset preparation ensures decision correctness; however 
methods are lacking for  correct dataset preparation

 Optimum performance algorithm: The availability of algorithms provides freedom during selection, but increases chances of picking 
inappropriate and sub-optimal algorithm, specially in multi-criteria situation

How to prepare real-world cases

How to prepare real-world applica. data

How to accurately design dataset

How to weight metrics

How to select suitable performance metrics

Satisfy constraints and rank algorithms

Appropriate optimum performance classification algorithm selection based on multi-criteria analysis

•RST Model
•Hybrid-CBR 
Model

• AMD+



Algorithms 
Performance 
Analysis & 

Model Creation

Empirical Or 
Automatic

Empirical 
(experimental)

Single-criterion
Multi-criteria 

(simultaneous)

Meta-learning

(automatic) 

Single-criterion
Multi-criteria 

(simultaneous)

Expert’s 
Heuristics-based 

(experience)

Single-criterion 
(usually 

accuracy)

Multi-criteria

(simultaneous)

Research Taxonomy
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We used for ranking the algorithms and 
final recommendation of the optimum 

performance algorithm

We used for generating class labels of the training 
dataset to be used in creation of automatic 

algorithm selection model using meta-learning

We used for algorithm selection 
and creation of model for real-

world applications 

Objectives & Preferences

Class Labels

[Taxonomy of Algorithms Selection[4]]
Partially Contributed
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Achievements



Related Work

Decision making (classification and recommendation) model creation and method selection 
techniques [5] [6,7] [1]

 Focus on heuristic-based, over the educated guess of the expert

 Focus on empirical analysis, using cross-validation techniques and analysis of results

 Focus on automatic meta-learning mechanism, using learning meta-characteristics

A complete framework for model creation and algorithms performance analysis requires [8,9,10]
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Data Preparation and 
Model Creation

Method for Criteria 
Selection

Metrics used in the 
Criteria

Method for Criteria 
Weighting

Constraints SatisfactionConsistency Checking

Introduction
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Achievements



Related Work Summary
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Evaluation 
criteria

Data Preparation Evaluation Metric(s)
Standard method
criteria selection

Preferences or criteria 
weighting

Constraints 
satisfaction

Consistency 
measure

References

Heuristic-
based decision 
making

No standard

Accuracy Heuristics x
x

x

Cho (1990), Aha (1992), Brodley (1993), Brazdil & 
Henery (1994), Gama & Brazdil (1995), Linder and 
Studer (1999), Kalousis & Theoharis (1999), Smith et 
al. (2002),

Average error, accuracy Heuristics Absolut weighting
x x

Smith, K.A (2001)

Accuracy , comprehensibility Heuristics x x x Gang Luo (2015)

Automatic 
Empirical 
using CV

Pre-defined 
(prepared)

Accuracy and Time, Tree Size x x Partial x Lim et al. (2001)

Accuracy and Time (Train,test) x Partial Relative weighting x x Brazdil et al. (2003)

Sens, Prec, F-score, AUC x x Partial x C Romero (2013)

Automatic 
Meta-learning

Pre-defined 
(prepared)

Avg. Train Time, Accuracy, 
Memory Usage

x Partial relative weighting Partial x Khanmohammadi S (2014)

RMSE, PMCC x Absolut weighting Partial x M Reif (2014)

Avg Accuracy, Tim Complexity 
(Train, Testing)

x Absolute weighting Partial x Shawkat Ali (2005)

Accuracy, Training & Testing 
Time

x Partial Relative weighting Partial x Zhang X et. al (2012)

T-test  and Freidman test-Holm x Absolute weighting Partial 
x

Wang G (2014)

Proposed Both 
F-score, Training and Testing 
Time, Consistency 

Experts’ 
Consensus-based 
Grouped DM 

Group decision making for 
relative consistent 
weighting

Full 
(Implicit & explicit)

Consistency 
(Avg. Stdev.)

Ali R (2015[11], 2016a[12], 2016b[24])

Lack of accurate models and proper dataset/cases
preparation

Lack of standard method for suitable criteria selection

Use of absolute criteria weighting

Lack of support for implicit and explicit constrains on criteria

Lack of appropriate consistency measure in the evaluation 
process

Limitations of 
Existing Work

Introduction
Proposed methodologies
Thesis contributions

Conclusion and future directions
Achievements



Proposed Methodologies
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Lack of accurate classification and 
recommendations model for Real-
world Applications

Lack of proper dataset/cases
preparation

Empirical Performance Evaluation of Algorithms

AMD: Accurate multi-criteria decision 
making with suitable criteria selection, 

relative weighting constarinats satisfication 
for accuratle and consistent classification 
algorithm.

Heuristic-based Model Creation

H2RM: Rough set classification model for 
semantics preserved accuracy 

Hybrid-CBR: CBR model for accurate 
precise  recommendations

Accurate Data preparation and 
Models Creation for Real-

world Applications

Limitations SolutionsObjectives

Lack of standard method for 
selecting criteria and use of 
absolute weights

Limited support for constraints 
and lack of consistency  measure 
for performance  analysis

Accurately Selecting Optimum 
Performance Consistent 

Algorithm for Classification 
Problem

A-1

A-2

B

Introduction
Proposed methodologies
Thesis contributions

Conclusion and future directions
Achievements

A



Proposed Methodologies – A conceptual model
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Classification or Recommendation 
Algorithms Evaluation and Model 

Creation
(Methodologies)

(A)
Expert’s heuristic-

based method

(B) Empirical 
Performance analysis 

method

Classification or 
Recommendation 

Model

Domain Problem 
or

Dataset

Decision Making Algorithms
A1 A2 An

Algorithm A-1
H2RM: Rough set classification 
model 

Algorithm A-2
Hybrid-CBR recommendation model

Limitations Existing Studies

Lack method for criteria selection

Absolute criteria weighting

Lacks constraints and consistency

Proposed AMD (B[24])

Standard method for criteria selection

Relative consistent weights estimation

Constraints satisfaction & consistency 
measure used

Algorithm B

AMD: Accurate multi-criteria 

decision making for algorithm 

selection

Limitations Existing Studies

Data/dataset /case base preparation

Accuracy is not preserved

Low accuracy for multi-class problems

Proposed H2RM [11] & hybrid-CBR[13]

A-1: Semantics preserved accuracy

A-2: Highly accurate and precise  

decision

[11] Ali R, et al.,. H2RM: A hybrid rough set reasoning model for prediction and management of diabetes mellitus. Sensors. 2015 Jul 3;15(7):15921-51.
[13] Ali R, et al.,. Multimodal hybrid reasoning  methodology for personalized wellbeing services. Computers in biology and medicine. 2016 Feb 1;69:10-28.
[24] Ali R, et. al.. “An accurate multi-criteria decision making methodology for recommending optimum performance machine learning algorithm(s)”. Entropy. Reviews Completed, 2016 April 21.
.
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Achievements



Heuristics-based models for real-world applications (Solution A1)
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Semantics-
Preserved 
Accurate 
Classification 

Accurate and 
Precise 

Recommendations

A-1 A-2

• Correct data and dataset preparation
• Correct case and case-base design and preparation

Semantics-Preserved 
Accurate Rough Set 
Classification Model  for 
Real-world Application

Hybrid Case-based Reasoning 
Model for Accurate Real-
world Application Services

Domain specific guidelines-
enabled rule-based method for 

data preparation

Data Preparation

Introduction
Proposed methodologies
Thesis contributions

Conclusion and future directions
Achievements

Models/algorithms are 
selected based on the experts’ 

heuristic knowledge

Model Evaluation & Selection

A
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Rough set classification uses the 
concepts of lower and upper 
approximations to roughly 
estimate the classes that cannot 
be distinguished based on the 
available attributes set

• Consumes, prepared data, from 
the information system for model 
creation.

• Nothing more than rough set 
default discretization and reducts
and core generation

H2RM
Semantics-preserved accurate 
rough set classification model

PhD Dissertation, Spring 2016

Underlying Technologies : Rough Sets Theory (Solution A-1)

Underlying Technologies 

Proposed Methodologies 

Experiments and Results

Rough set classification process, based on rough set theory (RST), which uses a formalism for 
representing and analyzing data in a specific structured format called information system

Bonikowski, Z.; Bryniarski, E.; Wybraniec-Skardowska, U., Extensions and intentions in the rough set theory. Information sciences 1998, 107, (1), 149-167.

• Structural relationships in 
imprecise & noisy data 

• Better approximations of 
vague boundaries data

• No extra parameters setting

• Interpretable model

Limits
Why RST? - Expert’s Heuristics Criteria

Classical RS Classification Model 
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Algorithm. Rough Set Classification and Reasoning 

Input: 𝐃𝐚𝐭𝐚, 𝐄: 𝐍𝐞𝐰 𝐈𝐧𝐬𝐭𝐚𝐧𝐜𝐞 

Output: 𝐜𝐥𝐚𝐬𝐬𝐓𝐲𝐩𝐞, 𝐈𝐍𝐓𝐄𝐑𝐏𝐑𝐄𝐓𝐀𝐓𝐈𝐎𝐍 

Begin 

CreateRSModel (Data) 

 [Prepare Dataset] 
1. 𝐈𝐒: =  𝐩𝐫𝐞𝐩𝐚𝐫𝐞𝐈𝐧𝐟𝐨𝐒𝐲𝐬𝐭𝐞𝐦 (𝐆𝐮𝐢𝐝𝐢𝐧𝐞𝐬, 𝐃𝐚𝐭𝐚); 

 [Rough Set Classification Model Creation] 
2. 𝐈𝐒′ = 𝐩𝐫𝐞𝐩𝐫𝐨𝐜𝐞𝐬𝐬𝐈𝐒(𝐈𝐒); 

3. 𝐃𝐈𝐒 = 𝐬𝐞𝐦𝐚𝐧𝐭𝐢𝐜𝐬𝐄𝐧𝐚𝐛𝐥𝐞𝐝𝐃𝐢𝐬𝐜𝐫𝐞𝐭𝐢𝐳𝐞 𝐆𝐮𝐢𝐝𝐥𝐢𝐧𝐞𝐬, 𝐈𝐒′  

4. 𝐑𝐃𝐒 = 𝐫𝐞𝐝𝐮𝐜𝐭𝐀𝐧𝐝𝐂𝐨𝐫𝐞𝐆𝐞𝐧𝐞𝐫𝐚𝐭𝐢𝐨𝐧 𝐃𝐈𝐒, 𝐂𝐨𝐫𝐞(𝐑𝐞𝐝𝐮𝐜𝐭)  

5. RSRules= createModel(RDS, LEM2); 

[Rough Set Classification using Rough Set Reasoning] 
𝐀𝐩𝐩𝐥𝐲𝐑𝐁𝐑 (𝐄), 𝐰𝐡𝐞𝐫𝐞 {𝐄|𝐄 𝐢𝐬 𝐍𝐞𝐰 𝐈𝐧𝐬𝐭𝐚𝐧𝐜𝐞, 𝐄: =  𝐈𝐢𝐝, 𝐂𝐨𝐧𝐝}   

𝐀. 𝐏𝐞𝐫𝐟𝐨𝐫𝐦𝐑𝐒𝐑(𝐄) // Rough Set Reasoning 

 𝐋𝐨𝐚𝐝 𝐂𝐥𝐚𝐬𝐬𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧 𝐑𝐮𝐥𝐞𝐬 𝐅𝐫𝐨𝐦 𝐊𝐧𝐨𝐰𝐥𝐞𝐝𝐠𝐞 𝐁𝐚𝐬𝐞  
1. 𝐃𝐌𝐏𝐑: =

 𝐋𝐨𝐚𝐝𝐑𝐮𝐥𝐞𝐬𝐅𝐫𝐨𝐦𝐊𝐁 𝐑𝐒𝐑𝐮𝐥𝐞𝐬 𝐭𝐡𝐚𝐭 𝐜𝐨𝐧𝐭𝐚𝐢𝐧 𝐜𝐥𝐚𝐬𝐬𝐓𝐲𝐩𝐞 𝐚𝐬 𝐂𝐎𝐍𝐂 ; 𝐰𝐡𝐞𝐫𝐞 𝐂𝐎𝐍𝐂: =
{ 𝐜𝐥𝐚𝐬𝐬𝐓𝐲𝐩𝐞 𝟏, . . , 𝐜𝐥𝐚𝐬𝐬𝐓𝐲𝐩𝐞 𝐧  𝐄𝐱𝐞𝐜𝐮𝐭𝐞 𝐑𝐮𝐥𝐞𝐬 𝐅𝐨𝐫 𝐂𝐥𝐚𝐬𝐬𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧 𝐨𝐟 𝐂𝐎𝐍𝐂  

2. 𝐅𝐨𝐫𝐞𝐚𝐜𝐡 𝐑𝐔𝐋𝐄 𝐢𝐧 𝐃𝐌𝐏𝐑 

a. 𝐅𝐨𝐫𝐞𝐚𝐜𝐡 𝐂𝐀 𝐢𝐧 𝐑𝐔𝐋𝐄 //𝐂𝐀: =  𝐂𝐨𝐧𝐝  are conditions of the rule  

b. 𝐈𝐟 𝐂𝐀. 𝐯𝐚𝐥𝐮𝐞𝐬 ≠  𝐄. 𝐂𝐨𝐧𝐝. 𝐯𝐚𝐥𝐮𝐞  
𝐓𝐇𝐄𝐍 𝐓𝐫𝐲 𝐧𝐞𝐱𝐭 𝐑𝐔𝐋𝐄 

𝐄𝐧𝐝𝐈𝐟 

c. 𝐜𝐥𝐚𝐬𝐬𝐓𝐲𝐩𝐞 ≔ 𝐂𝐎𝐍𝐂 𝐨𝐟 𝐭𝐡𝐞 𝐑𝐔𝐋𝐄; 
d. 𝐆𝐨𝐭𝐨 𝐒𝐭𝐞𝐩 𝐁 
e. 𝐄𝐧𝐝𝐅𝐨𝐫 
𝐄𝐧𝐝𝐅𝐨𝐫  

3. 𝐜𝐥𝐚𝐬𝐬𝐬𝐓𝐲𝐩𝐞 = 𝐌𝐞𝐬𝐬𝐚𝐠𝐞 UNDEFINED ; 
[Reference Range-based Reasoning for Risk Prediction] 
𝐁. 𝐏𝐞𝐫𝐟𝐨𝐫𝐦𝟑𝐑 (𝐈) // Reference Range-based Reasoning 

