
1

Ph.D. Dissertation Presentation
November 06th, 2020

Department of Computer Science and Engineering
Kyung Hee University

A Cache Based Method to Improve Query Performance of
Linked Open Data Cloud

Mr. Usman Akhtar

KYUNG HEE
UNIVERSITY
Department of Computer Science & Engineering
Ubiquitous Computing Lab

Prof. Sungyoung Lee
Prof. Eui-Nam Huh

Advisors

2

Contents
▪ Introduction

o Background

o Motivation

o Research Taxonomy

o Research Problem

▪ Related Work
o Existing work problems

▪ Proposed Methodology
o Idea Diagram

o Proposed Solutions

▪ Experiment & results
o Experimental Setup

o Experimental Results

▪ Conclusion
o Future Work

▪ Publications

▪ References

3

Background
Introduction » Related Work » Proposed Solution » Experiment-Evaluation » Conclusion

 Linked Open Data Cloud (LOD) is a distributed knowledge base on the
web that handles a large number of requests from applications
consuming these data [1,2].

 Understanding the evolution of the Linked Data Cloud (LOD) is
important for applications [5,6].

❖ e.g., Query Caching, Web Crawling, and knowledge graph search
engines. Li

n
ke

d
 D

at
a

D
yn

am
ic

s

 Traditional ways of querying LOD are as follows:

❖ Data Dumps [6].

❖ Querying endpoints [7]. Q
u

er
yi

n
g

Cons: Public endpoints are often
unreliable.

Low availability (Downtime)

High querying cost

Hosting endpoints are
expensive

Querying endpoints

Cons: Dump the data locally and
allows to setup own private querying
endpoints.

Out-of-date data

No longer query the web

Infrastructure cost

Data Dumps

Server perform all the processing

Performance
bottleneck

Client

Client
Client

Client

Client
Client

Querying Server

<

4

Motivation

Linked Data
Caching

Server-side caching Client-side caching

+ Server manages request
from cache

+ Dependent on the
database

− Not flexible approach
− High server cost
− Low availability

+ Moving intelligence from
server to the client

+ More flexible
+ High availability
+ Low server cost
− Not fully explored, still in
the early days of the research

Query Prefetching
Similar query requests
are served from cache

Higher hit rates

Methodology
I

AI Decentralized caching

A

I Idea A Advantage

Akhtar, Usman, Anita Sant’Anna, and Sungyoung Lee. "A Dynamic, Cost-Aware, Optimized Maintenance Policy for Interactive Exploration of Linked Data." Applied Sciences 9, no. 22 (2019): 4818.

SPARQL endpointProposedData dumps

Low availability

Out-dated data

No longer query
the web.

Limitations
Low availability

Hosting endpoints
are expensive

High client cost

Benefits
High availability

Decentralized
caching

Low server cost

Benefits Limitations

(Existing)
(Existing)(Caching)

Introduction » Related Work » Proposed Solution » Experiment-Evaluation » Conclusion

 To unlock the full potential of Linked data sources, we
need flexible ways to query them [8].

 Following benefits drive our research:

 High-availability to the server.

 High query performance

(Existing) (Proposed)

5

Research Taxonomy

Server Side Caching

Client Side Caching

Query Similarity
Distance-based

Similarity

Query Augmentation

Query Refinement

Result-based
Similarity

Time-based
Replacement

Frequency-based
Replacement

Se
m

an
ti

c
D

at
a

M
an

ag
em

e
n

t

Structure-based
Similarity

Query Prefetching

Cache Replacement

Proposed
In

fo
rm

at
io

n
 S

ea
rc

h
 &

 R
et

ri
ev

al

Existing

Proposed

❖ Computationally efficient
in identifying similar
queries [14].

❖ Improve hit rate and
query time by retrieving
contents possibly
requested for future
queries [10].

❖ Ranks each query
according to the
frequency, most
frequently accessed
queries are kept in cache
[15].

Introduction » Related Work » Proposed Solution » Experiment-Evaluation » Conclusion

6

Research Problem

Reliable query access of public linked datasets largely remains challenge due to low availability, especially under high work
loads, therefore, preventing it’s use in real-world applications [1-4],[8].

 Goal

 To devise a scalable and sustainable approach that identifies the possible bottlenecks of
querying web of data with high availability by moving intelligence from the server to the
client. Thus, achieving a better query performance for interactive exploration of LOD.

 Objectives

 To design a client-side caching by balancing the cost of query processing between data
providers and data consumers.

 Leverage the tradeoffs between the data availability and improve query performance by
answering queries from client’s cache.

 Challenges

 Challenge 1: Local caches become outdated, due to the continuous evolution of LOD. In order
to utilize best resources, improvised change metric is required to quantify the changes occurs
in the LOD cloud [11][12].

 Challenge 2: Queries issued by the end user are similar in pattern, challenge is to find identical
queries, as two queries may be structurally similar but different in content [9][10].

 Challenge 3: Cache has a limited space, it is critical to fill it with valuable content, therefore,
how to design an efficient cache replacement policy? [13]

Problem Illustration
Server perform all the processing

H
TT

P
ca

lls

H
TT

P
ca

lls

SPARQL

Server

SPARQL

Server

Data Provider

Data Consumer

Introduction » Related Work » Proposed Solution » Experiment-Evaluation » Conclusion

Problem Statement

7

Related Works
Existing work problems

Categories Methodologies Advantages
Method Limitation Overheads

Query Similarity
&

Prefetching
(Challenge 1&2)

[SQC] Improving the performance
of semantic web applications with
SPARQL query caching [16]

• Cache complete triples query results.

