

PhD Dissertation Presentation

Semantic Preservation of Standardized Health Documents in Big Data

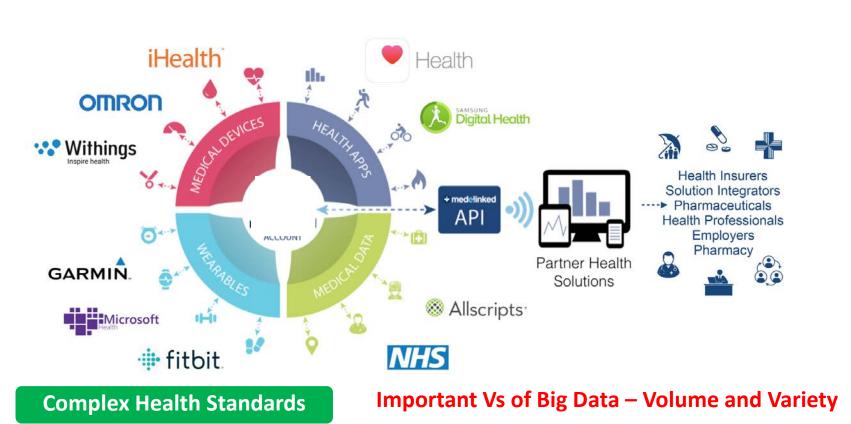
Mr. Shujaat Hussain

Department of Computer Science and Engineering Kyung Hee University, Republic of Korea Email: shujaat.hussain@oslab.khu.ac.kr

Date: November 6, 2019 Advisor: Prof. Sungyoung Lee, PhD

Presentation Agenda

Introduction


- Background and Motivation
- Problem Statement
- Related Works
- Proposed Methodology
- Experiments and Results
- Uniqueness and Contributions
- Conclusion and Future Research

Background

Multiple Data Sources

Complexity in Schema and Knowledge

Knowledge Representation

- Complex metadata
- Linked Data
- Semantic Enriched dataset

Large Complex Dataset

- 30% of data is healthcare
- 97% hospitals use EHR (US)
- 80% data unstructured
- Critical to understand

Standardized Health Documents have critical information and the semantics of the document has to be protected.

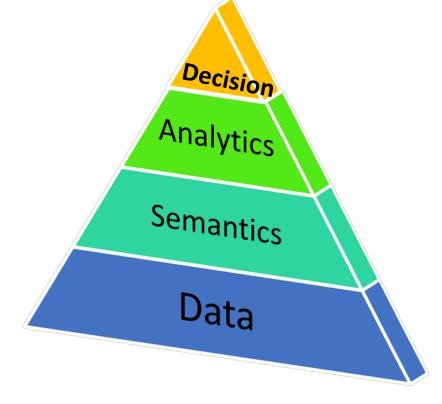
Motivation

Semantic Preservance

Means lossless data which is critical in healthcare

Adaptable to Standardized schema(Open EHR, HL7 CDA)

Complete Document Knowledge on disposal


Data continuity is important in standardized health documents

HL7 CDA standard is universally acceptable*

Healthcare Data

- Variety of Data Formats
 - Unstructured
 - Semi structured
 - Flat file
 - XML

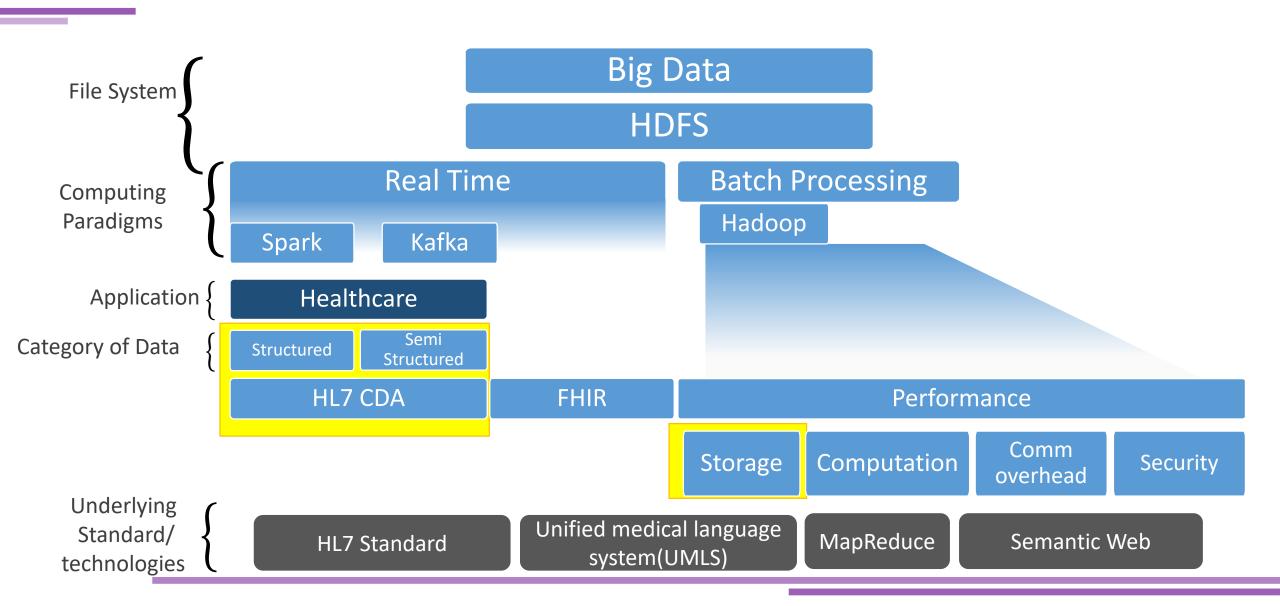
Enabling Better Decision making

* Slavov, Vasil, et al. "A new tool for sharing and querying of clinical documents modeled using HL7 Version 3 standard." Computer methods and programs in biomedicine 112.3 (2013): 529-552.