 𝐋𝐨𝐚𝐝 𝐑𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞 𝐑𝐚𝐧𝐠𝐞 𝐑𝐮𝐥𝐞𝐬 𝐅𝐫𝐨𝐦 𝐊𝐧𝐨𝐰𝐥𝐞𝐝𝐠𝐞 𝐁𝐚𝐬𝐞  
4. 𝐀𝐓𝐀𝐑: =

 𝐋𝐨𝐚𝐝𝐑𝐮𝐥𝐞𝐬𝐅𝐫𝐨𝐦𝐊𝐁(𝐑𝐔𝐋𝐄𝐒 𝐭𝐡𝐚𝐭 𝐜𝐨𝐧𝐭𝐚𝐢𝐧 𝐈𝐍𝐓𝐄𝐑𝐏𝐑𝐄𝐓𝐀𝐓𝐈𝐎𝐍 𝐚𝐬 𝐂𝐎𝐍𝐂); 𝐰𝐡𝐞𝐫𝐞 𝐂𝐎𝐍𝐂: =
{ 𝐈𝐍𝐓𝐄𝐑𝐏𝐑𝐄𝐓𝐀𝐓𝐈𝐎𝐍. 𝐑𝐮𝐥𝐞𝐬. 𝐕𝐚𝐥𝐮𝐞} 

 𝐄𝐱𝐞𝐜𝐮𝐭𝐞 𝐑𝐮𝐥𝐞𝐬 𝐅𝐨𝐫 𝐅𝐢𝐧𝐝𝐢𝐧𝐠 𝐂𝐮𝐫𝐫𝐞𝐧𝐭 𝐒𝐭𝐚𝐭𝐮𝐬 𝐨𝐟 𝐄𝐚𝐜𝐡 𝐎𝐛𝐬𝐞𝐫𝐯𝐚𝐭𝐢𝐨𝐧𝐬  
5. 𝐅𝐨𝐫𝐞𝐚𝐜𝐡 𝐑𝐔𝐋𝐄 𝐢𝐧 𝐀𝐓𝐀𝐑 

a. 𝐅𝐨𝐫𝐞𝐚𝐜𝐡 𝐂𝐀 𝐢𝐧 𝐑𝐔𝐋𝐄  
b. 𝐈𝐟 𝐂𝐀. 𝐯𝐚𝐥𝐮𝐞𝐬 ≠  𝐄. 𝐎𝐁𝐒. 𝐯𝐚𝐥𝐮𝐞 

𝐓𝐇𝐄𝐍 𝐓𝐫𝐲 𝐧𝐞𝐱𝐭 𝐑𝐔𝐋𝐄 

𝐄𝐧𝐝𝐈𝐟 

c. 𝐈𝐍𝐓𝐄𝐑𝐏𝐑𝐄𝐓𝐀𝐓𝐈𝐎𝐍 [] ≔ 𝐂𝐎𝐍𝐂 𝐨𝐟 𝐭𝐡𝐞 𝐑𝐔𝐋𝐄; 
𝐄𝐧𝐝𝐅𝐨𝐫  

𝐄𝐧𝐝𝐅𝐨𝐫  

[Classification Results Generation] 
𝐂. 𝐑𝐒𝐑𝐞𝐬𝐮𝐥𝐭𝐬 ∶= 𝐏𝐫𝐨𝐯𝐢𝐝𝐞𝐑𝐞𝐬𝐮𝐥𝐭𝐬 (𝐈𝐢𝐝, 𝐜𝐥𝐚𝐬𝐬𝐓𝐲𝐩𝐞, 𝐈𝐍𝐓𝐄𝐑𝐏𝐑𝐄𝐓𝐀𝐓𝐈𝐎𝐍) 

End 

 1 

H2RM
Semantics-preserved accurate 
rough set classification model

PhD Dissertation, Spring 2016

Underlying Technologies 

Proposed Methodologies

Experiments and Results

[11] Ali R, Hussain J, Siddiqi MH, Hussain M, Lee S. H2RM: A hybrid rough set reasoning model for prediction and management of diabetes mellitus. Sensors. 2015 Jul 3;15(7):15921-51.

Semantics-Preserved Discretization
Classical RST Model Creation 

Standard Protocol-based Data 
Representation and Preparation

Application-specific Service Generation

Accurate Rough Sets Classification Model (Solution A-1) 

1

2

3
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H2RM
Semantics-preserved accurate 
rough set classification model

PhD Dissertation, Spring 2016 [11] Ali R, Hussain J, Siddiqi MH, Hussain M, Lee S. H2RM: A hybrid rough set reasoning model for prediction and management of diabetes mellitus. Sensors. 2015 Jul 3;15(7):15921-51.

Accurate Rough Sets Classification Model (Solution A-1) 

Domain Specific Guidelines

Reference Ranges

Intervals

Cut-points

1

2a

Data Preparation & Representation

Data & Data  Structuring Protocol

𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑑 𝐷𝑎𝑡𝑎

𝑫𝒂𝒕𝒂 𝑫𝒊𝒔𝒄𝒓𝒆𝒕𝒊𝒛𝒂𝒕𝒊𝒐𝒏 Semantics-Preserved  
Discretization and Rules 

Generation from 
Reference Guidelines

Preparation 
of Reduced 

Dataset

Reduct

Core

Application Data

Structuring Protocol

Standard Protocol-based 
Data Representation & 

Preparation

Rough Set 
Model Creation 
and Validation

LEM2 Algorithm

𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑑 𝐷𝑎𝑡𝑎𝑠𝑒𝑡

2b

Rough Set 
Classification

New Instance3a

𝑅𝑜𝑢𝑔ℎ 𝑆𝑒𝑡 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑅𝑢𝑙𝑒𝑠

Application 
Services 

Generation

Domain Rues3b

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛
𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠

• Real Application Data: Clinical Charts
• Structuring Protocol: SOAP (Subjectivity, 

Objectivity, Analysis and Planning)

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛
𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛

• Reference Ranges: 
GuidelinesTranslation(Observation, 
Guidelines) 

• Intervals: RangeTransformation
(Reference Rang, Observation)

• Cut-points: BoundriesIdentification
(Intervals)

• Discrete Value: 
Discretization(ConsectiveCut-points, 
DiscreateValue)

𝑹𝒖𝒍𝒆𝒔 𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏

𝑫𝒂𝒕𝒂𝒔𝒆𝒕 𝑷𝒓𝒆𝒑𝒂𝒓𝒂𝒕𝒊𝒐𝒏

𝑵𝒆𝒘 𝑰𝒏𝒔𝒕𝒂𝒏𝒄𝒆 𝑪𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏

𝑺𝒆𝒓𝒗𝒊𝒄𝒆𝒔 𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏

Reduct (Attributes)

{BMI, Gender, Age, SBP, DBP, FBS, Hba1c, HDL, LDL, PT}

{BMI, Age, SBP, DBP, FBS, Hba1c, TG, HDL, LDL, PT}

{BMI, Gender, Age, SBP, FBS, Hba1c, HDL, LDL, OT, PT}

{BMI, Age, SBP, FBS, Hba1c, TG, HDL, LDL, OT, PT}

Core = BMI, Age, SBP, FBS, Hba1c, HDL, LDL, PT}

Underlying Technologies 

Proposed Methodologies

Experiments and Results
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H2RM
Semantics-preserved accurate 
rough set classification model

PhD Dissertation, Spring 2016 [11] Ali R, Hussain J, Siddiqi MH, Hussain M, Lee S. H2RM: A hybrid rough set reasoning model for prediction and management of diabetes mellitus. Sensors. 2015 Jul 3;15(7):15921-51.

Accurate Rough Sets Classification Model (Solution A-1) 

Data Structure in SOAP FormatApplication Data Structure in Clinical Notes

Classification Label

Condition Attributes

x
Recommendation

S.No Predictor Guidelines References 

1 BMI WHO: BMI classification WHO [36] 

2 BP: SBP, DBP JNC 7 report, AHA JNC [37–39] 

3 FBS 
American Diabetes 

Association. Diabetes Care 
ADA [40,41] 

4 HBA1c 
American Diabetes 
Association, NICE 

ADA [40], NICE [42,43] 

5 
Lipids: TC, TG, HDL, 

LDL 
NCEP, ADA NCEP [44], ADA [45] 

6 LFT: ALT, AST 
Liver disease (LD),  

Mayo Clinic 
LD [46], Mayo Clinic 

[47] 

 

+
• Rigorous inspection method is used, 

focus on correct observations values’ 
from the source document. 

• The inspection method supports 
experts with a particular set of 
guidelines for identifying possible 
defects.

http://www.bcs.org/upload/pdf/ewic_hc07_sppaper25.pdf

Underlying Technologies 

Proposed Methodologies

Experiments and Results

1



H2RM
Semantics-preserved accurate 
rough set classification model

PhD Dissertation, Spring 2016 [12] Ali R, Siddiqi MH, Lee S. Rough set-based approaches for discretization: A compact review. Artificial Intelligence Review. 2015 Aug 1;44(2):235-63.

Accurate Rough Sets Classification Model (Solution A-1) 

S.No Predictor Guidelines References 

1 BMI WHO: BMI classification WHO [36] 
2 BP: SBP, DBP JNC 7 report, AHA JNC [37–39] 

3 FBS 
American Diabetes 

Association. Diabetes 
Care 

ADA [40,41] 

 

• Sort values of the 
continious attributes 
in ascending order

Sorting

• Find a set of initial 
cut-points over the 
continuous values

Candidate 
initial cut-

points • Find optimal set cut-
points using 
evaluation measure

Optimization 

• Discretized data 
using optimized cut-
points

Discretization

C =
v1+v2

2
,

v2+v3

2
, … ,

vn−2+vn−1

2
,

vn−1+vn

2
= {c1, c2,…, cn}

l

CAttribi

Intr1 Intr2 Intri-1 Intri

u

c1 c2 cn-1 cn

Rough Set-based Discretization [12]

Statistical, entropy, genetic, fuzzy theory and Boolean Reasoning

Discretization 
Process

Example: SBP Attribute
Existing (Boolean Method) -- > 
• (SBP < 110), (SBP 110-116), (SBP ≥117)
Required Discretized Value -- > 
• (-α, 120),[120, 139],[140, 159],[160, 180],[181, α)

• Semantics 
Distorted

• Model 
semantically 
incorrect

• Translate guidelines 
for standard ranges 
identification of 
attributes

Reference 
Range 

Extraction

• Find a cut-points 
over the continuous 
values

Candidate Cut-
points 

Identification • Assign discrete 
number to each  
interval

Discrete 
Number 

Assignment

• Discretized data 
using the discrete 
number

Discretization

(c) SBP 

Interval  Semantics 

(−∞, 120) normal 
[120, 139] prehypertension 
[140, 159] hypertension stage 1 
[160, 180] hypertension stage 2 
[181, ∞) hypertensive crisis 

 

Cut-

Points 

120 

140 

160 

181 

 

Discreet 

Number 

0 

1 

2 

3 
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R # Class Prediction Rule 

1 (T1DM) 
(BMI = [18.5, 24.9]) and (Age = (50, ∞)) and (SBP = [120, 139]) and  

(Hba1c = (7.4, ∞)) and (TC = (−∞, 200)) and (SGPT = [7, 56]) 

2 (T2DM) 
(Gender = M) and (SBP = (−∞, 120)) and (Hba1c = (6.4, 7.4]) and 

(LDL = [100, 129]) 

 

Semantics-Enabled Discretization

Underlying Technologies 

Proposed Methodologies

Experiments and Results

2a



Classifier rules.DTNB rules.JRip rules.NNge rules.PART rules.Ridor rules.DecisionTable Rough.Set.LEM2

Average 

Accuracy
91.31(2.74) 95.13(2.73) 94.16(3.72) 96.16(2.18) 94.88(2.79) 89.52(3.69) 95.9(2.6)

H2RM
Semantics-preserved accurate 
rough set classification model

PhD Dissertation, Spring 2016

Accurate Rough Sets Classification Model (Solution A-1) 

17

Evaluation Criteria
 Average and balanced accuracy

Experimental Setup
 Windows, PC, RAM 4GB. 
 ROSE 2 [13],default parameters,10-fold CV.

Dataset
 Real Dataset St. Mary’s 50 patient (20 Type-1 & 30 Type-2). 

 391 records, 278 encounter Type-2 & 113 for type-1. 

 Attributes: 8 {BMI, Age, SBP, FBS, Hba1c, HDL, LDL, PT}

Results: Semantic Preserved Classification Accuracy

Type of DM Correct Incorrect           None 

T1DM 94.59 ± 6.16 5.41 ± 6.16 0.00 ± 0.00

T2DM 96.85 ± 4.11 3.15 ± 4.11         0.00 ± 0.00

Total 95.91 ± 2.61 4.09 ± 2.61         0.00 ± 0.00

Type of DM T1DM T2DM None

T1DM   106 (TP) 7 (FN) 0

T2DM  9 (FP) 269 (TN) 0

A
ve

ra
ge

 
A

cc
u

ra
cy

B
al

an
ce

d
 

A
cc

u
ra

cy

Balanced accuracy =
0.5 ∗ TP

TP + FN
+

0.5 ∗ TN

TN + FP
= 0.9522 1 

Fold
Pass 

1

Pass 

2

Pass 

3

Pass 

4

Pass 

5

Pass 

6

Pass 

7

Pass 

8

Pass 

9

Pass 

10

Average 

Error

Percent 

Error
2.50 7.69 5.13 7.69 5.13 0.00 2.56 5.13 2.56 2.56 4.10A

ve
ra

ge
 

Er
ro

r

Comparison
 Comparison with  Seven Rule-based Algorithm from Weka

environment, default setting 
 Comparison on the basis of Average accuracy

Less than

Greater than, but not significant. Both proposed and PART has same significant

[11] Ali R, Hussain J, Siddiqi MH, Hussain M, Lee S. H2RM: A hybrid rough set reasoning model for prediction and management of diabetes mellitus. Sensors. 2015 Jul 3;15(7):15921-51.
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Semantics-preserved accurate 
rough set classification model

PhD Dissertation, Spring 2016

Accurate Rough Sets Classification Model (Solution A-1) 
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Guidelines-enabled discretization scheme for retaining or preserving 
semantics while data is transformed from continuous values to discreat
in the rules.