• Introduce a proxy layer to cache
repeated query results

Structure based similarity
Server side caching

Only consider repeated
queries. High

[PFU] Proactive Policy for Efficiently
Updating Join Views on Continuous
Queries Over Data Streams and
Linked Data [11]

• Proposed maintenance policy that
update the cache prior to query
execution

Content based similarity
Server side caching

Only update the local cache at
system idle time. High

[CIR] Caching intermediate result of
SPARQL queries [17]

• Adaptive cache to store intermediate
results of SPARQL queries

Result based similarity

Client side caching
No cache replacement policy is

introduced.
High

[SDC] Semantic data caching and
replacement [18]

• Proposed a semantic region based
caching and a distance measure to
update cache

Distance based similarity

Server side caching
Only considered the structure

similarity while creating a
semantic region.

High

[CAS] Towards content aware
SPARQL caching for semantic web
application [19]

• Introduced a query containment
which evaluated whether a query can
be answered from cache or not.

Content based similarity

Client side caching
Containment checking is

computationally expensive
task.

High

Cache
Replacement

(Challenge 3)

[GAW] Graph-aware, workload-
adaptive SPARQL query caching [20]

• Work-load adaptive caching to reduce
the SPARQL query response time

Result based similarity
Server side caching

Time based cache replacement
High

[Autosparql] Let user query your
knowledge base [21]

• Proposed machine learning approach
to leverage the query processing.

Structure based similarity

Server-Side Caching
The feature modeling

approach in their work is time
consuming

High

Query Similarity,
prefetching

& Cache Replacement
Proposed method

O
(Alleviate burden on querying

endpoints by identifying queries
learnt from client historical patterns)

O
(Distance based similarity &

Frequency based cache
replacement)

O
(Local data Cache need
to be updated during

system idle time)

Low

Introduction » Related Work » Proposed Solution » Experiment-Evaluation » Conclusion

8

Our Approach: Limitation, Objective & Solutions

Limitations & Challenges Proposed Solution Objectives

Solution 1(a)

Dynamic function to quantify the
evolution of LOD.

AACP Algorithm

PASU Algorithm

Challenge: 1

Unable to quantify the evolution of
LOD and changes occurs in the cloud.

Unable to prioritize recent changes
occurs in the cloud

• Identifies the changes occurs in
the LOD.

• Predicting change for better
resource utilization

Challenge: 2

Unable to identifies the similar
structure queries that aggravate the
burden on query.

Solution 1(b)

Query Augmentation to prefetch
contents possibly requested in future.

Query Suggestion

Query Relaxation

• Remove the burden on the
querying endpoints.

• Result of similar queries are
placed in cache for future access.

Limitations & Challenges Proposed Solution Objectives

Limitations & Challenges Proposed Solution Objectives

Challenge: 3

Unable to replace less valuable items
from cache.

Solution 2

Adaptive cache replacement when
cache become full.

Frequency based cache
replacement

• Identifies the less valuable items
from cache.

• Improve cache hit rates

Introduction » Related Work » Proposed Solution » Experiment-Evaluation » Conclusion

9

Thesis Map

Change Metric

Problem: Linked Data Evolution
Result: Quantify the changes

occurs in the cloud
such as addition
and deletion of
items

Problem: Change Prioritization
Result: Identify the recent

changes occurs in
the cloud using
weight function

Algorithm 1 & 2
AACP Algorithm
PASU Algorithm

Algorithm 3
Query Augmentation

Solution 1b

Problem: Similar structure
queries

Result: Prefetches the result
of similar queries
and placed in cache
for future queries

Problem: Replace cache
Result: Frequency based

cache replacement
for replacing less
valuable cache
items

Algorithm 4
Cache Replacement

Solution 2Solution 1a

Proposed Solutions

Unable to quantify the
evolution of LOD.

Less flexible

Dump all the data locally.

Existing Approach

Challenge 1, 2

Unable to prioritize recent
changes occurs in the cloud

Issued irrelevant queries

Performance bottleneck

Existing Approach

Challenge 3

Only consider the
structure similarity.

Aggravate the burden on
query endpoint by issuing
similar structure queries.

Existing Approach

The cost of cache
maintenance is high

Introduced the time based
cache replacement

High overhead

Existing Approach

User
LOD

Cloud

Outcomes
Low overheads

High Query

performance

Outcomes
High Overheads

Low query
performance

C1: Linked data
evolution

C 2: Query
Similarity

C 3: Cache
Replacement

Challenges

Introduction » Related Work » Proposed Solution » Experiment-Evaluation » Conclusion

10

Proposed Solutions

AS IS:

LOD

Cloud

High Maintenance cost

_Less Flexible.
_Highly depend on the Knowledge Base (KBs).
_Burden on querying endpoints.

Existing Approach

User Linked Data Caching Dumping Data

Local Cache

TO BE:

 Thesis Contributions

 Comprehensively utilize client side Linked Data caching for better query performance.