Problem Statement

Problem statement

Semantic loss occurs in standardized and complex health care documents during partitioning big data framework and results in compromised decision making ability^{[1][2]}


Goal

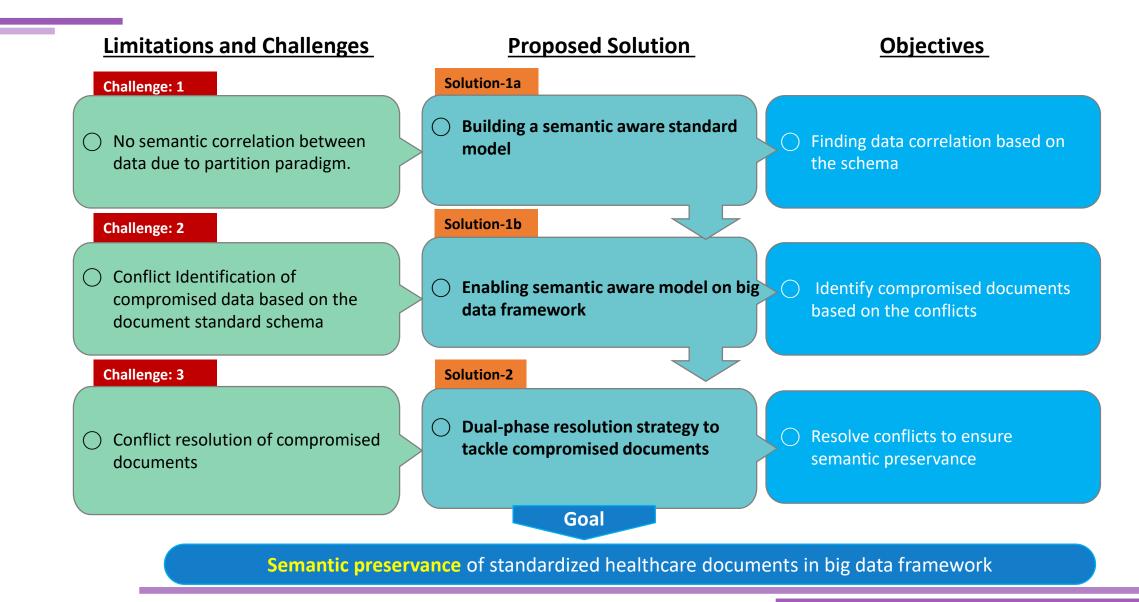
Semantic preservance in big data framework for standardized healthcare documents and ensure all the semantics from big data is extracted.

Challenges

- Challenge 1: There exists no data correlation with conventional Big Data framework partition
- Challenge 2: Identifying documents with semantic loss based on the application scenario
- Challenge 3: Resolving conflicts in partitioned data through semantic matching