Rigorous inspection-based method for real world dataset preparation 
using standard domain knowledge in the form of guidelines

An accurate dataset is prepared for research purpose and made 
available to the community in anonymized form

2 Guidelines enabled data and dataset preparation

1 Semantics-preserved discretization 

Contributions

3 Classification dataset for research community

[11] Ali R, Hussain J, Siddiqi MH, Hussain M, Lee S. H2RM: A hybrid rough set reasoning model for prediction and management of diabetes mellitus. Sensors. 2015 Jul 3;15(7):15921-51.

Underlying Technologies 

Proposed Methodologies

Experiments and Results

Discussion on RS-based 
Classification Model

• Needs labeled and properly structured 
dataset

• Needs large datasets for better 
performance

• Datasets with large number of classes, 
lower accuracy

• Lack of incremental learning
• Supports generalization rather than 

specialization



Heuristics-based models for real-world applications (Solution A2)
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Semantics-
Preserved 
Accurate 
Classification 

Accurate and 
Precise 

Recommendations

A-1 A-2

• Correct data and dataset preparation
• Correct case and case-base design and preparation

Semantics-Preserved 
Accurate Rough Set 
Classification Model  for 
Real-world Application

Hybrid Case-based Reasoning 
Model for Accurate Real-
world Application Services

Domain specific guidelines-
enabled rule-based method for 

data preparation

Data Preparation

Introduction
Proposed methodologies
Thesis contributions

Conclusion and future directions
Achievements

Models/algorithms are 
selected based on the experts’ 

heuristic knowledge

Model Evaluation & Selection

A
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• Consumes, prepared cases, 
from the applications

• No proper mechanism of 
new case creation at run-
time for real applications

• Uses default similarity 
functions

Hybrid-CBR
Accurate Hybrid Case Based 
Recommendation Model

PhD Dissertation, Spring 2016

Underlying Technologies : Case-based Reasoning (Solution A-2)

Case-Based Reasoning (CBR) is a classification method that uses past experiences rather than general 
knowledge and a problem P is represented as a collection of examples or cases, i.e., P = {c1, c2, …, cn}, 
where each Ci = {f1, f1,…., fn}

Leake DB. Case-Based Reasoning: Experiences, lessons and future directions. MIT press; 1996 Sep 1.

• Accurate results in case of 
small dataset and large 
number of classes

• Recommends similar solution 
even if no exact matched 
found

• Incremental learning

• Supports specialization

• Ranking recommendation

Limitations of Existing

Why CBR? - Expert’s Heuristics

Case-based 
Reasoning (CBR)

New case(s)

Case Base

Retrieved Cases

Retrieve

Top k, Relevant 
Cases

Reparsed Case

Reuse

Revise

Retain

Learned 
Case

1

2

4

3

5

Toped Ranked 
Recommendation

/Decisions

New 
Instance 

(case)

Underlying Technologies

Proposed Methodologies

Experiments and Results



Hybrid-CBR
Accurate Hybrid Case Based 
Recommendation Model

PhD Dissertation, Spring 2016

Hybrid CBR Recommendation Model (Solution A-2)

[13] Ali R, et al.,. Multimodal hybrid reasoning  methodology for personalized wellbeing services. Computers in biology and medicine. 2016 Feb 1;69:10-28.

Case-based 
Reasoning (CBR)

New case(s)

Case Base

Retrieved Cases

Retrieve

Top k, Relevant 
Cases

Reparsed Case

Reuse

Revise

Retain

Learned 
Case

1

2

4

3

5

Toped Ranked 
Recommendation/

Decisions

• Guidelines-enabled 
rule-based method
for case 
preparation

• Accurate case 
retrieval using local 
& global similarity 
functions

Key contributions

Case Preparation Data

Rule-based 
Reasoning (RBR)Domain 

Knowledge

Knowledge Source

Data 
Source

21

Algorithm. CBR methodology for accurate recommendations

Input: nC:= new Case

Output: List R <Recommendations>

Begin

[Create Successful Case for Case Base]

METCB = createCasesUsingRBR Data, Domain Knowledge 

Let R:= A set of top-k relevant recommendations

Simg  := Array of global similarities of existing cases

[Loading Cases from Case Bbase]

METCBr: = ReteriveCaseBaseFromKB METCBurl , Where METCBr is the matrix

eCmxAn, eCm is the set of existing cases, i.e., eC = eC1, eC2, eC3, … , eCm. Similarly,

An is the set of attributes, i.e., An = A1, A2, A3, … , An

[Similarity Check of the Case base for the New Case]

1. 𝐅𝐨𝐫 i = 1 to SizeOfCases METCBr 

Let Siml  :=Array of local similarities of attributes of individual cases

a. 𝐅𝐨𝐫 j = 1 to SizeOfAttributes METCBr 

b. Siml Aj : = ComputeLocSim nC. Aj, METCBr i, j  ;//use eq.11 & eq. 12

c. End for

d. 𝐒𝐢𝐦𝐠 eCi := ComputeGlobSim  𝐒𝐢𝐦𝐥 ; // weightedsum method (eq.13)

2 End for

[Selecting Top-k Relevant Cases]

3. R:= ApplyKNN 𝐒𝐢𝐦𝐠  ; //where k = 3

[Providing Recommendations of the Top-k Relevant Cases to the User]

4. PropgateCBRResults  uid, R ;

[Retaining the Resolved Case in Case Base]

5. FCB ≔ RetainCBRPAR uid, R);

6. Exit; End

New Instance (Case)

X

Underlying Technologies 

Proposed Methodologies

Experiments and Results
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Hybrid-CBR
Accurate Hybrid Case Based 
Recommendation Model

PhD Dissertation, Spring 2016

Hybrid CBR Recommendation Model (Solution A-2)

Real-world Data, domain knowledge

Domain knowledge

Real world data

1

2

Case-base Creation

Guideline and Indexes

𝑁𝑒𝑤 𝐶𝑎𝑠𝑒
𝑅𝑒𝑎𝑙 𝑤𝑜𝑟𝑙𝑑 𝑁𝑒𝑤 𝐶𝑎𝑠𝑒 𝐶𝑟𝑒𝑎𝑡𝑖𝑜𝑛

Rule-based method for 
New Case Preparation

Find local similarity of the 
attributes of new case with 

the existing cases

Index

Domain knowledge

Rule-based method for 
Case Base  creation

• Structuring and abstracting the domain data 
into case attributes

• Preparation of an un-resolved case
• Performing necessary pre-processing

𝑅𝑒𝑡𝑒𝑟𝑖𝑣𝑒 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑐𝑎𝑠𝑒𝑠

Case Base 

• Representation of the cases
• Designing structure of the case base
• Assigning data types 

Local Similarity 
Functions

Find global similarity 
between new and existing 

cases

Global Similarity 
Function

Reuse Similar Cases 
(k-NN with k=3)

Retain New Case 

Local Similarity 
Functions

𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔

R
B

R
 P

a
rt

C
B

R
 P

a
rt

[13] Ali R, et al.,. Multimodal hybrid reasoning  methodology for personalized wellbeing services. Computers in biology and medicine. 2016 Feb 1;69:10-28.
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Hybrid-CBR
Accurate Hybrid Case Based 
Recommendation Model

PhD Dissertation, Spring 2016

Hybrid CBR Recommendation Model (Solution A-2)

1
Case-base Creation

Guideline and Indexes

Index

Domain knowledge

Rule-based method for 
Case Base  creation

Case Base 

R
B

R
 P

a
rt

Exercise MET Recommendation

Cycling 14.0 bicycling, mountain, uphill, vigorous

Cycling 16.0 bicycling, mountain, competitive, racing

Walking 8.5 bicycling, BMX

Jogging 8.5 bicycling, mountain, general

Index: METs Index [Compendium of Physical Activity]

Guidelines: MET Vs Age-group Relationship [WHO 
[133] and UK [134], ACSM, UK, US]

Attribute Data type Possible value Description 

Age Group Symbol
{All Age, Young, Adults, 

Older Adults}
Age of the subject

METs Float Min=1.3, Max=23.0
Metabolic Equivalents of 

Tasks one hour

Recommendations String

Physical activities {running, 

walking, cycling, traveling-bus 

and subways, standing, sitting}

Physical activities

Case Base Structure

Case # Age MET Recommendation/Classification

1 Adults 14.0 bicycling, mountain, uphill, vigorous

2 Adults 16.0 bicycling, mountain, competitive, racing

3 Older Adults 8.5 bicycling, BMX

4 Older Adults 8.5 bicycling, mountain, general

5
All Age, Young, 
Older Adults, Adults

3.5 bicycling, leisure, 5.5 mph

119 … …

MET Case Base 

Rules  for case creation • Inspection method used, focus on correct case preparation from guideline and domain knowledge. 

• Inspection method supports experts with a set of guidelines for identifying possible defects.

23[13] Ali R, et al.,. Multimodal hybrid reasoning  methodology for personalized wellbeing services. Computers in biology and medicine. 2016 Feb 1;69:10-28.
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Hybrid-CBR
Accurate Hybrid Case Based 
Recommendation Model

PhD Dissertation, Spring 2016

Hybrid CBR Recommendation Model (Solution A-2)

Real-world Data, domain knowledge

Domain knowledge

Real-world data

2
𝑁𝑒𝑤 𝐶𝑎𝑠𝑒

𝑅𝑒𝑎𝑙 𝑤𝑜𝑟𝑙𝑑 𝑁𝑒𝑤 𝐶𝑎𝑠𝑒 𝐶𝑟𝑒𝑎𝑡𝑖𝑜𝑛

Rule-based method for 
New Case Preparation

Find local similarity of the 
attributes of new case with 

the existing cases

𝑅𝑒𝑡𝑒𝑟𝑖𝑣𝑒 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑐𝑎𝑠𝑒𝑠

Case Base 

Local Similarity 
Functions

Find global similarity 
between new and existing 

cases

Global Similarity 
Function

Reuse Similar Cases 
(k-NN with k=3)

Retain New Case 

Local Similarity 
Functions

R
B

R
 P

a
rt

C
B

R
 P

a
rt

Gender Age BMI value Weight status

M or F >20 <18.5 kg/m2 Underweight

M or F >20 >18.5 and <25 kg/m2 Normal

M or F >20 >25 and <30 kg/m2 Overweight

Gender
Global Goal 

(gloGoal) - Kg

Weight Status 

(WS)
Plan Prescription (PP)

M or F > 0 (+ive) Normal or 

Overweight 

Weight Loss Plan (WLP): lose gloGoal(Kg) 

M or F = 0 (neutral) Normal Weight Maintenance Plan (WMP): 

motivational statements 

M or F < 0 (-ive) Underweight Weight Gain Plan (WGP): gain gloGoal(Kg)

B
M

I 
R

u
le

s
G

o
al

/P
la

n
 R

u
le

s

idlWgt = 51.65 kg + 1.85 kg/inch over 5 feet  man 

idlWgt = 48.67 kg + 1.65 kg/inch over 5 feet  woman 

wghRedPlan  days = roundup
7 days ∗ gloGoal Kg 

0.5  Kg 

calToBurDay =
 gloGoal kg ∗ Cal  1kg fat

 wghRedPlan  days

METs =
remCalToBurn

 amtAct = 1h ∗ weight kg

𝐴𝑑𝑜𝑝𝑡

𝐌𝐄𝐓𝐒𝐢𝐦𝐥 𝐧𝐂, 𝐞𝐂 =
𝐝𝐠 𝐌𝐚𝐱𝐌𝐄𝐓, 𝐌𝐢𝐧𝐌𝐄𝐓 − 𝐝𝐥 𝐧𝐂𝐌𝐄𝐓, 𝐞𝐂𝐌𝐄𝐓 − 𝟏

𝐝𝐠 𝐌𝐚𝐱𝐌𝐄𝐓, 𝐌𝐢𝐧𝐌𝐄𝐓

𝐀𝐆𝐒𝐢𝐦𝐥 𝐧𝐂, 𝐞𝐂 =
𝐀𝐆𝐢𝐣 = 𝟏 𝐟𝐨𝐫 ∀ 𝐢 ≥ 𝐣 𝐎𝐑 𝐢 = 𝟎 𝐎𝐑 𝐣 = 𝟏 

𝟎 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

[continuous value] Closest match similarity function

[nominal value] Exact match similarity function

𝐒𝐢𝐦𝐠 𝐧𝐂, 𝐞𝐂

= 𝛃 𝐀𝐆𝐒𝐢𝐦𝐥 𝐧𝐂, 𝐞𝐂

+ 𝛄 𝐌𝐄𝐓𝐒𝐢𝐦𝐥 𝐧𝐂, 𝐞𝐂

where β = 0.1 && γ = 0.9 weight of age
and MET attributes,

R:= ApplyKNN 𝐒𝐢𝐦𝐠  ; //where k = 3
𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛

24[13] Ali R, et al.,. Multimodal hybrid reasoning  methodology for personalized wellbeing services. Computers in biology and medicine. 2016 Feb 1;69:10-28.
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Hybrid CBR Recommendation Model (Solution A-2)
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Experimental setup
 myCBR, Windows PC, Intel Dual-CoreTM (2.5 GHz), 4 GB RAM.