❖ Solution 1(a): Proposed change metric to quantify the evolution of Linked Open Data (Published: IEEE Access).

❖ Solution 1(b): Proposed query augmentation to alleviate the burden on server (Published: Computing, Springer).

❖ Solution 2: Proposed frequency based cache replacement to replace less valuable cache items (Published: Applied Sciences, MDPI).

Limitations:

LOD

CloudFrequency Based

Replacement

Replacement

Policy

Proposed Approach

User Linked Data Caching

_More Flexible.
_Fast querying time.
_Less burden.

Change Metric

PASU Algorithm

Query Augmentation

Cache
Replacement

Local Cache

Less Overhead cost

Solution 1 (A)

Solution 1 (b)

Solution 2Improvements:

(Abstract)

Introduction » Related Work » Proposed Solution » Experiment-Evaluation » Conclusion

11

Proposed Solutions
Introduction » Related Work » Proposed Solution » Experiment-Evaluation » Conclusion

Dynamic Function

Change Prioritization

Maintenance Policy

Quantify Evolution of LOD

Solution-1a
(Quantify evolution of LOD)

Change
Metric

Query
Prefetching

Solution-1b
(Based on Prefetching)

Query Suggestion

Query Relaxation

Query Augmentation

• The construction of the Dynamic function to quantify
the evolution of LOD.

• Prioritize the recent changes in the cloud and update
the local cache.

• Prefetching the result of previously issued queries and
store in cache for future queries.

Highlights of the proposed solutions

Cache
Replacement

Linked Data evolution

Solution-2
(Cache Replacement)Cache Maintenance

Recent changes

(Detailed)

12

Solution 1(a): Quantify Evolution of LOD(1/4)

Introduction » Related Work » Proposed Solution » Experiment-Evaluation » Conclusion

Usman Akhtar et al. (2019) A Dynamic, Cost-Aware, Optimized Maintenance Policy for Interactive Exploration of Linked Data, Applied Sciences, MDPI, (IF: 2.5)

Workflow to obtain the model for Linked Data evolution

 Proposed Uniqueness:

I. Dynamic function

❖ Distance-based approach to identifies
changes in LOD cloud.

II. Change Prioritization

❖ Weight-based function to assign
importance to the recently change items
in LOD.

• Compared to data dumps, our approach is more
flexible to identify the changes in the LOD cloud.

• Change-aware maintenance for effectively
updating local data cache

Differences from Existing Approaches

▪ Problem: Due to the evolution of the LOD sources, local data caches become outdated.

▪ Ideal Case: Quantifies the changes occured in the recent past.

▪ Solution: Proposed change metric to quanity the evolution of the LOD cloud.

III. Maintenance Policy

❖ Our maintenance policy
update the local cache
based on the preference
score.

 Change Metric:

Proposed Methodology

(Challenge 1a & 1b)

13

Solution 1(a): Quantify Evolution of LOD(2/4)

Introduction » Related Work » Proposed Solution » Experiment-Evaluation » Conclusion

I. Dynamic Function (Θ)

➢ Problem: Linked Data Cloud (LOD) are highly dynamic in nature e.g., contents gets added, updated and removed.

➢ Ideal Case: Quantifies changes accours in the cloud.

➢ Solution: Change metric based on the dynamic function.

Timet j

Δ 0,)

Jaccard 1 2ti (X , X)=1−
X1 X2

X X1 2

Usman Akhtar et. all. (2018). Change-Aware Scheduling for effectively updating linked open data caches, IEEE ACCESS (IF: 3.745)

• Proposed function able to quantify the addition and
deletion of triples with a real number.

• As compared with existing approaches, our approach
is more flexible to identifies the changes in the LOD
cloud.

Salient Features and Benefits

• Existing approach dump all the data into local data
caches.

• The existing change metric are less dynamic unable to
identify which data sources are added, updated and
removed.

Differences from Existing Approaches

14

Solution 1(a): Quantify Evolution of LOD(3/4)

Introduction » Related Work » Proposed Solution » Experiment-Evaluation » Conclusion

Usman Akhtar et. all. (2018). Change-Aware Scheduling for effectively updating linked open data caches, IEEE ACCESS (IF: 3.745)

• More flexible for data analytics
applications that consume the evolving
LOD cloud.

• Less space is required to update the
recently changed items.

• Offline process to evaluate the resources.

Salient Features and Benefits

• Assign importance of the recently changed
items in LOD cloud.

• Our approach consider the dynamic
resource based on the last modified date
as compared to existing which is mainly
focus on the page rank.

Differences from Existing Approaches

II. Change Prioritization
➢ Problem: Impact of the data evolution is independent of the time e.g., contents are added, updated and removed.

➢ Ideal Case: It is desireable to priotize changes in certain period of time such as recent past.

➢ Solution: Application-Aware Change Prioritization (AACP), assign more weights to changes occurs in the recent past.