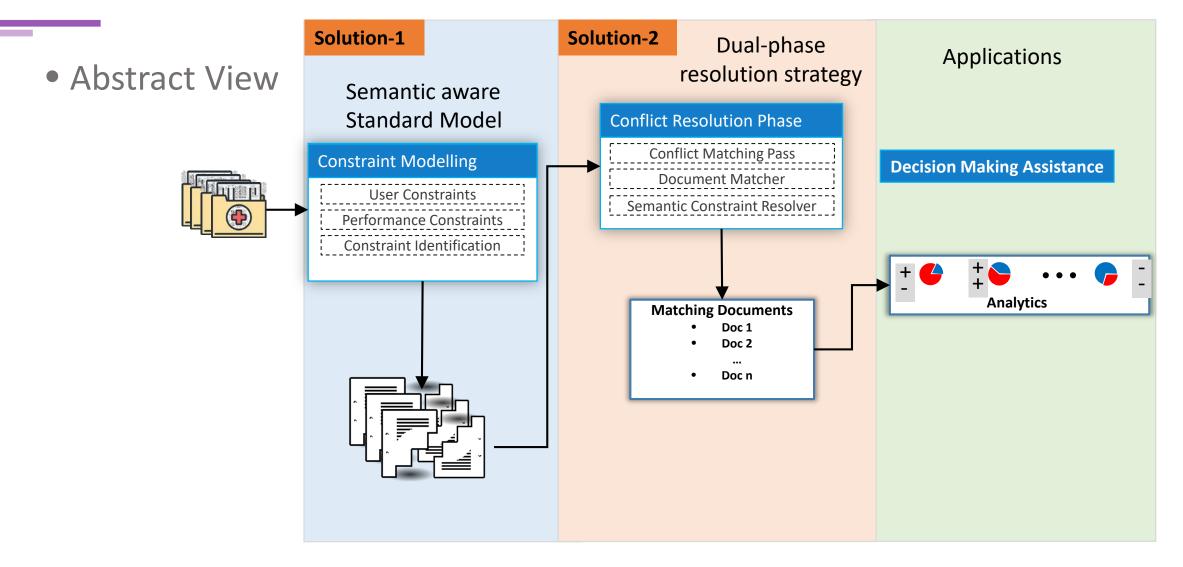
Taxonomy

Related work and limitations

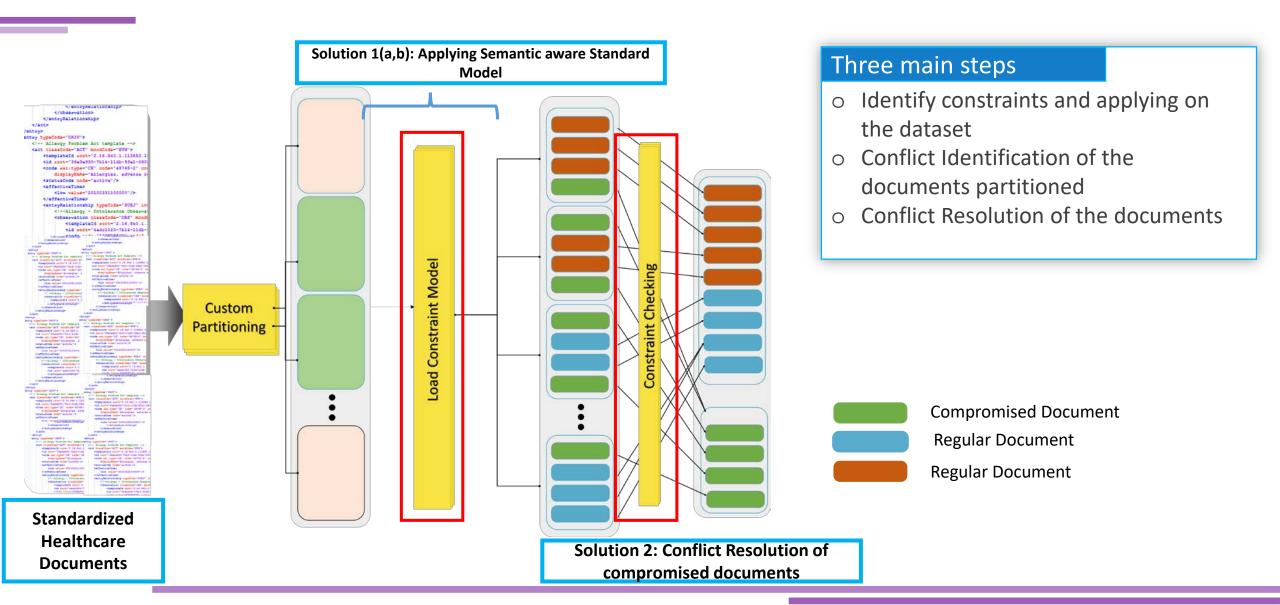

	Reference	Data Handling	Multiple Data Sources	Standard Validation	Data preprocessing (schema)	Partition	Data Distribution	Time Complexity
	Silvestri et al (2019)	Spark	0	•	Dependent	Line by Line	Default	(n²)
Challenge: 1	Nunziato et al (2016)	Spark	•	0	Dependent	Not Applied	Default	(n²)
Challenge: 2	HL7-CDA clinical documents management (2013)	MongoDB	0	•	Dependent	Not Applied	Default	NA
	Ko <i>et al.</i> (2014)	Pseudo Distributed	0	Ο	Not Applied	Line by Line	NA	NA
Challenge: 3	Hiromasa <i>et al.</i> (2012)	Hadoop	•	0	Dependent	Line by Line	Default	(n²)
	Medoop (2013)	Hadoop	0	0	Dependent	Schema Based	Default	(n²)

YesNo

Overall Limitation


- No semantic or data schema connected with the dataset
- o Number of documents compromised are ignored or partially used
- No semantic resolution for the compromised documents

Limitation, Objective, and Proposed Solution



Proposed Methodology

Overall Workflow : Semantic aware Standard Model, conflict identification and resolution

10

Shujaat Hussain, Bilal Amin,.. Sungyoung Lee, Chris Nugent, Sally McClean, Bryan Scotney and Gerard Parr, "Behavior Life Style analysis for mobile sensory data in cloud computing through MapReduce", Sensors 2014

Problem during data processing

	ta Node 1			Allergies or	n Node
Da					
	Substance	Reaction	St	atus	
	Penicillin	Hives	Ac	tive	
	Aspirin	Wheezing	Ac	tive	
	Codeine	Nausea	Ac	tive	

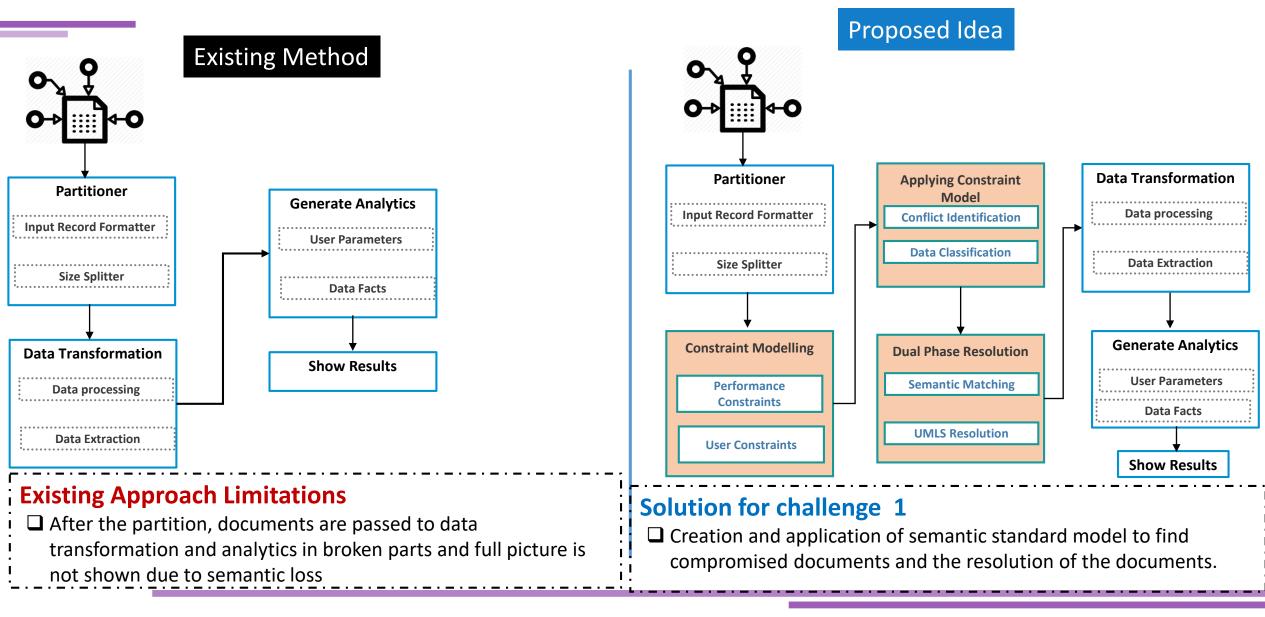
Data Node 2

Medication	Instructions
Lisinopril 5 mg	1 tablet a day
Atenolol 25mg	1 tablet a day

Issues

- Incomplete information on two nodes for one patient 1
- 1. No node has complete picture
- Partial Semantics at best • ا

