

Zero-Interaction Pairing and Authentication Using Moms Secret and Contextual Co-presence of Devices

PhD Public Defense Presentation

Oct 11th, 2022

Ubaid Ur Rehman

Dept. of Computer Science and Engineering, Kyung Hee University, Republic of Korea

Advisors: Professor Sungyoung Lee Professor Seong-Bae Park

EVALUATION

- Experiment setup
- o Results Analysis

O CONCLUSION

Goal

To design an efficient ZIPA mechanism that reduces the pairing time and ensure strong resistance against predictive contextual and key transportation attacks.

Challenges

C1 Utilization of low entropy contextual data for pairing and authentication ^[17]

C2 Use of default global trusted center link key for transportation of network key [18,19]

Verification of neighboring device based on contextual copresence data [11,14]

[Attkan2022] Attkan, Ankit, and Virender Ranga. "Cyber-physical security for IoT networks: a comprehensive review on traditional, blockchain and artificial intelligence based key-security." *Complex & Intelligent Systems* (2022): 1-33.
 [Nandy2019] Nandy, Tarak, et al. "Review on security of Internet of Things authentication mechanism." *IEEE Access* 7 (2019): 151054-151089.
 [El-Hajj2019] El-Hajj, Mohammed, et al. "A survey of internet of things (IOT) authentication schemes." *Sensors* 19.5 (2019): 1141.

TRNG: True Random Number Generator PUF: Physical unclonable function TPM: Trusted Platform Module

Ph.D. Dissertation Fall 2022

Introductio Related Wo	n ork	Proposed IdeaConclusionExperiment ResultsAchievements				UCL WIVERSITY			
Re	elated W	ork							
Challenges	Studies		Methodology			Limitations			
Low Entropy	[Ustundag2021]	 Contextual data from sn Use the device electricity 	Contextual data from smart manufacturing environment Jse the device electricity consumption as a dynamic credentials for HMAC			 Vulnerable to asynchronous attack and Impersonation Attack Low Entropy value are used as key 			
Data (One-shot)	[Cabuk2021]	 Context-aware mutual a group of drones that require The mission ID was considered 	uthentication for proving the i lest to join the swarm dered as a context	dentity of a single or a	³ The proposed approach uses RSA and AES, which added computation overhead on each node.				
Transportation of Network Key	[Wang2020]	 Propose certificate-less p Integrate elliptic curve request/response message Improve the security of it 	rotocol that leverage low-cost Diffie Hellman exchange int ges nstallation code by using public	public key primitives to existing association	 The security of the existing approach depends on the credential and its transmission over the communication channel. The credentials are normally global and publicly available to all the users. 				
(Zero-Effort)	[Li2020]	 Analyze the existing protocol using the security verification tool Presents the insecurity in the underlying communication protocol stacks 			The security analysis was performed based on one attacking model				
Verification Of [Fomichev2021] Proposed FastZIP that reduces the pairing time and provide prevention against the contextual co-presence attacks Adopt the fuzzy password authentication key exchange protocol for security key agreement 				d provide prevention ge protocol for secure	 Fuzzy password authentication key exchange protocol enables secure key agreement, if the two secret are close enough 				
Device (Co-presence)	evice Address the challenge of schemes that do not reflect the realistic IoT scenarios Comparative schemes under the realistic conditions Collect and release billion of sensors reading Fuzzy commitment was used that allows of the commitment was used that allows								
1# Low Entransition ◆ Use cryptog ◆ Use low entransition ◆ Require time	ropy Contextual graphic hash for a tropy value that a se synchronizatio	Data – Limitations authentication are easily predictable	2# Transportation of N * Security depends on t * Credentials are global	etwork Key – Limitatic he credentials and publicly available	ons	 3# Verification of Neighboring Device – Limitations A Require sufficient contextual data for adequate security, leads to prolong pairing time ♦ Use error correction method for fingerprint bits 			

KVUNC HEE

[Rehman2021] <u>Rehman, Ubaid Ur</u>, Seong-Bae Park, and Sungyoung Lee. "Secure health fog: A novel framework for personalized recommendations based on adaptive model tuning." IEEE Access 9 (2021): 108373-108391.