Proposed Algorithm (AACP) Existing Algorithm

: Linked Data Set

: Recently changed Item

 is timestamp of the record then

 where is the present time

 (,)

i i

p p

i i

Input

Output

For t X

ComputeAge

If t

t t t

return w X t

=

: Linked Data Set

: Sources Based on the Page Rank

 is rank of the page record then

 where is the data sets

 ()

i i

i i

i

Input

Output

For t X

ComputePageRank

If PR

PR X X

return PR X

15

Solution 1(a): Quantify Evolution of LOD(4/4)

Introduction » Related Work » Proposed Solution » Experiment-Evaluation » Conclusion

Usman Akhtar et. all. (2018). Change-Aware Scheduling for effectively updating linked open data caches, IEEE ACCESS (IF: 3.745)

III. Maintenance (Update) Policy
➢ Problem: Due to the evolution of the LOD sources, local data

caches become outdated.

➢ Ideal Case: Maintenance policy only visits the sources that
have been changed in the recent past.

➢ Solution: Preference-Aware Source Update (PASU), update
the local cached based on the preference score

Proposed Maintenance Policy
Preference Aware Source Updates (PASU):
Existing approach prefetches all the data and store in the local
cache. The proposed maintenance policy will update the local data
caches according to the preference score:

I. Init ()

II. Update Function ()

III. Estimate Score ()

Update local cache based on the
preference score

()

0; Total number of access

0; number of detected changes

0; sum of the times from changes

(,) Update Variables

N = N+1;

If () Has the element changed?

i i

i i

Init

N

X

T

Update T I

T I then

UpdateCache JobSch

=

=

=

; The element has not changed.

()

 ; return the estimated value.

i

eduler

else

T T I

Estimate

X
return

T

= +

16

Solution 1(b): Query Augmentation
Introduction » Related Work » Proposed Solution » Experiment-Evaluation » Conclusion

Usman Akhtar et al. (2019) A Dynamic, Cost-Aware, Optimized Maintenance Policy for Interactive Exploration of Linked Data, Applied Sciences, MDPI, (IF: 2.5)

▪ Problem: More than half of the querying endpoints, which is <95% of availability.

▪ Ideal Case: Retrieve contents that are possible be requested for future access.

▪ Solution: Proposed query augmentation to alleviate the burden on server and prefetches
the result of similar queries for future access.

Workflow to obtain the model for Query Augmentation

 Proposed Uniqueness:

I. Query Suggestion

❖ Our approach considers both structure and content-wise similarity
based on the distance score.

II. Query Relaxation

❖ Our approach attempts to modify the queries to retrieve additional
information relevant for future access.

• Existing approaches only consider structure
similarity. Two queries potential are same but
yields different results.

• Existing approach aims at improving the recall in
retrieval effectiveness.

Differences from Existing Approaches

QUERY AUGMENTATION

 Query Augmentation:

Proposed Methodology

(Challenge 1a & 1b)

17

Solution 1(b): Query Augmentation
Introduction » Related Work » Proposed Solution » Experiment-Evaluation » Conclusion

Usman Akhtar et al. (2019) A Dynamic, Cost-Aware, Optimized Maintenance Policy for Interactive Exploration of Linked Data, Applied Sciences, MDPI, (IF: 2.5)

i. Query Suggestion → Comparison
Existing Approach Proposed Idea

Query logs

0

 (,) 1 1 2

 (

:

:

,)1 2

 1 2

MatchingPatterns

Score

foreach Q Q map

Inpu

p

t

Output

r

ings do

Score score Q Q

else

if Q Q

eturn

then

 =

 +

Algorithm: Query Suggestion

Existing Approach Limitations
Only consider the structure-wise similarity.
Online process, compute during system
peak time

Algorithm: Query Suggestion
Query logs

 then1 2

0

 () . 1 2

 .

. . ()

:

:

MatchingQueries

if Q Q

return

foreach Q Q mappings values then

foundmapping ture

break

else

if Subject Subject Count then

Subject Count IncreaseCount

Input

Output

retur resuln t

 =

Proposed approach benefits
Consider the structure and content-wise similarity.
As an offline process, compute only during the system idle
time.

18

Solution 1(b): Query Augmentation
Introduction » Related Work » Proposed Solution » Experiment-Evaluation » Conclusion

Usman Akhtar et al. (2019) A Dynamic, Cost-Aware, Optimized Maintenance Policy for Interactive Exploration of Linked Data, Applied Sciences, MDPI, (IF: 2.5)

ii. Query Relaxation → ComparisonExisting Approach Proposed Idea

Existing Approach Limitations

Aggravate the burden on query endpoint
by issuing similar structure queries
Performance bottleneck

Proposed approach benefits
Similar structure queries are execute only once.
Store the additional facts useful for subsequent
queries.

Query
Cluster

Query
Execution

Query
Templates

Query
Augmentation

Query
Cluster

Query
Refinement

19

Solution 1(b): Query Augmentation
Introduction » Related Work » Proposed Solution » Experiment-Evaluation » Conclusion

Usman Akhtar et al. (2019) A Dynamic, Cost-Aware, Optimized Maintenance Policy for Interactive Exploration of Linked Data, Applied Sciences, MDPI, (IF: 2.5)

Query Relaxation → ComparisonExisting Approach Proposed Idea

Algorithm: Query Refinement
{ , ,..., }1 2

 Q

DistanceScor

:

:

e()

tan ()

 Q

C Q Q Q n
QueryExecutionE

foreach Q C do

m D

foreach C m do

Q Dis ce D

FoundMapping True

B

Inpu

reak

t

Output

return E

=

=

{ , ,..., }:1 2

()

(,)

. ()

.addtoProjection(T.getvaria

:

:

ble())

i

C Q Q Q SimilarQueriesn
Q QueryTemplate

foreach Q C dop
m TriplePatternMatching P Q

foreach T m dop
Q replace Q Qi j
Until

T T getVariab

Input

Ou

les

Q

Q

tput

return

=

=

Algorithm: Query Template

{ , ,..., }1 2

. 0

 ()

 0

()

(, ,)

. ()

:

()

.