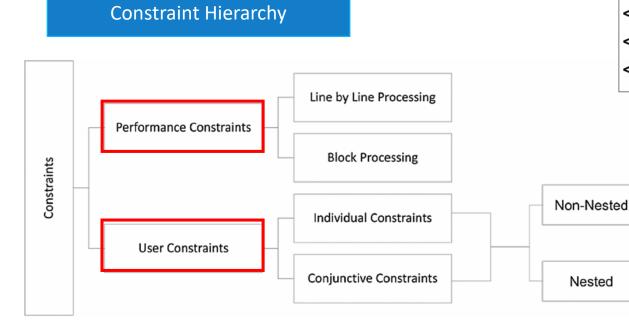
e 1

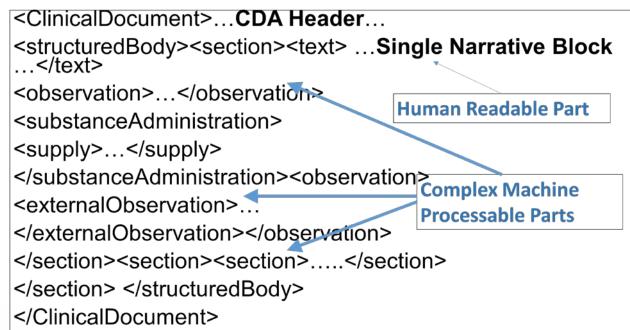

Medications on Node 2

<entry typecode="DRIV"></entry>
<act classcode="ACT" moodcode="EVN"></act>
<templateid root="2.16.840.1.113883.10.20.1.27"></templateid>
Problem act template
<id root="36e3e930-7b14-11db-9fe1-0800200c9a66"></id>
<code nullflavor="NA"></code>
<entryrelationship typecode="SUBJ"></entryrelationship>
<pre><observation classcode="OBS" moodcode="EVN"></observation></pre>
<templateid root="2.16.840.1.113883.10.20.1.18"></templateid>
Alert observation template
<id root="4adc1020-7b14-11db-9fe1-0800200c9a66"></id>
<pre><code code="ASSERTION" codesystem="2.16.840.1.113883.5.4"></code></pre>
<pre><statuscode code="completed"></statuscode></pre>
<value <="" code="282100009" td="" xsi:type="CD"></value>
codeSystem="2.16.840.1.113883.6.96"
displayName="Adverse reaction to substance"/>
<pre><participant typecode="CSM"></participant></pre>
<pre><participantrole classcode="MANU"></participantrole></pre>
<pre><playingentity classcode="MMAT"></playingentity></pre>
<code <="" code="70618" td=""></code>
codeSystem="2.16.840.1.113883.6.88"

<substanceadministration classcode="SBADM" moodcode="EVN"></substanceadministration>							
<templateid root="2.16.840.1.113883.10.20.1.24"></templateid>							
CCD Medication activity template							
<templateid root="1.3.6.1.4.1.19376.1.5.3.1.4.7"></templateid>							
IHE Medications Template							
<id root="cdbd5b05-6cde-11db-9fe1-0800200c7a26"></id>							
<statuscode code="active"></statuscode>							
<effectivetime xsi:type="PIVL_TS"></effectivetime>							
<pre><period unit="h" value="24"></period></pre>							
<routecode <="" code="PO" codesystem="2.16.840.1.113883.5.112" td=""></routecode>							
codeSystemName="RouteOfAdministration"/>							
<dosequantity value="1"></dosequantity>							
<consumable></consumable>							
<manufacturedproduct></manufacturedproduct>							
<templateid root="2.16.840.1.113883.10.20.1.53"></templateid>							
Product template							
<manufacturedmaterial></manufacturedmaterial>							
<code <="" code="370619" codesystem="2.16.840.1.113883.6.88" td=""></code>							
codeSystemName="RX NORM"							
displayName="Atenolol 25 MG Oral Tablet">							
<pre><originaltext>Atenolol 25 MG Oral Tablet</originaltext></pre>							
<name>Tenormin</name>							

</playingEntity </participantRole>


Proposed Methodology: Semantic Standard Model-As-is To be



Solution 1a: Semantic Aware Standard Model

 Semantic Standard model is based on constraints, in which the output of a decision is constrained by certain parameters.

	Constraint in CDA Document	
ser constraint table.		
Constraint name	Туре	Nested
Clinical statements	Conjunctive	Yes
entryRelationship	Individual	Yes
Entry	Individual	No
Section	Individual	Yes
Whole document	Individual	No

Clinical Document Architecture

13

Solution 1: Semantic Aware Model Inside CDA Document

Table of Contents

- <u>Allergies</u>, <u>Adverse Reactions</u>, <u>Alerts</u>
- Hospital Course
- Hospital Discharge Diagnosis
- Hospital Discharge Medications
- Plan of Care
- Discharge Diet
- Family history
- <u>Functional Status</u>
- <u>History of Present Illness</u>
- Hospital Discharge Physical
- Hospital Discharge Studies Summary
- Immunizations
- Past Medical History
- Procedures
- Problems
- <u>Reason for Visit</u>
- <u>Review of Systems</u>
- Social History
- <u>Vital Signs</u>

Allergies, Adverse Reactions, Alerts

Substance	Reaction	Status		
Penicillin	Hives	Active		
Aspirin	Wheezing	Active		
Codeine	Nausea	Active		

Hospital Course

The patient was admitted and started on Lovenox and nitroglycerin paste. The patient had serial cardiac enzymes and was ruled out for myocardial infarction. The patient underwent a dual isotope stress test. There was no evidence of reversible ischemia on the Cardiolite scan. The patient has been ambulated. The patient had a Holter monitor placed but the report is not available at this time. The patient has remained hemodynamically stable. Will discharge.