Train Dataset (Case Base)
 119 METs Cases as knowledge base

UID
Age-

group

METs 

value)

Retrieved cases

(METs value)
Recommendations decision

1 Young 6.5

6.5 climbing hills with 0 to 9 lb load.

6.5 race walking; rock or mountain climbing 

6.3 climbing hills; no load

2 Adult 7.6

7.3 climbing hills with 10 to 20 lb load

7.5 bicycling; general

7.8 backpacking; hiking or organized walking with a daypack

3
Older 

Adults
7.8

7.8 backpacking; hiking or organized walking with a daypack

8 running; training; pushing a wheelchair or baby carrier

8 running; marathon

4 Adults 8.1
8 running; training; pushing a wheelchair or baby carrier

8 running; marathon

04 Input Test Cases

Retrieved Cases and Generated Recommendations

Evaluation criteria
 Precision, recall, accuracy, and f-score

Test Dataset (Test Case Base)
 64 Test Cases created  creted from case base using function

METs. value = randbetween bottom, top 

[13] Ali R, et al.,. Multimodal hybrid reasoning  methodology for personalized wellbeing services. Computers in biology and medicine. 2016 Feb 1;69:10-28.
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Hybrid CBR Recommendation Model (Solution A-2)
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Comparison

64 input cases randomly generated from original cases

Experiment 1 (Baseline-RBR):

RBR with distinct MET rules

Experiment 2 (Modified-RBR)

RBR with ranged-MET rules

Experiment 3 (Hybrid-CBR)

CBR with Test Case Base

RID Age METs Activity prescription

R#1 Young 2 Walking, household

R#2 Older 

Adults
6.5

Climbing hills with 0 to 9 lb load; Race walking; 

rock or mountain climbing

R#3
Young 7.8

Backpacking; hiking or organized walking with a 

daypack

. . . .

R#122 Adult 15 Running; stairs up

Rule ID Age Group METs value Activity prescription

R#1 Young, Adults, Older 

Adults
< 3 Light activity

R#2 Adults ≤ 23 Moderate – vigorous-intensity

R#3
Older Adults ≤ 10.25

Moderate – vigorous (lower 

intensity level)

R#4 Young ≤ 7 Moderate 

MET Distinct 
Rules

MET Ranged 
Rules

Baseline-RBR Modified-RBR Hybrid-CBR

Type I error 0.0 82.8 3.1

Type II error 54.7 10.9 6.3

0.0

82.8

3.1

54.7

10.9 6.3
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Evaluation of Type I and Type II Errors

Precision Recall Accuracy F-measure

Baseline-RBR 1.00 0.45 0.45 0.62

Modified-RBR 0.52 0.89 0.89 0.66

Hybrid-CBR 0.97 0.94 0.94 0.95
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Limitations heuristic-based model 
selection

• Optimality
• does guarantee the best 

algorithm will be found (if 
multiple available)? 

• Completeness 
• can heuristic find all suitable 

algorithms (if available)? 

• Accuracy and precision 
• can heuristic provide confidence 

interval for the claimed 
algorithm? 

• Selection time 
• Is this the best known heuristic 

for solving this type of problem? 

An accurate  and precise CBR recommendation model is developed

Accurate similarity functions are defined

Rigorous inspection method along with the rule-based methodology is used for 
correct case base and new case creation

As an outcome, a correct case-base is released as a useful resources to the 
research community and people in practicable application fields

2 Guidelines enabled case preparation

1 Accurate and precise CBR recommendation model

Contributions

3 A useful dataset/case base  for research community
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Analysis of 
ClassifiersMultiple Classifiers  used 

for Best Classifier 
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Multiple Criteria are Used to 
Evaluate and Analyze the 
Performance

Algorithms are ranked and 
the top rank is selected for 

model creation

Multi-criteria decision Making

B

Empirical Analysis of Classifiers (Solution B)

Introduction
Proposed methodologies
Thesis contributions

Conclusion and future directions
Achievements
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Underlying Technologies : Multi-criteria Decision Making (Solution B)

Meta Learning for Automatic Algorithm Evaluation

A1 A2 A 3 An

Dataset(s)

C1 C2 C3 Cm

Empirical  
Performance 

Analysis
Multi-criteria Decision 
Making and Algorithm

Evaluation

A2

Automatic 
(Meta Learning) A2

From Empirical 
Analysis 
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NIS: 
Negative Ideal 

Algorithm

AMD: 

Accurate Multi-criteria decision making for 
evaluating  classifiers using empirical 

analysis

C: Suitable 
Metrics 

Selection

Classifiers 
Ranking

Domain 
Problem/ Dataset

Decision Making Methods/Algorithms

A (c1, c2) B (c1, c2)

Standard Method for 
Suitable Metric 

Selection

W: Weight 
Assignment

Grouped Decision 
Making Relative 

Consistent Weights 
Estimation

P: Significant 
Performance

Algorithms Fitness & 
Significant Performance 

Analysis

RC: Ranking

Ranking Algorithms & 
Constraints Satisfaction

m1,2,...,i

,
NISPIS
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,where

PIS: 
Positive Ideal 

Algorithm

Basic Concept
C (c1, c2) D (c1, c2) E (c1, c2)
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Missing, support 
limited criteria

Absolute weighting Only significance  test Limited 
constraints

Existing Existing
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Algorithm 1. Selection of optimum performance algorithm  

Begin 

inputs:  d – the given dataset 

    A =  a1, a2, … , an  // n algorithms 

output:   R = top-k algorithms; where, R ⊆ A 

Let QMM = Classifiers quality meta-metrics. 

1 [Define Goal] 

      G =  o1, o2, … , on ; // where, G stands for goal. 

2 [Select Suitable Quality Meta-metrics] 

      Q = selectSuitQuality(QMM, G); //where, Q  quality metrics. 

3 [Select Suitable Evaluation Metrics] 

      Q =  selectSuitEvalMetrics Q , G ; //where, Q ⊆ Q , metrics. 

4 [Estimate Relative Weight] 

      W = estimateRelativeWeights(Q ); //where W relative weight. 

5 [Generate Performance Results of the Algorithms] 

      𝐟𝐨𝐫𝐞𝐚𝐜𝐡 algorithm 𝐚 in 𝐀 perform  

a. P = algPerformanceEval(d, a, Q ); 

      𝐞𝐧𝐝 𝐟𝐨𝐫 

6 [Perform Statistical Significance] 

      P = performStatSigTest(P); // P  is significance matrix. 

7 [Perform Algorithm Fitness] 

      S = Perform Algorithm Fitness Test ;  

8 [Compute Relative Closeness to Ideal Algorithm] 

      RC∗ = rankAlgorithms(S, W); //where, RC∗ relative closeness. 

9  [Rank the Algorithms] 

      RankedList = RANK. AVG(RC∗
1, RC∗

1: RC∗
𝑛 , 1); 

10 [Select Top-K Algorithms] 

      R = selectTopK(RankedList, k); 

11 apply R to learn d 

End 
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Standard Method for Suitable Meta-metrics and Criteria 
Selection

Selection of optimum performance consistent
classification algorithms

Algorithms should come from the heterogeneous
families of multi-classification algorithms

1-2(a, b)

1.1 1.2 1.3

1.1

1.2

1.2

Six Heterogeneous Families of Multi-Classification Classifiers 
from Weka Environment

SNO Classifier SNO Classifier

1 bayes.BayesNet 19 trees.J48

2 bayes.NaiveBayes 20 trees.J48graft

3 bayes.NaiveBayesUpdateable 21 trees.LADTree

4 functions.Logistic 22 trees.RandomForest

5 functions.RBFNetwork 23 trees.RandomTree

6 functions.SMO 24 trees.REPTree

7 misc.HyperPipes 25 trees.SimpleCart

8 misc.VFI 26 meta.AdaBoostM1

9 rules.ConjunctiveRule 27 meta.Bagging

10 rules.DecisionTable 28 meta.Dagging

11 rules.DTNB 29 meta.END

12 rules.JRip 30 meta.FilteredClassifier

13 rules.OneR 31 meta.LogitBoost

14 rules.PART 32
meta.RacedIncrementalLogitB
oost

15 rules.Ridor 33 meta.RandomSubSpace

16 rules.ZeroR 34 meta.Stacking

17 trees.BFTree 35 meta.Vote

18 trees.FT

1.1
Optimum Performance Consistent Algorithm for 

Multi-class Classification

Method for 
criteria 

selection

Specifying 
families of 

algorithms & 
constraints

Set goal and 
objectives

1.1 1.2 2
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Standard Method for Suitable Meta-metrics and Criteria Selection

Classifiers 
Quality Meta-

Metrics (QMM) 

Correctness (cor)

Accuracy (‘+’cor)
Examples: percent correct, 
precision, recall, F measure etc.

Accuracy (‘-’cor) - error 
metrics

Examples: percent incorrect, 
FPR, FP, TN etc.

Complexity 
(complex)

Computational (ccom)
Examples: Elapsed Time 
training, User CPU Time 
training etc.

Memory/Space (scom)
Examples: Num Rules, Tree 
Size, Num Leaves etc.

Responsiveness 
(res)

Examples: Elapsed time testing,  UserCPU
time testing

Consistency (con)
Examples: It is a constant that can be used as a metric. 
Standard Deviation is used to measure it

Comprehensibility 
(com)

Examples: Measures Interestingness  and Interpretability, e.g., 
Num. Rules, Tree Size etc.

Reliability (rel)

Information-Theoritic
(irel)

Examples: Entropy, entropy 
gain etc.

Distance or Error 
Measure (erel)

Examples: MAR, 
RMSE etc.

Robustness (rob) 
Examples: Measure sensitivity in terms of True 
positive rate

Separability (sep)
Examples: Graphical measures that best visualize 
the results in binary classification, e.g., ROC, AUC 
etc.

(i) Building Classifiers 
Quality Meta-metrics 
(QMM) Classification 
Model

1. 
Select Salient  

QMM

Select salient qualities , compliant to 
Goal, from QMM by each ML expert

2. Vote/Rate 
QMM

Vote for salient QMM using rating 
method and select Top-k

3. 

Repeat Vote, if 
Inconsistency

Repeat step 2, if there is conflict or 
inconsistencies

(ii) Experts’ 
Group-based 
Decision 
Making for 
QMM 
Selection

Advantage 
• Physical 

Meaning of the 
Classifiers

• Easy 
understanding 
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2a

Procedure 1. selectSuitQuality 

Begin 

inputs: QMM – the set of classifiers quality meta-metrics  

   G – the goal 

output: Q′′  – the set of highly rated/ranked quality meta-metrics 

1 [Select key qualities by each expert] 

      Q =  extractSalientQMM QMM, G ; //where, Q ⊆ QMM 

2 [Vote each selected quality by all the experts] 

      Q′ = preliminaryVoteAggQuality(Q′); //where, Q′ is initial list of selected QMM 

a. If Q′  contains Consistent qualities, then 

i. Q′′ = selectTopKQMM(Q′ , k); // where, k ⊆ Q and stands for 

number of qualities the experts are interested to select 

ii. goto setp 3; 

b. Else 

i. Repeat step 2; 

3 return = Q′′ ; 

End 

 

Advantage 
• Experts 

Consensus
• Will Satisfy 

Goal
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2b Standard Method for Suitable Meta-metrics and Criteria Selection

Classifiers 
Evaluation 

Metrics (e.g., 51 
Metrics from 

Weka)

Like QMM Selection, Experts Group-based Consensus 
Method is used

General Guidelines
Goal’ constraints must be satisfied

Conflicting and duplicate metrics should be avoided

The selected criteria and the reasons behind are:
 𝑊𝑔𝑡. 𝐴𝑣𝑔. 𝐹−𝑠𝑐𝑜𝑟𝑒

 Satisfies multiclass constraints "weighted" accounts for 
class imbalance by computing the average of binary metrics 
in which each class’s score is weighted by its presence in 
the true data sample

 𝑪𝑷𝑼_𝑻𝒊𝒎𝒆_𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈

 Satisfies the global applicability condition of classifiers and 
applicable to every algorithms. Shared among all families 
(heterogeneous) of classifiers

 𝑪𝑷𝑼_𝑻𝒊𝒎𝒆_𝒕𝒆𝒔𝒕𝒊𝒏𝒈

 Satisfies heterogeneity constraint of classifiers and measure 
the efficiency of algorithms in terms of response time

 𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝒅𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏  𝑺𝒕𝒅𝒗 – Avg.Stdev of the above metrics

 Satisfies the obligatory constraint of consistency measure of 
each classifier
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(2b) 
Suitable 
Evaluation 
Metrics 
Selection

(2b) Experts’ Group-based Decision Making for Evaluation Metrics Selection

Id Evaluation Metric 
QM

M 

Sub-

QMM 
Id Metric QMM 

Sub-

QMM 

1 Number_correct cor +cor 27 Elapsed_Time_training complex ccom 

2 Percent_correct cor +cor 28 UserCPU_Time_training complex ccom 

3 Kappa_statistic cor +cor 29 measureNumRules complex, com scom 

4 True_positive_rate cor +cor 30 
measurePercentAttsUsedB

yDT 
complex, com scom 

5 Num_true_positives cor +cor 31 measureTreeSize complex, com scom 

6 False_negative_rate cor +cor 32 measureNumLeaves complex, com scom 

7 Num_false_negatives cor +cor 33 
measureNumPredictionLea

ves 
complex, com scom 

8 IR_precision cor +cor 34 measureNodesExpanded complex, com scom 

9 IR_recall cor +cor 35 Elapsed_Time_testing res ures 

10 F_measure cor +cor 36 UserCPU_Time_testing res sres 

11 Weighted_avg_true_positive_rate cor +cor 37 SF_prior_entropy rel irel 

12 Weighted_avg_false_negative_rate cor +cor 38 SF_scheme_entropy rel irel 

13 Weighted_avg_IR_precision cor +cor 39 SF_entropy_gain rel irel 

14 Weighted_avg_IR_recall cor +cor 40 SF_mean_prior_entropy rel irel 

15 Weighted_avg_F_measure cor +cor 41 SF_mean_scheme_entropy rel irel 

16 Number_incorrect cor -cor 42 SF_mean_entropy_gain rel irel 

17 Number_unclassified cor -cor 43 KB_information rel irel 

18 Percent_incorrect cor -cor 44 KB_mean_information rel irel 

19 Percent_unclassified cor -cor 45 KB_relative_information rel irel 

20 False_positive_rate cor -cor 46 Mean_absolute_error rel erel 

21 Num_false_positives cor -cor 47 Root_mean_squared_error rel erel 

22 True_negative_rate cor -cor 48 Relative_absolute_error rel erel 

23 Num_true_negatives cor -cor 49 
Root_relative_squared_err

or 
rel erel 

24 Weighted_avg_false_positive_rate cor -cor 50 Area_under_ROC sep, cor - 

25 Weighted_avg_true_negative_rate cor -cor 51 
Weighted_avg_area_under

_ROC 
sep, cor - 

26 True_positive_rate 
cor, 

rob 
+cor    --  -- -- 
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2c

Analytical hierarchy process [15] of 
relative weighting is used.