:

i

i

i

T Q Q QQ n
Occurance of Frequent Subjects

Subject Count

foreach Q T condition dop
S PQ

Where S do

foreach Q S dop
S S PQ

else

S P O P Q

Subject Count

Input

Ou

Increa

tput

retu

e ou

r

s C nt

=

 =

 getHighestCn ount

Algorithm: Central Concept Fetching (CCF)

• We utilize the template based prefetching to alleviate
the burden of execution of similar queries.

• By using the augmentation of central concept
fetching, we retrieve additional information that are
useful for future queries.

Differences from Existing Approaches

20

Solution 2: Linked Data Cache Replacement
Introduction » Related Work » Proposed Solution » Experiment-Evaluation » Conclusion

▪ Problem: Cache replacement is a problem to replace the cache with valuable content.

▪ Ideal Case: The request of similar queries are sent from the cache to improve cache hit rates.

▪ Solution: Our idea is to replace cache based on the accessed frequencies highly accessed
querie are kept in cache for future queries.

 Proposed Uniqueness:

 Cache Replacement

❖ We proposed an frequency-based cache replacement,
when the cache become full, the replacement is
based on the access frequencies.

• The cache replacement is performed when the local
cache become full.

• The proposed cache replacement is based on the
frequency of the previous accessed queries.

• Higher queries are placed in cache for future access

Differences from Existing Approaches

Usman Akhtar et al. (2019) “A cache-based method to improve query performance of linked Open Data cloud." Computing (2020), Springer, (IF: 2.40)

Workflow to obtain the model for Query Augmentation

 Cache Replacement:

Proposed Methodology

(Challenge 2)

21

Solution 2: Linked Data Cache Replacement
Introduction » Related Work » Proposed Solution » Experiment-Evaluation » Conclusion

Usman Akhtar et al. (2019) “A cache-based method to improve query performance of linked Open Data cloud." Computing (2020), Springer, (IF: 2.40)

Cache Replacement → Comparison
Existing Approach Proposed Idea

Time based cache replacement.

Low cache hit rates due to inefficient
approach

Space and performance overheads

Limitation of Existing approach

 Existing approach proposed a time-based cache replacement:

Do not consider the frequency of the access data.

Poor accuracy of the cache replacement reduces the hit
rates.

When the caches become full, existing approaches
triggers the full cache replacement.

Predict when the cache need to be
updated.
Frequency based cache replacement.
Less space and performance overheads.

Proposed approach benefits

 We proposed an offline process for cache replacement, following
are the steps involved in our approach:

Log record accesses
Forward scanning to identify access frequency
Exponential smoothing approach to estimate
access frequencies

 Calculation of access frequencies using exponential smoothing:

𝒘 𝒕𝒌 = 𝜶 ∗ 𝒙𝒕𝒌 + 𝟏 − 𝜶 ∗ 𝒘(𝒕𝒌−𝟏)

W(tk): Score at time tk Xtk
: observed value at time tk

α : decay constant In our scenario, xtk
= 1 if observed, 0 otherwise

tB=t1 tn=tEt2

0 1 0 0 1 1

t3

Example
timeline for
single record:

22

Experimental Environments
Introduction » Related Work » Proposed Solution » Experiment-Evaluation » Conclusion

 Setup Configurations:

 We have evaluated our proposed on real Linked datasets
e.g., DYLDO & BTC datasets [12].

 All the experiments were performed on 4x AMD A8-7650
Radeon R7, 64bit Ubuntu LTS and OpenLink Virtuso Server

 Dataset selection:

 DYLDO Dataset: On average the size of the each snapshots
is 1.35 GB (149 Weekly Crawls)

 BTC Datasets: Collected from multi-crawler frameworks, the
size of each snapshots was 3.7 GB.

 Evaluation metric:

 Accuracy: We have evaluated the effectiveness of our
approach by using the precision and recall.

 Effectivity: Shows the runtime overhead cause due to
irrelevant execution

 Performance: Examine the hit rates and space overhead.