Hospital Discharge Diagnosis

Unspecified chest pain

14

and received and the state and and a state of the state of the

Solution 1: Semantic Aware Model

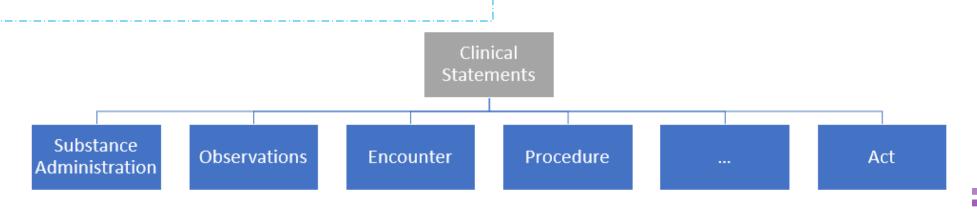
Individual Constraint

Section

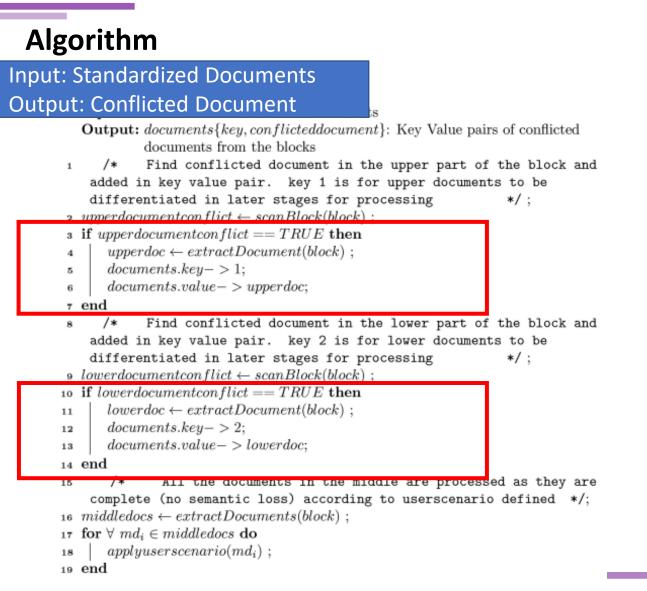
- Section title
- Description and explanatory narrative
- LOINC section code
- Requirements for a text element

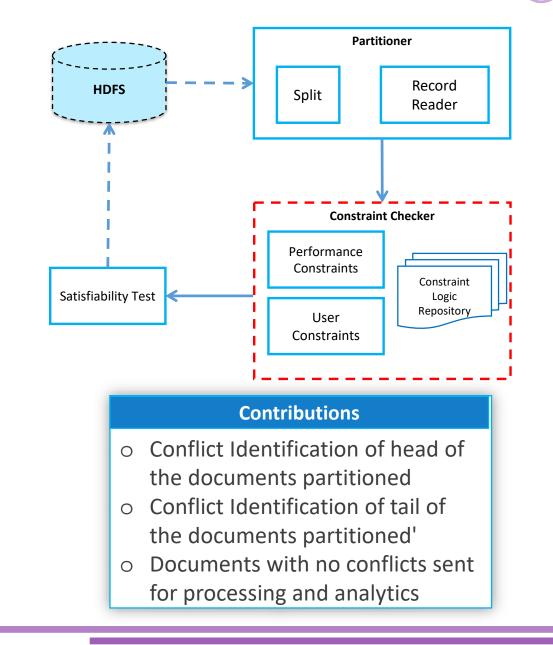
```
<section>
    <templateId root="2.16.840.1.113883.10.20.22.2.58" />
        <code code="75310-3" displayName="Health Concerns Document"
codeSystem="2.16.840.1.113883.6.1" codeSystemName="LOINC" />
        <title>Health Concerns Section</title>
        <text>
            ...
            </text>
            <entry>
                <!-- Health Status Observation -->
            </entry>
                <!-- Health Concern Act -->
               </entry>
                <!-- Health Concern Act -->
               </entry>
                <!-- Health Concern Act -->
               </entry>
                <!-- Health Concern Act -->
               </entry>
                <!-- Health Concern Act -->
               </entry>
                <!-- Health Concern Act -->
               </entry>
                <!-- Health Concern Act -->
               </entry>
                <!-- Health Concern Act -->
               </entry>
                </entry>
```

Individual Constraints are those which are simple and are not dependent on other constraints or vice versa. They do not have any subtypes.



Solution 1: Semantic Aware Model


Conjunctive constraints

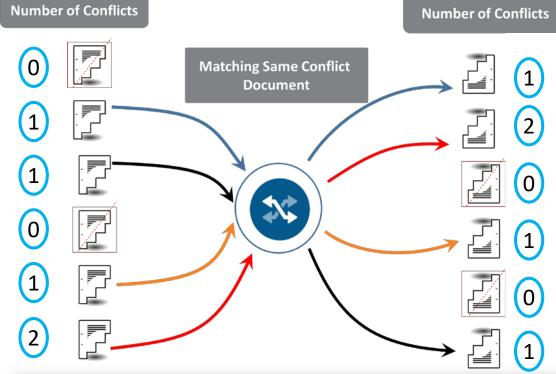

- Clinical Statements
 - Key template metadata (e.g., template identifier, etc.)
 - Description and explanatory narrative.
 - Required CDA acts, participants and vocabularies.
 - Optional CDA acts, participants and vocabularies.

Conjunctive Constraints are nested and contain subtypes as well as multiple individual constraints which increases the complexity.

Solution 1b: Semantic Standard Model

Shujaat Hussain, Maqbool Hussain, Muhammad Afzal, ... Sungyoung Lee, "Semantic Preservation of standardized healthcare documents in big data", International Journal of Medical Informatics 2019

Identification of Compromised Documents


- After applying Semantic aware standard model the output is conflicted documents and the different markers identified are
 - Number of constraints violated
 - Individual Constraints
 - Conjunctive Constraints

- Based on the conflict markers, we need a resolution strategy to make the document whole so that no conflicts remain.
- A Dual Phase resolution strategy was introduced.

Solution 2: Dual-phase resolution strategy

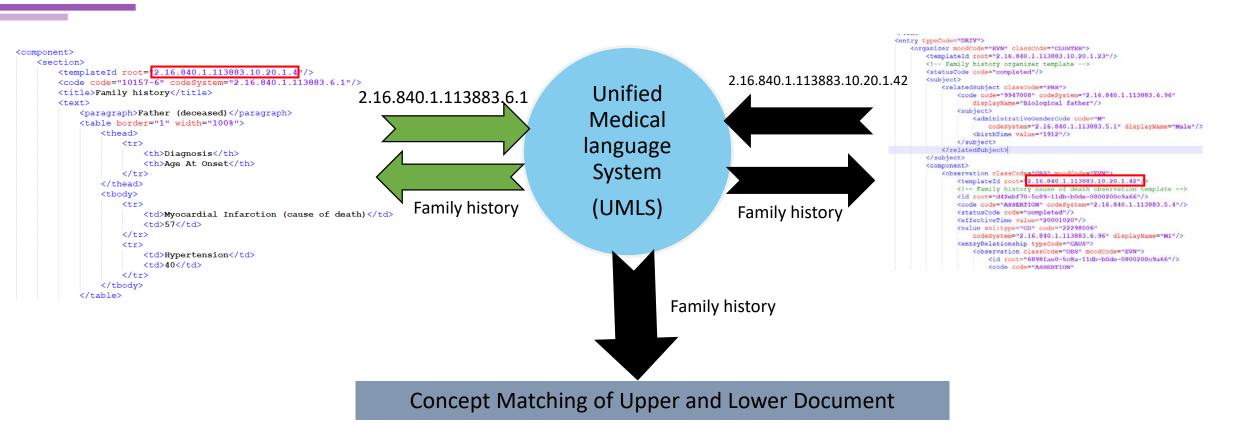
Input: Conflicted Documents Output: Conflict free Document