[Rehman2019] <u>Rehman, Ubaid Ur</u>, and Sungyoung Lee. "Natural Language Voice based Authentication Mechanism for Smartphones." Proceedings of the 17th annual international conference on mobile systems, applications, and services (MobiSys). 2019.

[Rehman2019] <u>Rehman, Ubaid Ur</u>, and Sungyoung Lee. "TPP: Tradeoff Between Personalization and Privacy." International Conference on Ubiquitous Information Management and Communication. Springer, Cham, 2019.

[Rehman2022] 이승룡, <u>레만 우바이드 유알</u>, "음성 이미지 기반 사용자 인증 장치 및 그 방법", 등록번호 : 10-2444003, 2022년09월15일 (특허권자:경희대학교 산학협력단) [Rehman2022] <u>Rehman, Ubaid Ur</u>, et al. "A Novel Mutual Trust Evaluation Method for Identification of Trusted Devices in Smart Environment." 2022 16th International Conference on Ubiquitous Information Management and Communication. IEEE, 2022.

EVALUATIONS AND RESULTS

Ph.D. Dissertation Fall 2022

[Ustundag2021] Ustundag Soykan, Elif, et al. "Context-Aware Authentication with Dynamic Credentials using Electricity Consumption Data." The Computer Journal (2021).

ntroduction Related Work	Proposed Idea Experiment Results	Conclusion Achievement	ts	UCL KYUNGH
Solutio 2# Prol	on 1 – One-shot Pair bability of Guessing	ring and Auther <mark>Contextual</mark>	ntication	
Dataset#1 – Th	ne Almanac of Minutely Power dat	taset (AMPds2) ^[22]	Dataset#2 – Sustainable Data for Energy Disaggr	egation (SustDataED2) [23]
	EXISTING APPROACH		EXISTING APPROACH	
$\diamond C_{MinValue} =$	1 • Minimu	m Value in Dataset	$\bullet C_{MinValue} = 0.38 \bullet \text{Mini}$	mum Value in Dataset
$\bullet C_{MaxValue} =$	1571 • Maximu	ım Value in Dataset	✤ C _{MaxValue} = 323.39 • Max	imum Value in Dataset
$T_{count} = 157$	7001 • All post max	sible values between min &	$T_{count} = 32302$	possible values between min &
$T_{values} = 69$	94456 • Total va	lues within dataset	✤ T _{values} = 1048575 • Tota	l values within dataset
$ p(C_{t_D1}) = 9 $	9. 1717 * 10 ⁻¹² • Probabi value	lity of Guessing Contextual	* $p(C_{t_D2}) = 2.9523 * 10^{-11}$ • Probable value	bability of Guessing Contextual
	PROPOSED APPROACH		PROPOSED APPROACH	
$\bullet T_{values} = 69$	94456 • Total	values within dataset	* $T_{values} = 1048575$.	Total values within dataset
✤ M _{omWinSize} =	= 55 • Insta	nces in selected window size	$ M_{omWinSize} = 55 $	Instances in selected window size
✤ L = 12	• Leng	th of generated Moms Secret	L = 12	Length of generated Moms Secret
$\Leftrightarrow p(M_{omsSecVa})$	(l) = 0.0039 · Proba	ability of identifying 1 value	* $p(M_{omsSecVal}) = 0.0039$	Probability of identifying 1 value
$\bullet p(M_{omsSecVa})$	$(l_{ll} P_{os}) = 1.2621 * 10^{-29}$ speci	fic position	* $p(M_{omsSecVal\&Pos}) = 1.2621 * 10^{-29}$	specific position
• $p(M_{omsSecre})$	$(t_D1) = 9.9962 * 10^{-34}$ Proba	ability of Guessing Contextual ern	* $p(M_{omsSecret_D2}) = 6.6203 * 10^{-34}$	Probability of Guessing Contextual Pattern
Pr	ROBABILITY OF GUESSING CONTEXT - FIN	VDINGS	PROBABILITY OF GUESSING CONTEXT -	- FINDINGS
	$ \bigcirc \ p(M_{omsSecret_D1}) < p(C_{t_D1}) $)	$ \bigcirc p(M_{omsSecret_D2}) < p(C_t) $	_D2)
[Ustundag2021] Ustundag So	oykan, Elif, et al. "Context-Aware Authentication with	Dynamic Credentials using Electricity Con	nsumption Data." The Computer Journal (2021).	