'
, ,

' '
,

| |
Precision

| |

c t c t

t c t

X X

X X

=

'
, ,

'
,

| |
Recall

| |

c t c t

t c t

X X

X X

=

(%)
relavantquery

totalexecution

R
Effectivity

T
=

PLD Avg. triples per
snapshots

Avg. triples
added

Avg. triples
remove

Description

Identica.ca 1,341,045
2930 2563

Open source social
engine

Loc.gov 369,884 2220 1890 Library congress

Linkedct.org 1,782,884 4263 3529 Live data browser

Dbtropes.org 4,080,910 5414 45518 Online wrapper

Neuinfo.org 2,065,028 3580 4080
Neuroscience
information

DYLDO Datasets Characteristics

PLD Avg. triples per
snapshots

Avg. triples
added

Avg. triples
remove

Description

Berkeleybop 55,124,003
3920 2563 Social engine

Bio2rdf.org 20,168,230 4263 3529 Disease data

Data.gov.uk 13,302,277 5414 45518 DBpedia

Dataincubator 1,729,455 3810 2108 Data science

Freebase 25,488,720 2630 9080 Wikipedia

BTC Datasets Characteristics

✓ TLR

✓ LRU

✓ LFU

✓ SQC

✓ Proposed

✓ PageRank

✓ Size

✓ Age

✓ ChangeRatio

✓ ChangeRate

Akhtar, Usman, et al. "Change-aware scheduling for effectively updating linked open data caches." IEEE Access 6 (2018)

 Candidate Approaches:

(Solution - 1a,1b & 2)

23

Experimental Results
Introduction » Related Work » Proposed Solution » Experiment-Evaluation » Conclusion

 Goal: The goal is to evaluate the effectiveness of the maintenance policy in order to
keep the caches up-to-date.

 Single Setup: In single setup, we utilized the quality of the updates performed by
the maintenance for a single iterations.

 Iterative Setup: In an iterative approach, the goal is to estimate the accuracy, how
good is update policy for maintaining up-to-date caches for longer period of time.

Single setup Iterative setup

• The proposed approach reported to
outperform other approaches by achieving an
F-measure score of 90%.

Findings

 Accuracy measurement
 Most accurate: proposed approach

❖ Maintain the caches up-to-date

 All other strategies shows the uniform loss of the
quality

❖ Execute irrelevant updates.

❖ Massive amount of overhead, resulting in low a
low effectivity.

 Worst accuracy: PageRank and Age based strategies

Akhtar, Usman, et al. "Change-aware scheduling for effectively updating linked open data caches." IEEE Access 6 (2018)

 Maintenance Quality(1/2)

(Solution-1a &1b)

Evaluation Idea Diagram

24

Experimental Results

 Maintenance Quality(2/2)

 Goal: We utilized the quality of the updates performed by
maintenance policies under consideration.

 Accuracy measurement
 Most accurate: Proposed approach

❖ Our proposed approach outperform the existing
approaches, achieving 91% (precision) and 89% (recall)
accuracy in LOD datasets.

 Findings
 Our proposed approach only updates the relevant data sources

with less overhead and delays.

❖ PageRank, Size, TTL performed worst because these
strategies were executing the irrelevant queries.

❖ ChangeRatio and ChangeRate only captured changed items
and their efficiency degraded with each iteration overtime.

 Summary
❖ Our approach only executed the relevant data updates with

less drop and delay.

❖ Existing strategies execute massive amount of overhead,
resulting in low effectivity.

Update strategies Total Query
Execution

Irrelevant Relevant Effectivity Runtime (sec)

PageRank 32,690 30,650 2,040 6.20 800

Size 28,521 16,448 12,072 42.3 560

Age 29,128 10,560 18,960 63.9 500

ChangeRatio 29,550 9,800 19,750 66.3 320

ChangeRate 27,690 4,500 25,062 75.6 220

Proposed 19,250 1,900 27,890 93.5 33

Figure. Quality of Updates performed by the proposed approach as compared to the
existing approaches.

Usman, Akhtar et . "A Dynamic, Cost-Aware, Optimized Maintenance Policy for Interactive Exploration of Linked Data." Applied Sciences 9.22 (2019)

Introduction » Related Work » Proposed Solution » Experiment-Evaluation » Conclusion

(a) Precision on DYLDO data (b) Recall on DYLDO data

(Solution-1a &1b)

Table. Evaluating the effectivity of the update strategies.

25

Experimental Results

 Maintenance Cost
 Goal: The goal of the maintenance cost is the time taken to perform maintenance

operations.

 Performance measurement
 Response Time: Proposed approach

❖ As compared with the existing approach, we perform offline maintenance
task with less response time.

 Maintenance Time: Proposed approach

❖ The maintenance time is less as compared to the existing approaches.

❖ Existing policies often run in the background, they produced high latency.

 Findings
 Existing approaches perform maintenance during system peak time.

❖ Strategies such as PageRank, Size, eager performed worst because they
trigger the maintenance during system peak time.

❖ The proposed approach produce a lower elapsed time of 5s as compared
to state-of-the-art approaches.

 Summary
 As compared with the existing approach, existing approach produce

less response time while update the local data caches. Showing the comparison with other state-of-the-art
approaches on (a) DYLDO and (b) BTC datasets.

Usman, Akhtar et . "A Dynamic, Cost-Aware, Optimized Maintenance Policy for Interactive Exploration of Linked Data." Applied Sciences 9.22 (2019)

Introduction » Related Work » Proposed Solution » Experiment-Evaluation » Conclusion

(Solution-1a &1b)

26

Experimental Results

(a) Hit rates (b) Exponential smoothing constant (c) Varying size of the cache

 Cache Hit Rates (1/2)

 Goal: The goal is to measure the performance of query time
in terms of better hit rates.

 Performance Evaluation
 Hit rates comparison

❖ Existing approaches such as LRU (Least Recently Used), LFU
(Least Frequently Used) and SQC (SPARQL Query Caching)
and measure the efficiency in terms of average hit rate.