1. Comparison matrix E with 4 experts’ 
preferences is used as shown below.

2. Each value of the matrix is normalized as 
below

3. Criteria weight vector 𝑊 = 𝑤𝑗 is computed 

using

4. Consistency of the estimated weights are 
checked using 𝐶𝑅 = Τ𝐶𝐼 𝑅𝐼

𝑒 𝑖𝑗 = 𝑒𝑖𝑗  𝑒𝑖𝑗

𝑚

𝑖=1

  

𝑤𝑗 =  𝑒 𝑖𝑗

𝑚

𝑗=1

𝑚 =  

𝑤1

𝑤2

⋮

𝑤𝑚

  

where,
1. CI = Τ λmax−n  n − 1 

2. λmax = Τσi=1
m Cvij m (principal eigenvalue)

3. Cvij = E ∗ W (consistency vector CV)

4. RI is taken from the Saaty’s preference scale

5. If CR < 0.10 
1. Weights are consistent and the judgments is correct

6. Else

7. Repeat Relative Weight Estimation Algorithmic 
and change the preferences
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Criteria
WgtAvgF-

score

CPUTimeTe

sting

CPUTimeTr

aining
Consistency Weights

WgtAvgF-score 1 5 7 4 0.60

CPUTimeTesting 0.20 1 4 1/2 0.14

CPUTimeTraining 0.14 0.25 1 1/5 0.05

Consistency 0.25 2.00 5 1 0.21

CI:0.042 1.00

Group Decision-making for Relative Consistent Weighting

Grouped-based Relative Criteria Weighting
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groupedWeight = σe=1
m ςdm=1

n DMWeight ∗ EMWeight
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2c

(a). Experts (decision makers) 

prioritization

DM Prioritization DM#1 DM#2 DM#3 DM#4 DM decision weight

DM#1 1 3 2 5 0.49

DM#2 0.33 1 1 3 0.21

DM#3 0.50 1.00 1 3 0.23

DM#4 0.20 0.33 0.33 1 0.08

CI: 0.009 1.00

(b) DM#1 relative weighting (c) DM#2 relative weighting

Criteria
WgtAvgF-

score

CPUTimeTesti

ng
CPUTimeTraining

Consistenc

y
Weights Criteria WgtAvgF-score

CPUTimeTestin

g

CPUTimeTrainin

g
Consistency Weights

WgtAvgF-score 1 8 9 7 0.70 WgtAvgF-score 1 7 9 5 0.68

CPUTimeTesting 0.13 1 3 1/2 0.09 CPUTimeTesting 0.14 1 2 1 0.12

CPUTimeTraining 0.11 0.33 1 1/5 0.04
CPUTimeTrainin

g
0.11 0.50 1 1/3 0.06

Consistency 0.142857143 2.00 5 1 0.16 Consistency 0.2 1.00 3 1 0.14

CI:0.050 1.00 CI:0.012 1.00

(d) DM#3 relative weighting (e) DM#4 relative weighting

Criteria
WgtAvgF-

score

CPUTimeTesti

ng
CPUTimeTraining

Consistenc

y
Weights Criteria WgtAvgF-score

CPUTimeTestin

g

CPUTimeTrainin

g
Consistency Weights

WgtAvgF-score 1 7 8 6 0.68 WgtAvgF-score 1 8 9 8 0.71

CPUTimeTesting 0.14 1 2 1/2 0.10 CPUTimeTesting 0.13 1 4 1 0.12

CPUTimeTraining 0.13 0.50 1 1/3 0.06
CPUTimeTrainin

g
0.11 0.25 1 1/6 0.04

Consistency 0.17 2.00 3.00 1 0.16 Consistency 0.13 1.00 6 1 0.13

CI:0.021 1.00 CI:0.073 1.00

(f) Criteria weights based on group decision making

DM Decision Prior 0.49 0.21 0.23 0.08

Criteria\DM DM#1 DM#2 DM#3 DM#4 Weight

WgtAvgF-score 0.70 0.68 0.68 0.71 0.70

CPUTimeTesting 0.09 0.12 0.10 0.12 0.10

CPUTimeTraining 0.04 0.06 0.06 0.04 0.05

Consistency 0.16 0.14 0.16 0.13 0.15
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Decision Makers’ 
Decision Weightage

Group Decision of 
all the Decision 
Makers

Individual 
Decision 
Maker’s 
Assigned 
Weight
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Algorithms Performance

Real performance results for criteria

Weka, 10x10-fold cross-validation for stable performance
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Procedure 4. algPerformanceEval.

Begin

inputs: d – the given dataset

a – the given classification algorithm

 Q =  e1, e2, … , em – the set of evaluation metrics

output: p– performance matrix of algorithm a on dataset d for the evaluation metrics  Q;

Let ITER = number of iteration

F = number of folds

Performance= 1*m matrix for storing the performance results of algorithm a on dataset d for

the metrics  Q

1. ITER = 10; F = 10; Performance = 0;

2. 𝐟𝐨𝐫 𝐢 = 1 𝐭𝐨 ITER 𝐩𝐞𝐫𝐟𝐨𝐫𝐦

3. generate F FOLD from d; //generate 10-fold from dataset d

4. 𝐟𝐨𝐫 𝐟 = 1 𝐭𝐨 F 𝐩𝐞𝐫𝐟𝐨𝐫𝐦

a. TestData = FOLD  f ; //create test dataset

b. TrainData = d − TestData; //create train dataset

c. Model = buildModel TrainData, a ; // build the classification model

d. Performanance = Performance + addPerformance testModel TestData,Model,  Q ;

𝐞𝐧𝐝 𝐟𝐨𝐫

𝐞𝐧𝐝 𝐟𝐨𝐫

1. p =  Performanance
ITER∗F

2. return  p 

End

3d
Algorithms F-score CPUTimeTraining CPUTimeTesting Consistency

bayes.BayesNet 0.78* 0.027* 0.002 0.013

bayes.NaiveBayes* 0.825* 0.013* 0.008* 0.010

bayes.NaiveBayesUpdateable* 0.825* 0.011* 0.01* 0.011

functions.Logistic 0.836 0.229* 0.000 0.012

functions.RBFNetwork 0.733* 0.232* 0.004 0.043

functions.SMO 0.830 1.99* (ref) 0.000 0.041

misc.HyperPipes 0.66* (ref) 0.001 0.000 0.005

misc.VFI 0.716* 0.008* 0.004 0.012

rules.ConjunctiveRule 0.645* 0.043* 0.000 0.006

rules.DecisionTable 0.829 1.086* 0.000 0.043

rules.DTNB 0.832 88.16* 0.004 2.611

rules.JRip 0.825* 0.648* 0.000 0.067

rules.OneR 0.739* 0.014* 0.000 0.007

rules.PART 0.819* 1.161* 0.001 0.057

rules.Ridor 0.795* 0.453* 0.000 0.034

rules.ZeroR 0.645* 0.000 0.000 0.001

trees.BFTree 0.838 0.79* 0.000 0.024

trees.FT 0.827 1.38* 0.161* 0.044

trees.J48 0.828 0.221* 0.000 0.014

trees.J48graft 0.829 0.29* 0.000 0.014

trees.LADTree 0.833 1.676* 0.000 0.020

trees.RandomForest 0.837 2.304* 0.022* 0.022

trees.RandomTree 0.791* 0.028* 0.001 0.009

trees.REPTree 0.835 0.084* 0.000 0.012

trees.SimpleCart 0.836 0.713* 0.000 0.021

meta.AdaBoostM1 0.822* 1.074* 0.001 0.021

meta.Bagging (ref) 0.842 0.753* 0.000 0.013

meta.Dagging* 0.824* 0.013* 0.107* 0.010

meta.END 0.828 0.215* 0.003 0.013

… … … … …
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3(e-f)

Significance test
 Corrected paired t-test method [16] is used for 

checking statistical significance

 Reference classifier

 Highest score (for benefit criteria)

 Lowest score ( for cost criteria)

 Algorithms labeled as either best, poor or 
equal

Algorithm Statistical Significance Test

A is 
significantly 

unfit

A*

A*
A*

B*
B

B v

F-score
Train-time
Test-time

Algo. A Algo. B

Significance Test and Fitness Evaluation

Algorithm fitness evaluation function
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Procedure 5. performStatSigTest

Begin
inputs: P – performance matrix
output:  p – m*n performance matrix, where m is the number of evaluation
metrics and n is the number of algorithms;
Let d – given dataset

A =  a1, a2, . . , an – set of classification algorithms
 Q =  e1, e2, . . , em – set of evaluation metrics

1. 𝐟𝐨𝐫𝐞𝐚𝐜𝐡 𝐞 ∈  𝐐 in the performance matrix 𝐏 for a dataset 𝐝
a. 𝐢𝐟 𝐞 ∈ benefit metric

i. 𝐫𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞𝐀𝐥𝐠 =
selectReferenceAlg maxPerformValue 𝐞 ;

b. 𝐞𝐥𝐬𝐞
i. 𝐫𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞𝐀𝐥𝐠 =

selectReferenceAlg minPerformValue 𝐞 ;
c.  𝐩 = performCorrectedPairedtTest 𝐫𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞𝐀𝐥𝐠, 𝐏, 𝐞 ;

2. 𝐞𝐧𝐝 𝐟𝐨𝐫
3. Return   𝐏 =  𝐩 
End

S = ∀a∈A: a ∈  P|∀e: e ∈  Q.~nonSignificant e 

Significance fitness evaluation function
 Input: significance matrix

 Output: significantly fit algorithms
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4 Ranking
TOPSIS Method for Ranking [17]

[24] Ali R, et. al.. “An accurate multi-criteria decision making methodology for recommending optimum performance machine learning algorithm(s)”. Entropy. Reviews Completed, 2016 April 21.
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Procedure 6. rankAlgorithms 

Begin 

inputs: S – n*m matrix containing significant algorithms 

   W – 1*m (single row) weight vector 

output: RC – n*1 (single column) matrix of the relative closeness score 

Let d – given dataset 

A = {a1, a2, . . , an} – set of classification algorithms 

Q = {e1, e2, . . , em } – set of evaluation metrics 

1 [create the evaluation matrix from the significant matrix S] 

              S = (sij )m∗n
; //where, sij  represents the value of algorithm i for the evaluation metric j 

2 [normalize the evaluation matrix S] 

               Define local/implicit constraints on Q = {e1, e2, . . , em } ∈ S; 

3 [normalize the evaluation matrix S] 

              S = rij = sij  σ sij
2m

i=1 ; //where, i =1, 2, ..., n and  j = 1, 2, ..., m with n is the number of algorithm and m is the  

               number of evaluation metrics 

4 [compute weighted normalized decision matrix V with each value vij ] 

      V = (rij )m∗n
=  rij ∗  Wj; //where, Wj  is the weight vector  

5 [compute positive ideal (PIS) and negative ideal (NIS) solutions]  

a. 
},...,2,1|{)}|min(),|max{(

*
njjjPIS vCvCv jcijibiji


 

b. 

},...,2,1|{)}|max(),|min{( njv jCjvij
i

Cjvij
i

NIS
cb



    

6 [compute the separation measures using the m-dimensional Euclidean distance] 

a. 





m

j
mjv jvijPISi 1

,...,2,1,
2

)
*

(
*

        

b. 








 m

j
mjv jvijNISi 1

,...,2,1,
2

)(

 

7 [compute relative closeness RC of the algorithm to the ideal algorithm] 

mi

NISiPISi

NISi
RCi ,...,2,1,

*

*









          

8 Return RC; 

End 
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Results and Evaluation
SNO Classifier SNO Classifier

1 bayes.BayesNet 19 trees.J48

2 bayes.NaiveBayes 20 trees.J48graft

3
bayes.NaiveBayesUpd
ateable

21 trees.LADTree

4 functions.Logistic 22 trees.RandomForest

5 functions.RBFNetwork 23 trees.RandomTree

6 functions.SMO 24 trees.REPTree

7 misc.HyperPipes 25 trees.SimpleCart

8 misc.VFI 26 meta.AdaBoostM1

9 rules.ConjunctiveRule 27 meta.Bagging

10 rules.DecisionTable 28 meta.Dagging

11 rules.DTNB 29 meta.END

12 rules.JRip 30 meta.FilteredClassifier

13 rules.OneR 31 meta.LogitBoost

14 rules.PART 32
meta.RacedIncrementalLogi
tBoost

15 rules.Ridor 33 meta.RandomSubSpace

16 rules.ZeroR 34 meta.Stacking

17 trees.BFTree 35 meta.Vote

18 trees.FT

Datasets

Datasets

Characteristics of Datasets

Domain

A
tt

ri
b

u
te

s

N
o

m
in

al
A

tt
s

N
u

m
e

ri
cA

tt
s

B
in

ar
yA

tt
s

C
la

ss
e

s

In
st

an
ce

C
o

u
n

t

M
is

si
n

g

abalone-3class 9 1 7 0 3 4177 0 Biology

rabe-148 9 1 7 0 3 4177 0 Synthetic

acute-inflammations-nephr 6 0 5 0 2 66 0 Medical

ADA_Agnostic 7 5 1 5 2 120 0 Business

ADA_Prior 49 0 48 0 2 4562 0 Business 

adult-4000 15 8 6 1 2 4562 88 Social Studies

adult-8000 15 8 6 1 2 3983 0 Social Studies

aileron 15 8 6 1 2 8000 0 nil

analcatdata-AIDS 41 0 40 0 2 5795 0 AIDS

analcatdata-apnea2 5 2 2 0 2 50 0 book

analcatdata-apnea2 4 2 1 0 2 475 0 book

analcatdata-asbestos 4 2 1 0 2 475 0 book

analcatdata-authorship 4 2 1 1 2 83 0 Research

analcatdata-bankruptcy 71 0 70 0 4 841 0 Finance

analcatdata-birthday 7 1 5 0 2 50 0 Social Studies

Algorithms

Experimental setup

 Dataset 
 Fifteen (15) OpenML [18] UCI 

Library [19]

 Tools and Library
 Weka [20], DAME AHP [21], 

SANNA 2014 

 Environment 
 Win. PC CPU(3.3 GHz) and 

RAM 8GB.

