
 

MIDDLEWARE 
INFRASTRUCTURE FOR 

CONTEXT-AWARE 
UBIQUITOUS 

COMPUTING SYSTEMS 

by 

CAMUS Team1 

 

Technical Report 

RTMM, Kyung Hee University 

Feb. 2005 

Approved by ___________________________________________________  
Project Supervisor 

__________________________________________________  

 
Date ____________________________________________________ 15th Feb 

                                                 
1 Anjum Shehzad, Hung N. Q., Kim Anh P. M. , Maria Riaz, Saad Liaquat, Sungyoung Lee, & Young Koo 

Lee. (Note: All in alphabetical order) 



 
RTMM, KYUNG HEE 

UNIVERSITY 

ABSTRACT 

MIDDLEWARE 
INFRASTRUCTURE FOR 

CONTEXT-AWARE UBIQUITOUS 
COMPUTING SYSTEMS 

by CAMUS Team 

Project Supervisor: Professor Sungyoung Lee 
Department of Computer Engineering 

Context-awareness is one of the fundamental requirements for achieving user- 
oriented ubiquity. Ubiquitous computing environment consists of diverse range 
of hardware and software entities, and is about the interactivity of such entities. 
Context-awareness is one of the fundamental requirements for achieving user-
oriented ubiquity. In this report, we present the design and approach to a 
middleware solution that expedites context-awareness in a ubiquitous computing 
environment. Context-Aware Middleware for Ubiquitous computing Systems 
(CAMUS) envisions a comprehensive middleware solution that not only focuses 
on providing context composition at the software level but also facilitates 
dynamic features retrieval at the hardware level by masking the inherent 
heterogeneity of environment sensors. Complexity is handled by providing 
'separation of concerns' between environment features extraction, contextual data 
composition and context interpretation. The entities and contextual information 
provided/utilized by them must have invariant meanings in order to have a 
common understanding among them. This results in sharing of information with 
common semantics, at different times and at different places and provides 
testability of formalized knowledge, emerging as a pool of consistent contextual 
knowledge available to different context-aware systems. Different reasoning 
mechanisms are incorporated in CAMUS as pluggable services. Ontology based 
formal context modeling using OWL is described. With a systematic approach, 
CAMUS is proved to be a flexible and reusable middleware framework.



 

TABLE OF CONTENTS 

1. Introduction..................................................................................................................... 5 
1.1 Ubiquitous Computing Vision............................................................................ 5 
1.2 Context-aware Computing................................................................................... 5 
1.3 Middleware and Its Evolution............................................................................. 7 

2. Middleware Architectures for Context-Aware Computing ..................................11 
2.1 Context Toolkit [6]..............................................................................................11 
2.2 Solar [19]................................................................................................................11 
2.3 Context Fabric [20] .............................................................................................12 
2.4 Gaia [15] ................................................................................................................12 
2.5 Motivation of Context-aware Middleware......................................................12 
2.6 Desired Elements of Context-aware Computing System............................13 

3. Context-Aware Middleware for Ubiquitous computing Systems........................17 
3.1 A Layered Model for Context-Aware Computing ........................................17 

4. Unified Sensing Framework .......................................................................................19 
4.1 Motivation.............................................................................................................19 
4.2 Feature Extraction through Unification Interface ........................................19 
4.3 Feature - Context Mapping: Utilizing the Strength of Reasoning..............22 
4.4 Discussion.............................................................................................................24 
4.5 Summary................................................................................................................25 

5. Formal Context Modeling and Representation.......................................................26 
5.1 Motivation.............................................................................................................26 
5.2 CONTEL – Context Model in CAMUS ........................................................28 
5.3 Context Repository in CAMUS – multi-domain data management, 
knowledge sharing and querying .............................................................................33 
5.4 Discussion.............................................................................................................36 
5.5 Summary................................................................................................................36 

6. Reasoning Engines .......................................................................................................37 
6.1 Motivation for Multiple Reasoning Mechanisms?.........................................37 
6.2 Reasoning Mechanisms for High-level Context in CAMUS.......................38 
6.3 Discussion.............................................................................................................42 
6.4 Summary................................................................................................................42 