❖ The proposed approach performed better in terms of higher
hit rates with varying size of the cache.

 Findings

 The proposed approach increase the hit rates by
5.46% and reduce the query time by 6.34%.

❖ LFU technique remains accurate for cache with
small size.

❖ We noticed that the choice of the smoothing
constant effect the accuracy, therefore we
have set its value to 0.05.

Usman Akhtar et al. (2019) “A cache-based method to improve query performance of linked Open Data cloud." Computing (2020), Springer, (IF: 2.40)

Introduction » Related Work » Proposed Solution » Experiment-Evaluation » Conclusion

Hit rate achieved by proposed approach as compared to LRU, LFU and SQC algorithms

(Solution - 2)

27

Experimental Results

 Summary

 Effectiveness of the proposed approach to state-of-the-art approaches,
namely eager, TTL, PageRank, Size, ChangeRatio and ChangeRate.

 The proposed approach outperform the existing approaches in terms of
lower maintenance cost, higher maintenance quality and better hit rates.

Showing the comparison of hit rates (a) DYLDO and (b) BTC datasets.

 Cache Hit Rates (2/2)

 Goal: We measure the performance of query times in terms of
better hit rates.

 Performance Evaluation

 Hit rates: Proposed approach

❖ As compared with the existing approach, our approach perform better in
terms of higher hit rates.

 Findings

 On average, the proposed approach out perform the existing approaches in
terms of higher hit rates.

❖ Proposed approach achieved higher hit rates (90%) as compared to the Eager
(70%), ChangeRate (69%).

❖ PageRank, TTL and size performed worst in term of cache hit rates.

Usman, Akhtar et . "A Dynamic, Cost-Aware, Optimized Maintenance Policy for Interactive Exploration of Linked Data." Applied Sciences 9.22 (2019)

Introduction » Related Work » Proposed Solution » Experiment-Evaluation » Conclusion

(a) DYLDO data

(b) BTC data

(Solution - 2)

28

Experimental Results

(a) Space Overheads

(b) Time Overheads

 Space and Time Overhead comparison

 Goal: The goal of this evaluation is to measure the space and time
overhead of the proposed approach.

 Performance Evaluation
 Space & time overhead comparison

❖ We measure the maximum space consumption of each approach
based on the maximum number of the query records each algorithm
stores in its cache.

❖ Proposed approach consume less space, and also the query response
time is better then existing.

 Findings

 On average the hit checking time of the proposed approach is
280ms, which is 10 times better than other approaches.

❖ Strategies such as LFU and LRU performed worst in case of
space overhead.

❖ In case of the time overhead, LRU and LFU take higher
checking time as compared to the proposed approach.

Showing the overhead comparison of proposed approach
Usman Akhtar et al. (2019) “A cache-based method to improve query performance of linked Open Data cloud." Computing (2020), Springer, (IF: 2.40)

Introduction » Related Work » Proposed Solution » Experiment-Evaluation » Conclusion

(Solution - 2)

29

Conclusion
Introduction » Related Work » Proposed Solution » Experiment-Evaluation » Conclusion

 Improve the accuracy and querying performance of Linked Open Data cloud.

 Future works

 Improved methods for effective ways of prefetching by utilizing the parallelizing algorithms to run on separate
machine.

 Improved the storing and querying over evolving data and replace the cache replacement during system idle
time.

Accuracy

Performance

✓ Higher accuracy of the proposed maintenance policy
by achieving an F-measure score of 90%.

✓ Increase the hit rates by 5.46% and reduce the query
time by 6.34%.

✓ Less overhead (10 times better)

Proposed
Methodology

30

Publications

 Patent (01)

• Domestic: (01)

 SCI / SCIE Journals (09)

• SCI: First Author (01)

• Computing (SCI), Springer (IF: 2.25)

• SCIE: First Author (02)

• IEEE Access (SCIE) (IF: 3.7)

• MDPI, Applied Science (SCIE) (IF: 2.47)

• Co-author: (06)

 Conferences (12)

• International:

• First Author (06)

• Co-author (02)

• Domestic

• First author (04)

 Patent (04)

• Domestic: 04

 Conference (01)

• International

• First author: 01

Total Publications

(27)

First Author Publications

(18)

Submitted StatusPublished Status

31

Selected References
1. Folz, Pauline, Hala Skaf-Molli, and Pascal Molli. "CyCLaDEs: a decentralized cache for triple pattern fragments." In European semantic web conference, pp. 455-469. Springer, Cham, 2016.

2. Gyrard, Amelie, Martin Serrano, and Ghislain A. Atemezing. "Semantic web methodologies, best practices and ontology engineering applied to Internet of Things." In 2015 IEEE 2nd World Forum on Internet of Things
(WF-IoT), pp. 412-417. IEEE, 2015.

3. Dividino, Renata Queiroz, Thomas Gottron, Ansgar Scherp, and Gerd Gröner. "From Changes to Dynamics: Dynamics Analysis of Linked Open Data Sources." In PROFILES@ ESWC. 2014.

4. Dividino, Renata, Thomas Gottron, and Ansgar Scherp. "Strategies for efficiently keeping local linked open data caches up-to-date." In International Semantic Web Conference, pp. 356-373. Springer, Cham, 2015.