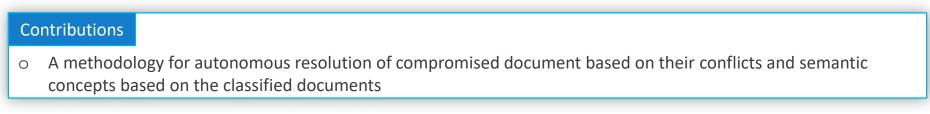
Input : $UD = \{ud_1, ud_2, ud_3, \dots, ud_n\}$: Incomplete Upper Documents $LD = \{ld_1, ld_2, ld_3, \dots, ld_n\}$: Incomplete Lower Documents	
Output: Complete CDA [®] documents	
1 for $\forall ud_i \in UD$ do	
2 /* Conflicts are scanned from the upper document an	d if
conflicts are one or greater, we try to resolve */;	
3 $Conflictmarker_i \leftarrow checkconflict(ud_i);$	
4 if $Conflictmarker \ge 1$ then	
5 for $\forall \ ld_j \in LD$ do	
6 /* Conflicts are scanned from the lower document an	d if
conflicts of upper and lower documents are same, we	
append and validate */:	
$\tau \qquad Conflictmarker_j \leftarrow checkconflict(ud_j) ;$	
s if $Conflictmarker_i == Conflictmarker_j$ then	
9 $fulldoc \leftarrow appendDocument(ud_i, ld_j);$	
10 $flag \leftarrow validateDocument(fulldoc);$	
11 /* II the document is validated, then we crea	te a
pair of indexes of upper and lower documents for	
duplicate checking which triggers second pass if	any
*/;	
12 if $flag = 1$ then	
$Pair < Integer, Integer > MapperRecord \leftarrow list.add(i)$, j);
14 end	
15 end	
16 end	
17 end	
18 end	

First Pass of Conflict resolving

- The documents are matched to the head and tail of the documents.
- The documents are validated through the schema.
- Some documents may not match or match with two heads/tails which then requires second phase.

Shujaat Hussain, Maqbool Hussain, Muhammad Afzal, ... Sungyoung Lee, "Semantic Preservation of standardized healthcare documents in big data", International Journal of Medical Informatics 2019

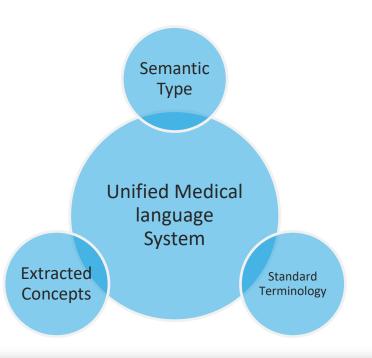

20


Orphan and Duplicate Matches

- First Phase
 - The duplicate documents occur when two or more documents are conflicted with similar markers i.e. same constraints.
 - This results in some documents being orphan which means their other half matched with someone else.

- Second Phase
 - Semantic Concept type matching is used for resolving orphan and duplicate documents
 - For Semantic Concept matching, Unified Medical Language System (UMLS) is used.
 - The motivation for using UMLS is the large biomedical concepts from over 100 source vocabularies.

Solution 2: UMLS Querying Workflow-Example



Solution 2: Dual-phase resolution strategy

Input: Orphan and Duplicated Documents Output: Conflict free Document

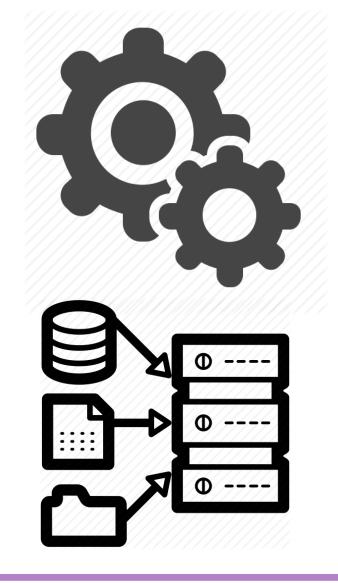
```
Input : UD = \{ud_1, ud_2, ud_3, \dots, ud_n\}: Orphan and Duplicate Upper
             Documents
             LD = \{ld_1, ld_2, ld_3, \dots, ld_n\}:Orphan and Duplicate Lower Documents
   Output: CD = \{cda_1, cda_2, cda_3, \dots, cda_n\} Complete CDA documents
1 for \forall ud_i \in UD do
       for \forall ld_i \in LD do
                       Get medical concept of the last constraint of upper
               /*
             document (conceptud_i) and first constraint of lower document
            (conceptld_i)
                                                       */;
           conceptud_i \leftarrow getLastConstraint(ud_i);
 4
           conceptld_i \leftarrow getFirstConstraint(ld_i);
 5
             /* Get semantic type of concept of conceptud_i and conceptld_i
            */:
           semtypeud_i \leftarrow getSemanticConstraint(conceptud_i);
 7
           semtypeld_i \leftarrow getSemanticConstraint(conceptld_i);
                          Match Semantic types of lower and upper document
                 /*
            concepts, join them and validate for full CDA® document
             */:
           if semtypeud_i = semtypeld_i then
10
               fulldoc_i \leftarrow appendDocument(ud_i, ld_i);
11
               flag \leftarrow validateDocument(fulldoc_i);
12
           end
13
       end
14
15 end
```