7. Context Provision/Aggregation.................................................................................44 
7.1 Motivation.............................................................................................................44 
7.2 Dynamic Interaction ...........................................................................................47 
7.3 Architecture required for dynamic interaction...............................................51 
7.4 Discussion.............................................................................................................51 
7.5 Summary................................................................................................................52 

8. Context Delivery Services ...........................................................................................53 



 

8.1 Motivation.............................................................................................................53 
8.2 Requirements of Delivery Services ..................................................................54 
8.3 Semantics-based Discovery and Registration.................................................55 
8.4 Policy-based Interactive Autonomous Access Control................................57 
8.5 Architectural Overview of Context Delivery Module ..................................58 
8.6 Discussion.............................................................................................................60 
8.7 Summary................................................................................................................62 

9. Managing Distributed Communication Issues in a Context Aware Middleware 
Infrastructure .....................................................................................................................63 

9.1 Motivation.............................................................................................................63 
9.2 Coordination Challenges in CAMUS Infrastructure ....................................64 
9.3 Design Considerations for Coordination Framework..................................68 
9.4 Service Oriented Approach to Middleware Coordination...........................69 
9.5 CAMUS Runtime synopsis................................................................................72 
9.6 Discussion.............................................................................................................74 
9.7 Summary................................................................................................................76 

10. Some Research Issues for consideration/future work ........................................77 
10.1 Consideration Factors for System Paradigms..............................................77 
10.2 Privacy and Security Issues..............................................................................79 
10.3 Programming Toolkits for the development of context-aware 
applications..................................................................................................................79 
10.4 Future Research for Context Ontology ........................................................80 
10.5 Challenges in Context Reasoning...................................................................81 
10.6 Context Delivery – Semantics-based Autonomous Access Control and 
Matchmaking ..............................................................................................................81 
10.7 Autonomic Sensing Agents - Scope, Vision, Challenges...........................83 

11. Implementation Details .............................................................................................86 
11.1 Implementation progress .................................................................................86 
11.2 System workflow ...............................................................................................87 
11.3 UML design........................................................................................................88 
11.4 Scenario Description – Meeting Room Scenario ......................................111 
11.5 Prototype Description....................................................................................112 
11.6 Prototype Evaluation......................................................................................122 
11.7 System APIs to interact with the applications and u-Gateway...............122 

12. Conclusion .................................................................................................................126 
 



 

C h a p t e r  1  

INTRODUCTION TO UBIQUITOUS COMPUTING 

1. Introduction 

 
1.1 Ubiquitous Computing Vision 

The term "Ubiquitous Computing" was originally introduced by Mark Weiser [1] 
in the year 1991. In his fundamental article "The Computer for the 21st Century" [2], 
he elaborated about "the computer that disappears". For Weiser the way into the 
21st century was obvious: Computer and Network technologies are getting 
smaller, cheaper, and more powerful. Therefore, more and more everyday 
artifacts are going to be equipped with a reasonable amount of computing power 
and, maybe even more important, are networked together into a virtually unique 
network of communicating "things that think". In the pure sense of the word, 
computing gets "ubiquitous", anywhere, any time. Computers in every thing that 
is calmly doing what we intend it to do, in a way that is non-obtrusive and user-
friendly, in a sense that we do not have to focus our attention on the trivia of 
running an electronic system. 
 
Research on Ubiquitous Computing (Ubicomp) is related to very many other 
disciplines from Robotics and Embedded Systems, Networking and Distributed 
Systems, to Artificial Intelligence and Psychology. Thus Ubiquitous computing is 
a very difficult integration of human factors, computer science, engineering, and 
social sciences. 
 
1.2 Context-aware Computing 

One goal of Context-aware Computing is to acquire and utilize information about 
the context of a device to provide services that are appropriate to the particular 
people, place, time, events, etc. For example, a cell phone will always vibrate and 
never beep in a concert, if the system can know the location of the cell phone and 
the concert schedule. Often, the term "Context-aware Computing" is used in a 
sense synonymously to Ubiquitous Computing. This is because almost every 
ubicomp application makes use of some kind of context. Ubicomp is mainly 
about building systems which are useful to users, which "...weave themselves into 
the fabric of everyday life until they are indistinguishable from it" [2].   
 