5. Verborgh, Ruben, Miel Vander Sande, Pieter Colpaert, Sam Coppens, Erik Mannens, and Rik Van de Walle. "Web-Scale Querying through Linked Data Fragments." In LDOW. 2014.

6. Folz, Pauline, Hala Skaf-Molli, and Pascal Molli. "CyCLaDEs: a decentralized cache for Linked Data Fragments." In ESWC: Extended Semantic Web Conference. 2016.

7. Akhtar, Usman, Anita Sant’Anna, and Sungyoung Lee. "A Dynamic, Cost-Aware, Optimized Maintenance Policy for Interactive Exploration of Linked Data." Applied Sciences 9, no. 22 (2019): 4818.

8. Akhtar, Usman, Anita Sant’Anna, Chang-Ho Jihn, Muhammad Asif Razzaq, Jaehun Bang, and Sungyoung Lee. "A cache-based method to improve query performance of linked Open Data cloud." Computing (2020): 1-21.

9. Dividino, Renata Queiroz, and Gerd Gröner. "Which of the following SPARQL Queries are Similar? Why?." In LD4IE@ ISWC. 2013.

10. Lorey, Johannes, and Felix Naumann. "Detecting SPARQL query templates for data prefetching." In Extended Semantic Web Conference, pp. 124-139. Springer, Berlin, Heidelberg, 2013.

11. Chun, Sejin, Jooik Jung, and Kyong-Ho Lee. "Proactive policy for efficiently updating join views on continuous queries over data streams and linked data." IEEE Access 7 (2019): 86226-86241.

12. Akhtar, Usman, Muhammad Asif Razzaq, Ubaid Ur Rehman, Muhammad Bilal Amin, Wajahat Ali Khan, Eui-Nam Huh, and Sungyoung Lee. "Change-aware scheduling for effectively updating linked open data
caches." IEEE Access 6 (2018): 65862-65873.

13. Verborgh, Ruben, Miel Vander Sande, Pieter Colpaert, Sam Coppens, Erik Mannens, and Rik Van de Walle. "Web-Scale Querying through Linked Data Fragments." In LDOW. 2014.

14. Hasan, Rakebul. "Predicting SPARQL query performance and explaining linked data." In European Semantic Web Conference, pp. 795-805. Springer, Cham, 2014.

15. Zhang, Wei Emma, Quan Z. Sheng, Yongrui Qin, Kerry Taylor, and Lina Yao. "Learning-based SPARQL query performance modeling and prediction." World Wide Web 21, no. 4 (2018): 1015-1035.

16. Martin, Michael, Jörg Unbehauen, and Sören Auer. "Improving the performance of semantic web applications with SPARQL query caching." In Extended Semantic Web Conference, pp. 304-318. Springer, Berlin,
Heidelberg, 2010.

17. Yang, Mengdong, and Gang Wu. "Caching intermediate result of SPARQL queries." In Proceedings of the 20th international conference companion on World wide web, pp. 159-160. 2011.

18. Dar, Shaul, Michael J. Franklin, Bjorn T. Jonsson, Divesh Srivastava, and Michael Tan. "Semantic data caching and replacement." In VLDB, vol. 96, pp. 330-341. 1996.

19. Shu, Yanfeng, Michael Compton, Heiko Müller, and Kerry Taylor. "Towards content-aware SPARQL query caching for semantic web applications." In International Conference on Web Information Systems Engineering,
pp. 320-329. Springer, Berlin, Heidelberg, 2013.

20. Papailiou, Nikolaos, Dimitrios Tsoumakos, Panagiotis Karras, and Nectarios Koziris. "Graph-aware, workload-adaptive SPARQL query caching." In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, pp. 1777-1792. 2015.

21. Lehmann, Jens, and Lorenz Bühmann. "Autosparql: Let users query your knowledge base." In Extended semantic web conference, pp. 63-79. Springer, Berlin, Heidelberg, 2011.

32

Thank you
for your attention

Q & A ?

33

Appendix

34

Idea Diagram
Introduction » Related Work » Proposed Solution » Experiment-Evaluation » Conclusion

Unable to update the
cache prior to the query
execution

Update of the local data
caches during system peak
time.

Time based cache
replacement is inefficient
to replace content from
cache.

2

A dynamic function to deal
with the evolution of the
Linked Open Data

A change-aware algorithm
to update the content of
local data caches.

1a

Query augmentation to
alleviate the burden on
the server

Prefetching the result of
similar queries for future
access

1b

Frequency-based cache
replacement to eliminate
less valuable content from
cache.

2

0
Linked Data Cloud (LOD)

Change Metric

monitor

Application - Aware
Change Prioritization

Dynamic preferences

Preference – Aware
Source Update

Recent changes

(Solution 1a, 1b)

Update Policy

Linked Data Scheduling

Query Augmentation

Local Data caches

(Solution 2)

Unable to quantify the
evolution of LOD

Unable to prioritize recent
changes occurs in the
cloud

Aggravate the burden on
query endpoint by issuing
similar structure queries.

1 Existing Method

Existing Method

Proposed Solution

Proposed Solution

Proposed Solution

(C
h

al
le

n
ge

 1
 &

 2
)

(C
h

al
le

n
ge

 3
)

(Solution 1a & 1b)

(Solution 2)

Proposed approach - Overview