 Algorithms
 Thirty five (35) Weka

classifiers

[24] Ali R, et. al.. “An accurate multi-criteria decision making methodology for recommending optimum performance machine learning algorithm(s)”. Entropy. Reviews Completed, 2016 April 21.
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Experiments and Results
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Evaluation methodology, criteria and Experiments

 Experiment 1

 Correctness average 
Spearman’s 
correlation 
coefficient with 
Ideal Ranking

 Experiment 2

 Sensitivity and 
Consistency 
analysis

 Experiment 3

 Significance fitness 
evaluation

Recommended 
Ranking Ideal Ranking

All Datasets

List of Algorithms List of Algorithms

Test Dataset: 
one at a time

Ranking Relative 
Closeness Score

Normalization and 
Ranking

Performance 
Matrix

Ranked Algorithms Ranked 
Algorithms

Test Dataset: 
one at a time

Step 2Step 1

Performance using 
10x10-fold CV

AMD

Relative 
Closeness Score

Step 3: Measuring Agreement Score

Recommended 
Ranking

Ideal 
Ranking

Rs: Spearman’s Rank Correlation Coefficient

Average Spearman’s Rank Correlation Coefficient for All Datasets

Evaluation Criteria 
(Spearman’s Rank Correlation Coefficient)

Rs = 1 −
6 ir − rr 2

n ∗  n2 − 1

Where, ir and rr are the ideal

and recommended ranking

value values while n is the

number of algorithms used in

the comparison

(Neave & Worthington, 1992)[24]

Experiments Evaluation Methodology

[24] Ali R, et. al.. “An accurate multi-criteria decision making methodology for recommending optimum performance machine learning algorithm(s)”. Entropy. Reviews Completed, 2016 April 21.
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Experiment 1 (correctness)

Dataset 
ID

Dataset Name
Rs (Spearman's 
Rank Corelation
Coeffecient

1 abalone-3class 0.988

2 rabe-148 0.985

3
acute-
inflammations-
nephr

0.994

4 ADA_Agnostic 0.990

5 ADA_Prior 0.991

6 adult-4000 0.983

7 adult-8000 0.975

8 aileron 0.979

9 analcatdata-AIDS 0.983

10
analcatdata-
apnea2

0.932

11
analcatdata-
apnea2

0.963

12
analcatdata-
asbestos

0.973

13
analcatdata-
authorship

0.999

14
analcatdata-
bankruptcy

0.983

15
analcatdata-
birthday

0.969

Average Spearman's Rank 
Correlation Coefficient

0.979

Algorithm rr ir (ir-rr) (ir-rr)^2
bayes.BayesNet 16 17 1 1
bayes.NaiveBayes 19 20 1 1
bayes.NaiveBayesUpdateable 20 21 1 1
functions.Logistic 1 1 0 0
functions.RBFNetwork 25 24 -1 1
functions.SMO 13 13 0 0
misc.HyperPipes 34 34 0 0
misc.VFI 31 28 -3 9
rules.ConjunctiveRule 33 31 -2 4
rules.DecisionTable 11 11 0 0
rules.DTNB 32 33 1 1
rules.JRip 26 26 0 0
rules.OneR 9 8 -1 1
rules.PART 30 30 0 0
rules.Ridor 29 29 0 0
rules.ZeroR 35 35 0 0
trees.BFTree 24 22 -2 4
trees.BFTree 27 32 5 25
trees.J48 8 7 -1 1
trees.J48graft 12 12 0 0
trees.LADTree 15 15 0 0
trees.RandomForest 23 27 4 16
trees.RandomTree 18 16 -2 4
trees.REPTree 5 5 0 0
trees.SimpleCart 21 19 -2 4
meta.AdaBoostM1 17 18 1 1
meta.Bagging 4 4 0 0
meta.Dagging 22 23 1 1
meta.END 14 14 0 0
meta.FilteredClassifier 3 3 0 0
meta.LogitBoost 28 25 -3 9
meta.RacedIncrementalLogitBoost 10 10 0 0
meta.RandomSubSpace 6 6 0 0
meta.Stacking 7 9 2 4
meta.Vote 2 2 0 0

sum 88

Rs (k=35) 0.987
Weights: F-score (0.70), TrainTime (0.05), 
TestTime (0.10), Consistency (0.15) Rs = 1 −

6 ir − rr 2

n ∗  n2 − 1
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Experiment 2

 Sensitivity and Consistency 

Analysis

 To determine consistency 

with varying parameters’

 Changed weight one at a 

time, i.e., interchange highest 

weight 0.70 with each criteria

Sensitivity Analysis

Dataset ID Dataset\Weights, k=35
Rs.

Wgt.Avg F-score 
(0.70,0.05,0.10,0.15)

Rs.
CPUTimeTraining

(0.05,0.70,0.10,0.15)

Rs.
CPUTimeTesting

(0.05,0.10,0.70, 0.15)

Rs.
Consistency 

(0.05,0.10,0.15,0.70)

1 abalone-3class 0.454 0.913 0.523 0.999

2 rabe-148 0.904 0.758 0.500 0.992

3 acute-inflammations-nephr 0.858 0.798 0.501 0.979

4 ADA_Agnostic 0.880 0.368 0.819 0.433

5 ADA_Prior 0.295 0.943 0.565 0.985

6 adult-4000 0.276 0.890 0.599 0.979

7 adult-8000 0.488 0.792 0.670 0.943

8 aileron 0.946 0.223 0.806 0.563

9 analcatdata-AIDS 0.654 0.766 0.500 0.995

10 analcatdata-apnea2 0.107 0.844 0.652 0.986

11 analcatdata-apnea2 0.158 0.936 0.618 0.972

12 analcatdata-asbestos 0.508 0.838 0.500 0.999

13 analcatdata-authorship 0.880 -0.265 0.738 -0.074

14 analcatdata-bankruptcy 0.945 0.863 0.543 0.998

15 analcatdata-birthday -0.506 0.777 0.618 0.990

Average Spearman’s Rank
Correlation (Rs)

0.523 0.696 0.610 0.849

Results Interpretation
 The highlighted values shows negative/very weak correlation and are not significant

 On average, the correlation is positive showing consistent results with significance of α=0.005-0.002

[24] Ali R, et. al.. “An accurate multi-criteria decision making methodology for recommending optimum performance machine learning algorithm(s)”. Entropy. Reviews Completed, 2016 April 21.
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Experiment 3 
Significance fitness evaluation 
function

Purpose of the experiment
 To find out algorithms that are 

non-significant on all criteria

Interpretation
 Three probabilistic, two decision 

tree and two meta-leaning 
algorithms performed poorly on 
all three criteria

 If they are not get excluded prior 
to ranking, the results are affected

Algorithm Dataset 4 Dataset 5 Dataset 6 Dataset 7 Dataset 8 Dataset 13

bayes.BayesNet 26 4 2 7 27 4

bayes.NaiveBayes 19 11 12 21 30 7

bayes.NaiveBayesUpdateable 20 10 15 20 31 8

trees.FT 30 32 32 32 25 2

trees.RandomForest 17 25 23 24 17 6

meta.Dagging 27 18 21 26 32 30

• bays.BayesNet is ranked 4th and bayes.NaiveBayes as 7th.
• Same is for other
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Dataset/

Method

AMD PAlg ARR

Rs with α=0.1 

(Wgt.F-Score=0.55, 

Rtime=0.45)

Rs with α=0.1 (Wgt.F-

Score=0.55, Rtime=0.45)

Rs with α=0.1 (Wgt.F-

Score=0.55, Rtime=0.45)

Dataset k=35 k=5 k=3 k=35 k=5 k=3 k=35 k=5 k=3

d1 0.9720 0.9978 1.0000 0.8473 0.9926 0.9944 0.6012 0.9769 0.9842

d2 1.0000 1.0000 1.0000 0.9900 1.0000 1.0000 0.5200 0.9450 0.9520

d3 1.0000 1.0000 1.0000 0.9641 1.0000 1.0000 0.5199 0.9940 0.9908

d4 0.9852 0.9974 0.9989 0.3187 0.9171 0.9521 0.2696 0.8752 0.8865

d5 0.9899 0.9992 0.9993 0.8081 0.9699 0.9863 0.4966 0.8975 0.9515

d6 0.9922 1.0000 1.0000 0.8314 0.9715 0.9851 0.3482 0.8641 0.9342

d7 0.9824 0.9997 1.0000 0.7028 0.9556 0.9697 0.2529 0.8871 0.9158

d8 0.9882 0.9986 0.9997 0.7541 0.9724 0.9869 0.5646 0.9956 0.9987

d9 0.9801 0.9985 0.9987 0.9908 1.0000 1.0000 0.5039 0.8929 0.9399

d10 0.9916 1.0000 1.0000 0.9748 0.9987 1.0000 0.5162 0.9799 0.9910

d11 0.9955 1.0000 1.0000 0.9501 1.0000 1.0000 0.5292 0.9636 0.9854

d12 0.9711 1.0000 1.0000 0.9706 1.0000 1.0000 0.4764 0.9359 0.9410

d13 0.9980 0.9992 0.9993 0.5070 0.9164 0.9637 0.2524 0.7271 0.7921

d14 0.9975 1.0000 1.0000 0.9756 0.9997 1.0000 0.4574 0.8694 0.9185

d15 0.9854 1.0000 1.0000 0.9728 0.9977 1.0000 0.5298 0.9107 0.9567

Averag

e 0.9886 0.9993 0.9997 0.8372 0.9794 0.9892 0.4559 0.9143 0.9426
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Ranking Learning Algorithms on 
Accuracy and Time [6]

Recommendation of 
classification algorithms eristics
[7]

Where, ∝ = 0.1, 1, 10 for 10% 
preference of accuracy, equal 
preferences for both and 10% 
preference of time 

Proposed AMD [24]

𝐀𝐑𝐑 =

𝐒𝐑𝐚𝐩
𝐝𝐢

𝐒𝐑𝐚𝐪
𝐝𝐢

𝟏 +∝ ∗ 𝐥𝐨𝐠
𝐓𝐚𝐩

𝐝𝐢

𝐓𝐚𝐪
𝐝𝐢

𝐏𝐀𝐥𝐠,𝐃 =
𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲𝐀𝐥𝐠,𝐃

𝟏 +∝ ∗ 𝐥𝐨𝐠 𝐑𝐓𝐢𝐦𝐞𝐀𝐥𝐠,𝐃

Comparison

m1,2,...,i

,

NISiPIS
*
i

NISi
RC

*

i










,

)(

where

AMD
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Accurate classification and recommendation models development for real-world applications 

 Semantics-preserved accurate Rough set classification model (avg. accuracy 95.91%,) and a precise hybrid-CBR 

model (accuracy 94.0%)  are developed that utilize semantics-enabled discretization and accurate case matching 

and retrieval similarity functions

 Guidelines-enabled rule-based methods for correct data and datasets/case base creation

Accurately evaluating classifiers performance for optimum performance classifier selection

 A standard expert group-based method for selecting quality metrics and evaluation criteria

 A group-based decision making method for relative criteria weighting

 Significance and fitness functions with constraints satisfaction methods for accurate ranking and selection of 

consistent performance algorithm (Spearman’s ranked correlation coefficient (Rs) 0.979)

Introduction
Proposed methodologies
Thesis contributions

Conclusion and future directions
Achievements
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Future Research

 Automatic algorithm selection 
using meta-learning

 Finding optimum and most 
important meta-features for 
automatic algorithm selection

 Extending the current multi-
criteria decision making method 
to other criteria and families of 
algorithms

Accurate rough set and CBR models creation and dataset/case base preparation 

 A semantic-enabled discretization for accuracy preference

 Accurate case retrieval & reasoning using similarity functions

 Guidelines-enable dataset/case base creation for rough set and

CBR models

This thesis proposed

Accurate  recommendation/selection of classification algorithm using multiple 
criteria

 A standard experts’ group-based criteria selection

 A consistent group-based relative criteria weighting

 Recommendation of consistent performance algorithm using

consistency criteria and implicit and explicit constraints

Introduction
Proposed methodologies
Thesis contributions

Conclusion and future 
directions
Achievements
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Correct criteria 
selection

Time and 
efforts saving

Optimal and 
consistent 
algorithm 
selection

Machine 
Learning 

User

Machine 
Learning 
Expert

Pharmacies

Can easily rank algorithm 
using the proposed 

methodology for his dataset

Enhance research capabilities

Can efficiently analyze the behavior of 
various classifiers

Reduce efforts and time

Introduction
Proposed methodologies
Thesis contributions

Conclusion and future 
directions
Achievements
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Any questions or comments?