[Ustundag2021] Ustundag Soykan, Elif, et al. "Context-Aware Authentication with Dynamic Credentials using Electricity Consumption Data." The Computer Journal (2021).

In	troduction	Proposed Idea	Со	nclusion							UC	KYUN	NG HEE
Re	elated Work Solutio	Experiment Results n 2 – Zero-Effort /	Ac Authentio	hievemer	ts and Ros	Pairin ults	ng		* <u>Dolev a</u> *	ND YAO MOD Network is a of the adver Attacker can	<u>:L:</u> ssumed to b sary read, modif	e under full y, <mark>delete</mark> , ar	control
_	Scyther results : verify	arrey Andrysis Sc	yther <i>a i</i>	×				2# Δ\/IS			RESULTS		
\bigcirc	Claim		Status	Comments		SPAN 1.6	- Protoco	<u>Zπ AVIS</u> Verificatio	n : ZeroEffortA	uthandPairing.	losl		
	ZeroEffortAuthandPairing EndDevices	ZeroEffortAuthandPairing,EndDevices1 Secret ScrtKey	Ok Verified	No attacks.	File								
	SECRET	ZeroEffortAuthandPairing,EndDevices2 Secret NwkK	Ok Verified	No attacks.									(
		ZeroEffortAuthandPairing,EndDevices3 Secret DataPkt	Ok Verified	No attacks.	SUMM/ SAFE	ARY							
(0)	Alive	ZeroEffortAuthandPairing,EndDevices4 Alive	Ok Verified	No attacks.	DETAIL	s							
SULTS	WEAKAGREE	ZeroEffortAuthandPairing,EndDevices5 Weakagree	Ok Verified	No attacks.	BOUN TYPE	DED_NUMBER	_OF_SESS	ONS					
IS RE	Сомміт	ZeroEffortAuthandPairing,EndDevices6 Commit Coordinator,	,ScrtKey Ok Verified	No attacks.	PROTO /home	COL e/span/span/tes	stsuite/res	ults/ZeroEffo	rtAuthandPairing				
ALYS		ZeroEffortAuthandPairing,EndDevices7 Commit Coordinator,	NwkK Ok Verified	No attacks.		Save f	ile V	iew CAS+	View HI DSI	Protocol	Intruder	Attack	1
AN	NIAGREE	ZeroEffortAuthandPairing,EndDevices8 Niagree	Ok Verified	No attacks.		Saver				simulation	simulation	simulation	
RITY	Nisynch	ZeroEffortAuthandPairing,EndDevices9 Nisynch	Ok Verified	No attacks.		То	ols						
CUL	Coordinator	ZeroEffortAuthandPairing,Coordinator1 Secret ScrtKey	Ok Verified	No attacks.		HL	PSL						
<u> </u>	SECRET	ZeroEffortAuthandPairing,Coordinator 2 Secret NwkK	Ok Verified	No attacks.		HLPS	SL2IF	C	Choose Tool optio	n and e			
퓐		ZeroEffortAuthandPairing,Coordinator3 Secret DataPkt	Ok Verified	No attacks.			E		Execute -				
SCY	ALIVE	ZeroEffortAuthandPairing,Coordinator4 Alive	Ok Verified	No attacks.	OFM	C ATSE	SATMC	TA4SP					
#	WEAKAGREE	ZeroEffortAuthandPairing,Coordinator5 Weakagree	Ok Verified	No attacks.	i								'
	Сомміт	ZeroEffortAuthandPairing,Coordinator6 Commit Coordinator,	,ScrtKey <mark>Ok</mark> Verified	No attacks.	*	Secrecy, a	authent	ication,	proof-of-ori	gin, and int	egrity		
		ZeroEffortAuthandPairing,Coordinator7 Commit Coordinator,	NwkK Ok Verified	No attacks.	*	Bounded	sessior	verifica	tion & value	s are public	ly available	2	
	NIAGREE	ZeroEffortAuthandPairing,Coordinator8 Niagree	Ok_	No attacks.	*	Model su	pport i	ntruder u	using algebra	aic properti	es and prot	ocol falsifi	ation
	Nisynch	ZeroEffortAuthandPairing,Coordinator9 Nisynch	Ok Verified	No attacks.	Using M	oms Secret	and Co	ntextual(Co-presence o	of Devices			20/27
	Done.												20,27