2nd Pass of conflict resolution

- UMLS repository is used for second phase of resolution.
- It has a vocabulary of enriched concepts of biomedical terms.
- The documents remaining compromised after phase 1 go through phase 2

Experimental Setup

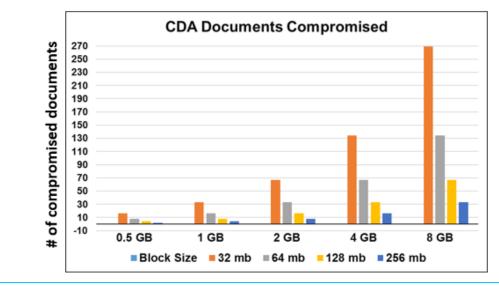
Experiments


- Experiment 1: Constraint Conflicts against Healthcare Documents
- Experiment 2: Dual Phase Resolution strategy

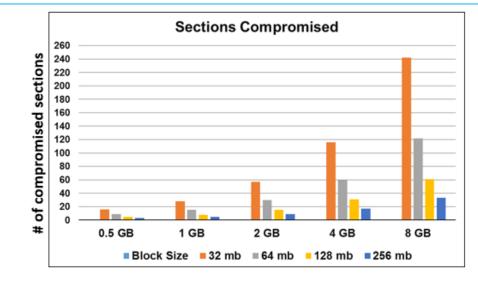
Experiment Setup and Big Data Framework

- o Ubuntu 16.04
- HDFS (Hadoop and Spark)
- o 6 Machine Cluster

Dataset

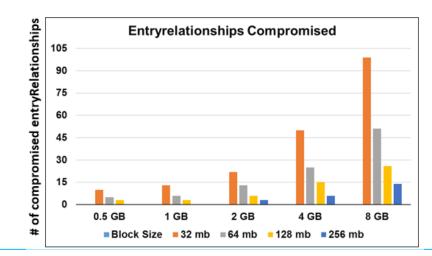

- Unique 700 C-CDA documents*
- Overall Dataset: 87000 documents through bootstrapping and sampling
- o Block Sizes: 32 MB, 64MB, 128 MB, 256 MB

Solution 1: Individual Constraints

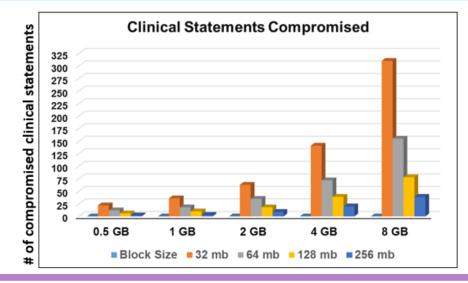

Results Discussion

- Overall the number of documents compromised got higher with the dataset without any constraints applied.
- Higher level individual constraints resulted in more conflicted documents.

Higher value is bad which means more conflicts and compromised documents


	Individual Constraints											
Block Size		Who	le Docur	nents		Sections						
	.5 GB	1 GB	2 GB	4 GB	8 GB	.5 GB	1 GB	2 GB	4 GB	8 GB		
32 mb	16	33	67	134	269	16	28	57	116	242		
64 mb	8	16	33	67	134	9	15	30	60	122		
128 mb	4	8	16	33	67	5	8	15	31	61		
256 mb	2	4	8	16	33	3	5	9	17	33		

Solution 1: Conjunctive constraints


Results Discussion

- Clinical Statements (CS) is a superset of Entryrelationships (ER).
- CS is the most complex constraint and it has been compromised the most
- ER is an individual constraint but present inside CS constraints

Higher value is bad which means more conflicts and compromised documents

Conjunctive Constraints										
Block Size		cal State	ments		EntryRelationships					
	.5 GB	1 GB	2 GB	4 GB	8 GB	.5 GB	1 GB	2 GB	4 GB	8 GB
32 mb	22	36	63	141	310	10	13	22	50	99
64 mb	12	18	35	72	155	5	6	13	25	51
128 mb	6	10	18	39	78	3	3	6	15	26
256 mb	2	3	9	20	39	0	0	3	6	14

Results And Evaluation: Solution 2 Dual Phase resolution

Experimental Details

- Two phases of conflict resolution
 - Matching documents
 - UMLS Querying

Results Discussion

- The conflicted documents are matched depending on the number of conflicts identified.
- The table shown are the conflict for the 1GB dataset.

Conflicted Documents in Phase 1

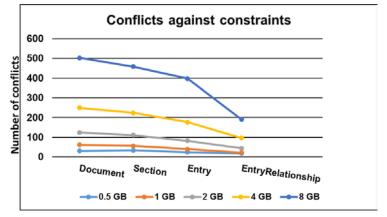
Resolution 1st Pass 32 MB Block

Upper part	Lower part	Upper part	Lower part
Doc. 1	Doc. 18	Doc. 18	Doc. 24
Doc. 2	Doc. 11	Doc. 19	Doc. 13
Doc. 3	Doc. 34	Doc. 20	Doc. 21
Doc. 4	Doc. 28	Doc. 21	Doc. 34
Doc. 5	Doc. 23	Doc. 22	Doc. 21
Doc. 6	Doc. 4	Doc. 23	Doc. 14
Doc. 7	Doc. 20	Doc. 24	Doc. 33
Doc. 8	Doc. 19	Doc. 25	Doc. 16
Doc. 9	Doc. 29	Doc. 26	Doc. 6
Doc. 10	Doc. 1	Doc. 27	Doc. 25
Doc. 11	Doc. 26	Doc. 28	Doc. 17
Doc. 12	Doc. 30	Doc. 29	Doc. 32
Doc. 13	Doc. 21	Doc. 30	Doc. 22
Doc. 14	Doc. 8	Doc. 31	Doc. 34
Doc. 15	Doc. 31	Doc. 33	Doc. 27
Doc. 17	Doc. 3	Doc. 34	Doc. 9
Doc. 16	Doc. 5		

Shujaat Hussain, Maqbool Hussain, Muhammad Afzal, ... Sungyoung Lee, "Semantic Preservation of standardized healthcare documents in big data", International Journal of Medical Informatics 2019

Results And Evaluation: Solution 2 Dual Phase resolution

Experimental Details


- Two phases of conflict resolution
 - Matching documents
 - UMLS Querying

Results Discussion

- The orphan and duplicated documents are matched through semantic type
- All the document conflicts were resolved during the second phase of the resolution.