THANK YOU!



Appendix

Solution 1(A-1)
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2 Data Mining (rules extraction) using Rough Set Theory 

2.1 Preprocessing Clinical Data

2.2 Data Reduction

2.3 Rules Mining & Validation

• Features filtration: irrelevant features
• Filling missing values: dataset level (missing >=20%), and patient encounter level (missing <=2 encounters; <20% 

encounters; >=20% of the encounters) 

• Discretization: 
• Limitation: Existing methods [12] (statistical, entropy, genetic, fuzzy theory and Boolean) lakes semantics 

splitting 
• Solution: semantic –enabled discretization

• Features Selection: Reduct and Core methods for final attributes.

Example: SBP Values
Existing (Boolean Method) -- > 
• (SBP < 110), (SBP 110-116), 

(SBP ≥117)
Proposed Method -- > 
• (-∞, 120),[120, 139],[140, 

159],[160, 180],[181, ∞)

Core(DIS)=Intersection (RED(DIS))=
{BMI, Age, SBP, FBS, Hba1c, HDL, LDL, PT}

Eight (08) Selected Features

• Rules Mining: basic minimal covering criteria of LEM2 algorithm is used

Solution 1(A-1): Rough Set-based Prediction Model for 

Classification

[12] Ali R, Siddiqi MH, Lee S. Rough set-based approaches for discretization: A compact review. Artificial Intelligence Review. 2015 Aug 1;44(2):235-63.



• Supporting prediction decisions with insights of 
the past observations of patients

• Future trend predicted using correlation-based 
polynomial trend line of order 3 is computed 
using the equation.

• Residue R2 is computed for accuracy of the 
future prediction 
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3 Classification/Prediction for Decision

3.1 Rough Set-based Classification

• Rough Set-based Classification Algorithm 
for accurately predicting new cases

3.1 Reference Range-based Classification

• Use Reference range rules, extracted from 
guidelines, to find risky prediction

Algorithm. Rough Set-based Classification & Trend Analysis 

Input: KB: Knowledge Base, I: New Instance 

Output: classType, INTERPRETATION 

Begin 

𝐀𝐩𝐩𝐥𝐲𝐑𝐁𝐑 (𝐈), where {I|I is New Instance, I: =  Iid, Cond}   
𝐀. 𝐏𝐞𝐫𝐟𝐨𝐫𝐦𝐑𝐒𝐑(𝐈) // Rough Set Reasoning 

 Load Classification Rules From Knowledge Base  
1. DMPR: =  LoadRulesFromKB RULES that contain classType as CONC ; where CONC: =

{ classType 1, . . , classType n  Execute Rules For Classification of CONC  
2. 𝐅𝐨𝐫𝐞𝐚𝐜𝐡 RULE in DMPR 

a. 𝐅𝐨𝐫𝐞𝐚𝐜𝐡 CA in RULE //CA: =  Cond  are conditions of the rule  

b. 𝐈𝐟 CA. values ≠  E. Cond. value  
THEN Try next RULE 

𝐄𝐧𝐝𝐈𝐟 

c. classType ≔ CONC of the RULE; 
d. 𝐆𝐨𝐭𝐨 Step 𝐁 
e. 𝐄𝐧𝐝𝐅𝐨𝐫 
𝐄𝐧𝐝𝐅𝐨𝐫  

3. classsType = Message UNDEFINED ; 
 

𝐁. 𝐏𝐞𝐫𝐟𝐨𝐫𝐦𝟑𝐑 (𝐈) // Reference Range-based Reasoning 

 Load Reference Range Rules From Knowledge Base  
4. ATAR: =  LoadRulesFromKB(RULES that contain INTERPRETATION as CONC); where CONC: =

{ Table 2. INTERPRETATION. Value} 
 Execute Rules For Finding Current Status of Each Observations  

5. 𝐅𝐨𝐫𝐞𝐚𝐜𝐡 RULE in ATAR 

a. 𝐅𝐨𝐫𝐞𝐚𝐜𝐡 CA in RULE  
b. 𝐈𝐟 CA. values ≠  I. OBS. value 

THEN Try next RULE 

𝐄𝐧𝐝𝐈𝐟 

c. INTERPRETATION [] ≔ CONC of the RULE; 
𝐄𝐧𝐝𝐅𝐨𝐫  

𝐄𝐧𝐝𝐅𝐨𝐫  

𝐂. 𝐄𝐱𝐩𝐞𝐫𝐭 ∶= 𝐏𝐫𝐨𝐯𝐢𝐝𝐞𝐑𝐞𝐬𝐮𝐥𝐭𝐬 (𝐈𝐢𝐝, 𝐜𝐥𝐚𝐬𝐬𝐓𝐲𝐩𝐞, 𝐈𝐍𝐓𝐄𝐑𝐏𝐑𝐄𝐓𝐀𝐓𝐈𝐎𝐍) 

End 

 1 

4 Correlation-based Trend Analysis for Prognosis 

y = -∝ x3 + β x2 - 𝛾 x + c
R² = residue

Solution 1(A-1): Rough Set-based Classification Model
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Solution 1(A-2)
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3
Accurate case retrieval & reasoning methodology using 
similarity functions

3.1 Local Similarity Function Definition

3.2 Global Similarity Function Definition

𝐌𝐄𝐓𝐒𝐢𝐦𝐥 𝐧𝐂, 𝐞𝐂 =
𝐝𝐠 𝐌𝐚𝐱𝐌𝐄𝐓, 𝐌𝐢𝐧𝐌𝐄𝐓 − 𝐝𝐥 𝐧𝐂𝐌𝐄𝐓, 𝐞𝐂𝐌𝐄𝐓 − 𝟏

𝐝𝐠 𝐌𝐚𝐱𝐌𝐄𝐓, 𝐌𝐢𝐧𝐌𝐄𝐓

𝐀𝐆𝐒𝐢𝐦𝐥 𝐧𝐂, 𝐞𝐂 =
𝐀𝐆𝐢𝐣 = 𝟏 𝐟𝐨𝐫 ∀ 𝐢 ≥ 𝐣 𝐎𝐑 𝐢 = 𝟎 𝐎𝐑 𝐣 = 𝟏 

𝟎 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

𝐒𝐢𝐦𝐠 𝐧𝐂, 𝐞𝐂 = 𝛃 𝐀𝐆𝐒𝐢𝐦𝐥 𝐧𝐂, 𝐞𝐂 + 𝛄 𝐌𝐄𝐓𝐒𝐢𝐦𝐥 𝐧𝐂, 𝐞𝐂

where β = 0.1 and γ = 0.9 are the weight values of age and MET attributes,

1-2 Rule-based Case Preparation

• Acquire/receive data
• Acquire/extract domain knowledge
• Transform data to case using RBR methodology
• Define case structure, conditions, data types and 

conclusion
• Persist case into case base

Case Preparation Data Acquisition

Rule-based Case 
PreparationDomain 

Knowledge

Knowledge Source

Data 
Source

Condition Data type Possible value Description 

C1 Symbol {v1,v2,..} …

… … … …

Cn Float Min, Max …

Conclusion String {r1,r2} …

Solution 1(A-2): CBR Recommendation Model

[continuous value] Closest match similarity function

[nominal value] Exact match similarity function

4 Select Top-k  relevant recommendations

R:= ApplyKNN 𝐒𝐢𝐦𝐠  ; //where k = 3
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3 Design and Implementation of Case-based Reasoning

3.1 Local Similarity Function Definition

3.2 Global Similarity Function Definition

3.3 Retrieve and Retain Existing/New Cases 

𝐌𝐄𝐓𝐒𝐢𝐦𝐥 𝐧𝐂, 𝐞𝐂 =
𝐝𝐠 𝐌𝐚𝐱𝐌𝐄𝐓, 𝐌𝐢𝐧𝐌𝐄𝐓 − 𝐝𝐥 𝐧𝐂𝐌𝐄𝐓, 𝐞𝐂𝐌𝐄𝐓 − 𝟏

𝐝𝐠 𝐌𝐚𝐱𝐌𝐄𝐓, 𝐌𝐢𝐧𝐌𝐄𝐓

(11)

𝐀𝐆𝐒𝐢𝐦𝐥 𝐧𝐂, 𝐞𝐂 =
𝐀𝐆𝐢𝐣 = 𝟏 𝐟𝐨𝐫 ∀ 𝐢 ≥ 𝐣 𝐎𝐑 𝐢 = 𝟎 𝐎𝐑 𝐣 = 𝟏 

𝟎 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞
(12)

Age Group All Age Young Older Adults Adults

All Age 1 1 1 1

Young 1 1 0 0

Older Adults 1 1 1 0

Adults 1 1 1 1

𝐒𝐢𝐦𝐠 𝐧𝐂, 𝐞𝐂 = 𝛃 𝐀𝐆𝐒𝐢𝐦𝐥 𝐧𝐂, 𝐞𝐂 + 𝛄 𝐌𝐄𝐓𝐒𝐢𝐦𝐥 𝐧𝐂, 𝐞𝐂 (13)

where β = 0.1 and γ = 0.9 are the weight values of age and MET attributes,

Algorithm 4. Case-based reasoning methodology for generating accurate

recommendations decisions

Input: UID:uid, METCBurl, nC:= new Case

Output: List PAR <Recommendations>

Begin

Let PAR:= A set of top 3 relevant existing cases as the proposed recommendations

Simg  := Array of global similarities of existing cases

METCBr: = ReteriveCaseBaseFromKB METCBurl , Where METCBr is the matrix

eCmxAn, eCm is the set of existing cases, i.e., eC = eC1, eC2, eC3, … , eCm. Similarly,

An is the set of attributes, i.e., An = A1, A2, A3, … , An

1. 𝐅𝐨𝐫 i = 1 to SizeOfCases METCBr 

Let Siml  :=Array of local similarities of attributes of individual cases

a. 𝐅𝐨𝐫 j = 1 to SizeOfAttributes METCBr 

b. Siml Aj : = ComputeLocSim nC. Aj, METCBr i, j  ; // use eq. 11 and eq. 12

c. End for

d. 𝐒𝐢𝐦𝐠 eCi : = ComputeGlobSim  𝐒𝐢𝐦𝐥 ; // weighted sum method (eq.13)

2 End for

3. PAR:= ApplyKNN 𝐒𝐢𝐦𝐠  ; //where k = 3

4. PropgateCBRResults  uid, PAR ;

5. FCB ≔ RetainCBRPAR uid, PAR);

6. Exit;

End

Solution 1(A-2): CBR Recommendation/ Classification Model

Ranking 
Recommendations



Solution 1(A-2): Evaluation and Comparison

Comparison
 64 input cases randomly generated from original cases

Experiments and Analysis of Results
Experiment 1 (Baseline Experiment): 

RBR with distinct MET 

Experiment 2 (Modified-RBR Experiment): 
RBR with ranged-MET

Experiment 3 (CBR Experiment): 
CBR with Test Case Base

58

UID Age METs Recommendations

1 Young 6.5
i. Climbing hills with 0 to 9 lb load.

ii. Race walking; rock or mountain climbing

2 Adult 7.6 X

3 Older Adult 7.8
i. backpacking; hiking or organized walking with a 

daypack

4 Adult 8.1 X

… … … …

n Older Adult 7.6 X

Recommendation # METs Suggested physical activity recommendations

1 1.3 riding in a car or truck

2 1.3 riding in a bus or train

3 1.5 sitting; meeting; general; and/or with talking involved

… … …

17 2.8 walking; 2.0 mph; level; slow pace; firm surface

UID
METs 

value)

Retrieved cases

(METs value)
Recommendations decision

1 6.5

6.5 climbing hills with 0 to 9 lb load.

6.5 race walking; rock or mountain climbing 

6.3 climbing hills; no load

2 7.6

7.3 climbing hills with 10 to 20 lb load

7.5 bicycling; general

7.8 backpacking; hiking or organized walking with a 

daypack

3 7.8

7.8 backpacking; hiking or organized walking with a 

daypack

8 running; training; pushing a wheelchair or baby carrier

8 running; marathon

4 8.1
8 running; training; pushing a wheelchair or baby carrier

8 running; marathon
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S.No Type of activity Distribution

1 Running 25

2 Walking 56

3 Cycling 18

4 Standing 5

5 Sitting 4

6 Transportation 4

7 Volunteer 7

Total instances 119

Characteristics of Case Base 

Solution 1(A-2): CBR Recommendation Model
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Solution 2 (B)
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Guidelines for criteria selection and algorithms 
performance analysis
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1. Define an unambiguous goal for which the algorithm(s) need to be selected

2. Analyze and specify goal as either single-objective or multi-objectives and specify the corresponding quality meta-metrics (QMM)

a. Categorize objective(s) as cost and benefit criteria

b. Define essential constraints on the objective(s), reflecting goal’s constraints

3. Analyze the specified objective(s) and constraints against existing criteria

a. If existing criteria work, then go to step 4.

b. If existing criteria do not fit well, then go to step 5.