Introduction
Related Work

Proposed Idea Experiment Results **Conclusion** Achievements

Conclusion

Thesis Contributions

- **One-shot Pairing & Authentication**
- Use interval based contextual data that is independent of time synchronization
- Convert low entropy value to high entropy for low information gain
- Median of medians (Moms) secret generation improved randomness and prevent information leakage

Zero-Effort Authentication & Pairing

- Identify the vulnerability of network key transportation in user assistance pairing scheme
- Mutual authentication using self signed identifier and integrated encryption scheme

Co-presence-based Pairing & Authentication

- Identify the neighboring device based on contextual co-presence data
- Reduce the pairing time by using sensor fusion and Moms secret
- Resistance against predictable contextual attacks

Future Work

- Moms Secret with integrated environmental sensors measuring the ambient characteristics
- Machine learning scheme for key generation process in ZIPA scheme.
- Blockchain based contextual co-presence pairing and authentication scheme for constrained node network.

Introduction Related Work Proposed Idea Experiment Results Conclusion Achievements

Achievements

Published Papers

- SCI(E) Journals (05)
 - First Author: 02 Published
 - Co-author: 03 Published
- Domestic Journals (01)
 - Co-Author: 01 Published

Conferences (08)

- First Author: 03 (International)
- Co-Author: 01 (International)
- First Author: 04 (Domestic)
- Domestic Patents (01)
 - Registered: 01

Publication	

트 치 3	
CERTIFICATE	
특칭	HI 10 3444002 T
Patent Number	A 10-2444003 St 4000
출원번호	제 10-2020-0165034 호
Application Number 출원일	2020년 11월 30일
Ring Date 등록일 Registration Date	2022년 09월 13일
성기도 용인지 빌명자 inventor 등록사항란에	기종구 직장네요 1/32 (시안동, 정의네작표 국제삼비드네) 기계
위의 발명· This is to c	은 「특허법」에 따라 특허원부에 등록되었음을 증명합니디 ertify that, in accordance with the Patent Act, a patent for the in gistered at the Korean Intellectual Property Office.
has been re	
has been re	2022년 09월 13일 이용표 독하청장 COMMISSIONER KOREAN INTELECTUAL PROPERTY OFFICIENT