Second pass of resolution.

Orphan and duplicate documents in 32 MB block Document Document type Upper Doc. 3 Duplicate Upper Doc. 20 Duplicate Upper Doc. 21 Duplicate Upper Doc. 22 Duplicate Upper Doc. 31 Duplicate Upper Doc. 13 Duplicate Lower Doc. 2 Orphan Lower Doc. 7 Orphan Lower Doc. 10 Orphan Orphan Lower Doc. 12 Lower Doc. 15 Orphan Lower Doc. 21 Duplicate Duplicate Lower Doc. 34

The constraints against size is shown accumulating all the blocks

Contributions and Uniqueness

The compromised documents were successfully identified through semantic aware standard model

Compromised Healthcare documents processed through Big Data Frameworks were identified

Dual-phase resolution are applied to compromised documents

The healthcare documents in the dataset are semantically preserved for meaningful extraction though conflict resolution technique.

Potential Applications

- Document Interoperability
- Predictive Analytics
- Decision Support Systems

Conclusion and Future Work

Identifying compromised documents based on constraint model

- Identifying constraints based on schema standard and user scenario as well as performance.
- Classifying documents into three categories conflicts

Conflict Resolution of the documents compromised

 All the documents were semantically preserved and the meaningful data can be extracted from them to better decision making.

- Future Research
 - In future, we will focus on performance, as the first goal was semantic preservance in this study.

Publications

- SCI/ SCIE Journals (8)
 - First Author- Two Published
 - Co-Author- Six Published
- Local Journal (2)
 - Co-Author-Two Published
- International Conferences (9)
 - First Author Five Publications
 - Co-Author- Nine Publications
- Local Conferences (3)
 - First Author Three Publications
- Domestic Patents (3)
 - 2 Registered
 - 1 Applied

Total Publications = 25

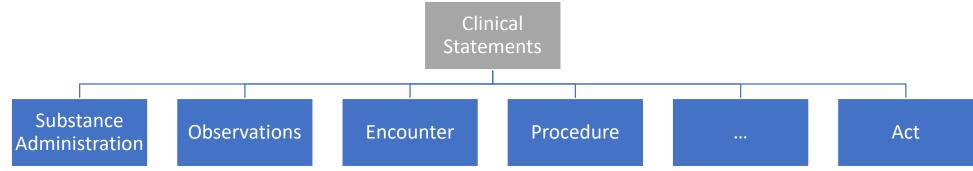
Selected References

- [1] Panahiazar, Maryam, et al. "Empowering personalized medicine with big data and semantic web technology: promises, challenges, and use cases." 2014 IEEE International Conference on Big Data (Big Data). IEEE, 2014.
- [2] Bansal, Srividya K. "Towards a semantic extract-transform-load (ETL) framework for big data integration." 2014 IEEE International Congress on Big Data. IEEE, 2014.
- [3] Mohanpurkar, Arti, and Prasad kumar Kale. "Big data analysis using partition technique." International Journal of Computer Science and Information Technologies (IJCSIT) 6.3 (2015): 2871-2875.
- [4] Dhar, Vasant. "Data science and prediction." Communications of the ACM56.12 (2013): 64-73.
- [5] Chawla, Nitesh V., and Darcy A. Davis. "Bringing big data to personalized healthcare: a patient-centered framework." Journal of general internal medicine 28.3 (2013): 660-665.
- [6] Tsai, Chun-Wei, et al. "Big data analytics: a survey." Journal of Big Data 2.1 (2015): 1-32.
- [7] Ko, Kyung Dae, et al. "Predicting the severity of motor neuron disease progression using electronic health record data with a cloud computing Big Data approach." Computational Intelligence in Bioinformatics and Computational Biology, 2014 IEEE Conference on. IEEE, 2014.
- [8] Naive Bayesian Classification Approach in Healthcare Applications. R. Bhuvaneswari and K. Kalaiselvi Department of CSE, Saveetha Engineering College Chennai, India (2012)
- [9] Decision Support in Heart Disease Prediction System using Naive Bayes. n Journal of Computer Science and Engineering (IJCSE) (2012)

Selected References

- [10] Yu, Hongyong, and Deshuai Wang. "Research and Implementation of Massive Health Care Data Management and Analysis Based on Hadoop." Computational and Information Sciences (ICCIS), 2012 Fourth International Conference on. IEEE, 2012.
- [11] Wang, Ye, et al. "Large-Scale Clinical Data Management and Analysis System Based on Cloud Computing." Frontier and Future Development of Information Technology in Medicine and Education. Springer Netherlands, 2014. 1575-1583.
- [12] Arian, et al. "Assessing the Predictability of Hospital Readmission Using Machine Learning." Twenty-Fifth IAAI Conference. 2013.
- [13] Danning, et al.. "Mining high-dimensional administrative claims data to predict early hospital readmissions." JAMIA (2013)
- [14] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., "A view of cloud computing," Communications of the ACM, vol. 53, no. 4, pp. 50–58, 2010.
- [15] J. Zhou, N. Bruno, M.-C. Wu, P.-A. Larson, R. Chaiken, and D. Shakib. Scope: parallel databases meet mapreduce. The VLDB Journal-The International Journal on Very Large Data Bases, 21(5):611{636, 2012.
- [16] T. White. Hadoop: the definitive guide. O'Reilly, 2012.
- [17] A. Hadoop. Apache hadoop nextgen mapreduce (yarn). 2013.
- [18] <u>www.predixionsoftware.com</u>
- [19] Horiguchi, Hiromasa, et al. "A user-friendly tool to transform large scale administrative data into wide table format using a mapreduce program with a pig latin based script." BMC medical informatics and decision making 12.1 (2012): 151.
- [20] Arshdeep Bahga, et al. "A Cloud-based Approach for Interoperable Electronic Health Records (EHRs)." IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS Sep 2013

THANK YOU!



Any questions or comments?

Conjunctive Constraints

- Clinical Statements
 - Key template metadata (e.g., template identifier, etc.)
 - Description and explanatory narrative.
 - Required CDA acts, participants and vocabularies.
 - Optional CDA acts, participants and vocabularies.