4. Evaluate the algorithms performances using the available criterion under the constraints, defined in step 2(b), and rank them for the best selection

5. Define a generic multi-metrics evaluation criteria using the following steps

a. Analyze QMM for conflict among evaluation criteria (interdependence/fuzziness)

b. Select suitable QMM, defining the objectives.

c. Select suitable evaluation metrics for the selected QMM (objectives)

d. Prioritize the selected evaluation metrics

e. Rank algorithms based on the aggregate value of the weighted metrics

f. Repeat step 5, if any of the constraints, defined in step 2(b), is not satisfied



Selecting Quality Meta-metrics
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Consistency measure
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Algorithms
Wgt.Avg.F-score 

(Stdev)

CPUTimeTraining 

(Stdev)

CPUTimeTesting 

(Stdev)

Average (Stdev) -

Consistency

bayes.BayesNet 0.018 0.015 0.005 0.013

bayes.NaiveBayes 0.017 0.006 0.008 0.010

bayes.NaiveBayesUpdateable 0.017 0.007 0.008 0.011

functions.Logistic 0.015 0.019 0.002 0.012

… … … … …

meta.Vote 0.017 0.010 0.000 0.009

Table 6.9. A partial list of the average standard deviation of classifiers

Consistencya∈A =
σi=1

m Stdevi

m



Saaty’s preference scale
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Definition
Intensity of 

importance
Definition Intensity of importance

Equally important 1 Equally important 1/1

Equally or slightly more important 2 Equally or slightly less important 1/2

Slightly more important 3 Slightly less important 1/3

Slightly to much more important 4 Slightly to way less important 1/4

Much more important 5 Way less important 1/5

Much to far more important 6 Way to far less important 1/6

Far more important 7 Far less important 1/7

Far more important to extremely 

more important

8 Far less important to extremely less 

important

1/8

Extremely more important 9 Extremely less important 1/9

Table 6.2. Saaty’s preference scale for pair-wise comparison of the performance metrics



Relative consistent weight algorithm
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Procedure 3. estimatRelativeWeight
Begin
inputs:  Q =  e1, e2, … , em // the list of m selected evaluation metric (e)
output: W – weight vector of the set of evaluation metrics  Q
Let DM =  dm1, dm2, … , dmn // Group of Experts

SPS = Saaty’s preference scale (see Table 6.2)
GDMM = m*n grouped decision making matrix of the weight of evaluation metrics by
assigned by decision makers

1. [Design comparison matrix for decision makers]
DMM = dmij; //where, DMM is an n*n comparison matrix of the decision makers with dmij is the preference
value of the ithdecision maker relative to the jthdecision maker

1. [Estimate decision makers decisions weight]
a. DMWeight = estimateDMWgt SPS, DMM ; //where DMDWeight is a column weights vector of the decision makers’

weights. // See equations 2,3
b. Check consistency of DMWeight; // See equations 4-7

2. [Estimate evaluation metrics weights]
𝐅𝐨𝐫 dm = 1 to n 𝐝𝐨
a. EM = eij; //where, EM is an m*m comparison matrix of the evaluation metrics entered by the decision maker. Each value eij

is the preference value of the ithevaluation metric relative to the jthevaluation metric
b. EMWeight = estimateEvalMetricsWgt SPS, EM ; //where, EMWeight is a column weights vector for evaluation metrics  Q

estimated by decision maker dm. // See equations 2,3
c. Check consistency of EMWeight; // See equations 4-7
d. Insert < EMWeight > into GDMM;
End for

1. [Grouped decision making]
groupedWeight = σe=1

m ςdm=1
n DMWeight ∗ EMWeight ; //where, groupedWeight is a column weights

vector for the weights of all the evaluation metrics  Q estimated by estimated by DM
1. W = groupedWeightDM;
2. return W;
End



Solution 2: Experiments and Results

Experiment 3 (Significance 

fitness evaluation function)

Purpose of the experiment
 To find out algorithms that are 

non-significant on all criteria

Interpretation
 Three probabilistic, two decision 

tree and two meta-leaning 
algorithms performed poorly on 
all three criteria

 If they are not get excluded prior 
to ranking, the results are affected
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Algorithm Dataset 4 Dataset 5 Dataset 6 Dataset 7 Dataset 8 Dataset 13

bayes.BayesNet 26 4 2 7 27 4

bayes.NaiveBayes 19 11 12 21 30 7

bayes.NaiveBayesUpdateable 20 10 15 20 31 8

trees.FT 30 32 32 32 25 2

trees.RandomForest 17 25 23 24 17 6

meta.Dagging 27 18 21 26 32 30

• bays.BayesNet is ranked 4th and bayes.NaiveBayes as 7th.
• Same is for other



Solution 2: Ranking & Constraints
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Constraints

Max Min Min Min

Algorithms F-score TimeTraining TimeTesting Consistency PIS+ NIS- RC Ranking

bayes.BayesNet 0.78* 0.027* 0.002 0.013 0.00906 0.03830 0.80874 26

bayes.NaiveBayes* 0.825* 0.013* 0.008* 0.010 0.00264 0.04180 0.94068 19

bayes.NaiveBayesUpdateable* 0.825* 0.011* 0.01* 0.011 0.00272 0.04171 0.93882 20

functions.Logistic 0.836 0.229* 0.000 0.012 0.00088 0.04317 0.97995 4

functions.RBFNetwork 0.733* 0.232* 0.004 0.043 0.01593 0.03492 0.68672 29

functions.SMO 0.830 1.99* (ref) 0.000 0.041 0.00181 0.04239 0.95905 12

misc.HyperPipes 0.66* (ref) 0.001 0.000 0.005 0.02658 0.03309 0.55457 32

misc.VFI 0.716* 0.008* 0.004 0.012 0.01841 0.03433 0.65097 31

rules.ConjunctiveRule 0.645* 0.043* 0.000 0.006 0.02877 0.03301 0.53432 35

rules.DecisionTable 0.829 1.086* 0.000 0.043 0.00195 0.04231 0.95597 14

rules.DTNB 0.832 88.16* 0.004 2.611 0.02792 0.03234 0.53668 33

rules.JRip 0.825* 0.648* 0.000 0.067 0.00257 0.04180 0.94203 18

rules.OneR 0.739* 0.014* 0.000 0.007 0.01504 0.03574 0.70380 28

rules.PART 0.819* 1.161* 0.001 0.057 0.00341 0.04126 0.92367 23

rules.Ridor 0.795* 0.453* 0.000 0.034 0.00687 0.03942 0.85156 24

rules.ZeroR 0.645* 0.000 0.000 0.001 0.02877 0.03305 0.53463 34

trees.BFTree 0.838 0.79* 0.000 0.024 0.00063 0.04328 0.98557 2

trees.FT 0.827 1.38* 0.161* 0.044 0.01790 0.03819 0.68088 30

trees.J48 0.828 0.221* 0.000 0.014 0.00205 0.04241 0.95392 15

trees.J48graft 0.829 0.29* 0.000 0.014 0.00190 0.04251 0.95715 13

trees.LADTree 0.833 1.676* 0.000 0.020 0.00134 0.04281 0.96967 10

trees.RandomForest 0.837 2.304* 0.022* 0.022 0.00255 0.04223 0.94299 17

trees.RandomTree 0.791* 0.028* 0.001 0.009 0.00745 0.03923 0.84041 25

trees.REPTree 0.835 0.084* 0.000 0.012 0.00103 0.04308 0.97669 7

trees.SimpleCart 0.836 0.713* 0.000 0.021 0.00090 0.04311 0.97950 5

meta.AdaBoostM1 0.822* 1.074* 0.001 0.021 0.00293 0.04176 0.93440 21

meta.Bagging (ref) 0.842 0.753* 0.000 0.013 0.00014 0.04373 0.99681 1

meta.Dagging* 0.824* 0.013* 0.107* 0.010 0.01209 0.03861 0.76154 27

meta.END 0.828 0.215* 0.003 0.013 0.00207 0.04228 0.95323 16

meta.FilteredClassifier 0.832 0.065* 0.000 0.009 0.00146 0.04282 0.96697 11

meta.LogitBoost 0.835 1.948* 0.002 0.058 0.00121 0.04267 0.97245 9

meta.RacedIncr.LogitBoost 0.82* 0.062* 0.001 0.012 0.00322 0.04166 0.92833 22

meta.RandomSubSpace 0.837 0.412* 0.001 0.012 0.00075 0.04322 0.98299 3

meta.Stacking 0.834 0.724* 0.001 0.014 0.00118 0.04292 0.97318 8

meta.Vote 0.835 0.076* 0.000 0.009 0.00103 0.04310 0.97676 6

Relative Weights 0.69520 0.05067 0.10097 0.15315

Positive Ideal Solution (PIS) 0.12296 0.00874 0.01776 0.02647

Negative Ideal Solution (NIS) 0.09419 0.00000 0.00000 0.00000

Table 11. Performance results of classification algorithms on ADA_Agnostic dataset and their ranking with respect to relative

distance from the ideal algorithm

Constraints

RankedList

= RANK. AVG RC∗
1, RC∗

1: RC∗
𝑛 , 1 



Solution 2: Comparison with State-of-the-Art Methods

Ranking Learning Algorithms: Using IBL and Meta-
Learning on Accuracy and Time Results [6]

Automatic recommendation of classification 
algorithms based on data set characteristics [7]

Where, ∝ = 0.1, 1, 10 for 10% for specifying 10% 
preference of the accuracy, equal preferences for 
both accuracy and 10% preference of the total time 
(execution/training)
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[1] Brazdil PB, Soares C, Da Costa JP. Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results. Machine Learning. 2003 Mar 1;50(3):251-77. (Cited by 284)
[2] Song Q, Wang G, Wang C. Automatic recommendation of classification algorithms based on data set characteristics. Pattern recognition. 2012 Jul 31;45(7):2672-89. (Cited by 25)

ARR =

SRap
di

SRaq
di

1 +∝ ∗ log
Tap

di

Taq
di

PAlg,D =
AccuracyAlg,D

1 +∝ ∗ log RTimeAlg,D

Proposed Method Setting

 We averaged CPUTimeTraining and CPUTimeTesting
to get uniform value for Total/Rtime

 We dropped the fourth consistency criterion from 
out method

 For simplicity, we performed experiments only for ∝
= 0.1 with three different sitting (k=35 algorithms, 
k=5 and k=3)

 The weight for Accuracy and Total/Rtime were 
taken as  0.55 and 0.45

RC  Relative Closness =
NISi

−

NISi
− + PISi

+

https://scholar.google.co.kr/scholar?cites=10300617919168989991&as_sdt=2005&sciodt=0,5&hl=en
https://scholar.google.co.kr/scholar?cites=10300617919168989991&as_sdt=2005&sciodt=0,5&hl=en


Freidman Test (Statistical Significance)
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(a) Friedman’s test steps for comparing ranking methods with k=35

Dataset d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15
Method\Rs Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR RRj (RRj-mR)^2

AMD 0.9720 1.0 1.0000 1.0 1.0000 1.0 0.9852 1.0 0.9899 1.0 0.9922 1.0 0.9824 1.0 0.9882 1.0 0.9801 2.0 0.9916 1.0 0.9955 1.0 0.9711 1.0 0.9980 1.0 0.9975 1.0 0.9854 1.0 1.1 0.871111111

PAlg 0.8473 2.0 0.9900 2.0 0.9641 2.0 0.3187 2.0 0.8081 2.0 0.8314 2.0 0.7028 2.0 0.7541 2.0 0.9908 1.0 0.9748 2.0 0.9501 2.0 0.9706 2.0 0.5070 2.0 0.9756 2.0 0.9728 2.0 1.9 0.004444444

ARR 0.6012 3.0 0.5200 3.0 0.5199 3.0 0.2696 3.0 0.4966 3.0 0.3482 3.0 0.2529 3.0 0.5646 3.0 0.5039 3.0 0.5162 3.0 0.5292 3.0 0.4764 3.0 0.2524 3.0 0.4574 3.0 0.5298 3.0 3.0 1

S 1.875555556

(b) Friedman’s test steps for comparing ranking methods with k=5

Dataset d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15
Method\Rs Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR RRj (RRj-mR)^2

AMD 0.9978 1.0 1.0000 1.5 1.0000 1.5 0.9974 1.0 0.9992 1.0 1.0000 1.0 0.9997 1.0 0.9986 1.0 0.9985 2.0 1.0000 1.0 1.0000 1.5 1.0000 1.5 0.9992 1.0 1.0000 1.0 1.0000 1.0 1.2 0.64

PAlg 0.9926 2.0 1.0000 1.5 1.0000 1.5 0.9171 2.0 0.9699 2.0 0.9715 2.0 0.9556 2.0 0.9724 3.0 1.0000 1.0 0.9987 2.0 1.0000 1.5 1.0000 1.5 0.9164 2.0 0.9997 2.0 0.9977 2.0 1.9 0.017777778

ARR 0.9769 3.0 0.9450 3.0 0.9940 3.0 0.8752 3.0 0.8975 3.0 0.8641 3.0 0.8871 3.0 0.9956 2.0 0.8929 3.0 0.9799 3.0 0.9636 3.0 0.9359 3.0 0.7271 3.0 0.8694 3.0 0.9107 3.0 2.9 0.871111111

S 1.528888889

(c) Friedman’s test steps for comparing ranking methods with k=3

Dataset d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15
Method\Rs Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR Rs RR RRj (RRj-mR)^2

AMD 1.0000 1.0 1.0000 1.5 1.0000 1.5 0.9989 1.0 0.9993 1.0 1.0000 1.0 1.0000 1.0 0.9997 1.0 0.9987 2.0 1.0000 1.5 1.0000 1.5 1.0000 1.5 0.9993 1.0 1.0000 1.5 1.0000 1.5 1.3 0.49

PAlg 0.9944 2.0 1.0000 1.5 1.0000 1.5 0.9521 2.0 0.9863 2.0 0.9851 2.0 0.9697 2.0 0.9869 3.0 1.0000 1.0 1.0000 1.5 1.0000 1.5 1.0000 1.5 0.9637 2.0 1.0000 1.5 1.0000 1.5 1.8 0.054444444

ARR 0.9842 3.0 0.9520 3.0 0.9908 3.0 0.8865 3.0 0.9515 3.0 0.9342 3.0 0.9158 3.0 0.9987 2.0 0.9399 3.0 0.9910 3.0 0.9854 3.0 0.9410 3.0 0.7921 3.0 0.9185 3.0 0.9567 3.0 2.9 0.871111111

S 1.415555556
Friedman’s Test S M C M vs. C Interpretation

Top-K=35 1.876 28.133 10.99 M > C M(28.13) > C(10.99)  null hypothesis is rejected at the confidence level α = 0.001

Top-K=5 1.529 22.933 10.99 M > C M(22.93) > C(10.99)  null hypothesis is rejected at the confidence level α = 0.001

Top-K=3 1.416 21.233 10.99 M > C M(21.23) > C(10.99)  null hypothesis is rejected at the confidence level α = 0.001