Introduction
Related Work

Proposed Idea Experiment Results Conclusion Achievements

References

- 1. [Sadoughi2020] Sadoughi, Farahnaz, Ali Behmanesh, and Nasrin Sayfouri. "Internet of things in medicine: a systematic mapping study." Journal of biomedical informatics 103 (2020): 103383.
- 2. [Soriente2008] Soriente, Claudio, Gene Tsudik, and Ersin Uzun. "HAPADEP: human-assisted pure audio device pairing." International Conference on Information Security. Springer, Berlin, Heidelberg, 2008.
- 3. [Saxena2006] Saxena, Nitesh, et al. "Secure device pairing based on a visual channel." 2006 IEEE Symposium on Security and Privacy (S&P'06). IEEE, 2006.
- 4. [Ischi2009] Ischi, Reto. Security properties of device pairing protocols. MS thesis. ETH, Swiss Federal Institute of Technology Zurich, Information Security Department, 2009.
- 5. [Corner2002] Corner, Mark D., and Brian D. Noble. "Zero-interaction authentication." Proceedings of the 8th annual international conference on Mobile computing and networking. 2002.
- 6. [Miettinen2014] Miettinen, Markus, et al. "Context-based zero-interaction pairing and key evolution for advanced personal devices." Proceedings of the 2014 ACM SIGSAC conference on computer and communications security. 2014.
- 7. [Truong2014] Truong, Hien Thi Thu, et al. "Comparing and fusing different sensor modalities for relay attack resistance in zero-interaction authentication." 2014 IEEE International Conference on Pervasive Computing and Communications (PerCom). IEEE, 2014.
- 8. [Sehgal2012] Sehgal, Anuj, et al. "Management of resource constrained devices in the internet of things." IEEE Communications Magazine 50.12 (2012): 144-149.
- 9. [Kumar2006] Kumar, Sandeep S. Elliptic curve cryptography for constrained devices. Diss. Bochum, Univ., Diss., 2006, 2006.
- 10. [Pisani2020] Pisani, Flávia, et al. "Fog computing on constrained devices: Paving the way for the future iot." Advances in Edge Computing: Massive Parallel Processing and Applications 35 (2020): 22-60.
- 11. [Fomichev2021] Fomichev, Mikhail, et al. "FastZIP: faster and more secure zero-interaction pairing." Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services. 2021. https://doi.org/10.5281/zenodo.4777836
- 12. [Putrada2021] Putrada, Aji Gautama, and Nur Ghaniaviyanto Ramadhan. "A Proposed Hidden Markov Model Method for Dynamic Device Pairing on Internet of Things End Devices." Journal of ICT Research & Applications 14.3 (2021).
- 13. [Lee2021] Lee, Kyuin, and Younghyun Kim. "Balancing Security and Usability of Zero-interaction Pairing and Authentication for the Internet-of-Things." Proceedings of the 2th Workshop on CPS&IoT Security and Privacy. 2021.
- 14. [Fomichev2019] Fomichev, Mikhail, et al. "Perils of zero-interaction security in the Internet of Things." Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 3.1 (2019): 1-27.
- 15. [Lee2019] Lee, Kyuin, et al. "Voltkey: Continuous secret key generation based on power line noise for zero-involvement pairing and authentication." Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 3.3 (2019): 1-26.
- 16. [Fomichev2019] Fomichev, Mikhail, Max Maass, and Matthias Hollick. "Zero-Interaction Security-Towards Sound Experimental Validation." GetMobile: Mobile Computing and Communications 23.2 (2019): 16-21.
- 17. [Ustundag2021] Ustundag Soykan, Elif, et al. "Context-Aware Authentication with Dynamic Credentials using Electricity Consumption Data." The Computer Journal (2021).
- 18. [Wang2020] Wang, Weicheng, et al. "Analyzing the attack landscape of Zigbee-enabled IoT systems and reinstating users' privacy." Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks. 2020.
- 19. [Li2020] Li, Li, Proyash Podder, and Endadul Hoque. "A formal security analysis of ZigBee (1.0 and 3.0)." Proceedings of the 7th Symposium on Hot Topics in the Science of Security. 2020.
- 20. [Cabuk2021] Cabuk, Umut Can, Gokhan Dalkilic, and Orhan Dagdeviren. "CoMAD: Context-aware mutual authentication protocol for drone networks." IEEE Access 9 (2021): 78400-78414.
- 21. [Huang2021] Huang, Huihui, et al. "An efficient ECC-based authentication scheme against clock asynchronous for spatial information network." Mathematical Problems in Engineering 2021 (2021).
- 22. [Makonin2016] Makonin, Stephen, 2016, "AMPds2: The Almanac of Minutely Power dataset (Version 2)", https://doi.org/10.7910/DVN/FIE0S4, Harvard Dataverse
- 23. [Pereira2020] Pereira, Lucas. 2020. "A Residential Labeled Dataset for Smart Meter Data Analytics." OSF. March 20. doi:10.17605/OSF.IO/JCN2Q.

Thank you!

Comments & Suggestions

Ph.D. Dissertation Fall 2022