 

For ubicomp systems, Context is essential. How can a system be helpful for a user? 
Users tend to move around often, doing new things, visiting new places, changing 
their mind suddenly, and changing their mood, too. Therefore, a helpful system 
seems to need some notion of Context.  
In the Human point of view, we have a quite intuitive understanding of Context. Here, 
Context is often referred to as "implicit situational understanding." In social 
interactions Context is of great importance. A gesture, a laugh, or the tone of 
sentences builds up the implicit "picture" of what is meant or what 
communication partner is thinking. The same words can have a completely 
different meaning in different contexts.  
In Computer Science, Context is quite a familiar concept, be it within the discipline of 
Artificial Intelligence ("Thinking machines"), in Robotics ("Adaptive Systems"), 
in User Interface Design (like adaptive UIs or office assistants like the Microsoft 
Office assistant called "Clippy"), or basically any other discipline (to some extent). 
Especially, every discipline dealing with human users tries to take into account 
human behavior one way or the other, with the generated output loops back as 
part of the vector of input values.  
 
From the variety of definitions commonly used by Ubicomp researchers we can 
imagine how difficult it is to find a common ground. Context definitions are far 
away from mathematical precision and a particular definition often strongly 
depends on an authors' subjectiveness: 
 

• Schilit and Theimer [3]: "Context is location, identities of nearby people 
and objects, and changes to those objects."  

• A. Dey and Abowd [4]: "Context is any information that can be used to 
characterize the situation of an entity. An entity is a person, place, or object that is 
considered relevant to the interaction between a user and an application, including the 
user and applications themselves." 

• Pascoe [5]: "Context is the subset of physical and conceptual states of 
interest to a particular entity."  

 
So what is this leading to? Are those definitions helpful or misleading? In the 
sense of a functional definition they are only helpful as a general description 
of what to do. As an application designer they are only stating what they are 
doing anyway: trying to figure out what input is needed to produce the 
desired output. Hence, it is of topmost importance to have some common 
ground or a common "vocabulary" when talking about what Context is. We 
need some sort of formal approach towards handling and describing Context. 
Furthermore, in a software engineering sense, we need building-blocks for 
building context-aware applications in a structured way. The Context Toolkit 
[6] by A. Dey is a step into this direction and a good example for this 



 

principle (fig.1.) The Toolkit includes building blocks called "Widgets", 
wrapper classes for Sensors which serve as a hardware-abstraction layer, 
"Aggregators", which concentrate multiple input values to a single output 
value, and "Interpreters", implementing some application logic and generating 
application dependant "higher-level" output based on the input given. They 
interpret the incoming data according to a pre-programmed scheme. 
 

 
 

Figure 1: The Context Toolkit Core Components 

 
With the Context Toolkit, the development of Context-aware applications 
basically consists of several distinguishable steps including  
1) The real-world is sensed;  
2) Context is detected, aggregated, "interpreted", and  
3) Applications are custom-built to match the "context-detection" technology.  
 
However, we believe that there is more tool-support necessary for software 
engineering and the design of Context-aware applications than provided today. 
We want to emphasize that the way applications are developed is very dependant 
on the underlying technology used, which we consider as bad practice in the long 
run. Research in the direction of decoupling applications from data acquisition 
seems to be important. This is detailed in the section 2, Middleware for Context-
aware Ubiquitous Computing Environments. 
 
1.3 Middleware and Its Evolution 

The role of middleware is to ease the task of designing, programming and 
managing distributed applications by providing a simple, consistent and 
integrated distributed programming environment. Essentially, middleware is a 
distributed software layer, or ‘platform’ which abstracts over the complexity and 



 

heterogeneity of the underlying distributed environment with its multitude of 
network technologies, machine architectures, operating systems and 
programming languages [7]. 
 
Different middleware platforms support different programming models. Perhaps 
the most popular model is Object-based Middleware in which applications are 
structured into (potentially distributed) objects that interact via location 
transparent method invocation. Prime examples of this type of middleware are 
the OMG's CORBA [7] and Microsoft's Distributed COM [7]. Both of these 
platforms offer an interface definition language (IDL) which is used to abstract over 
the fact that objects can be implemented in any suitable programming language, 
an object request broker which is responsible for transparently directing method 
invocations to the appropriate target object, and a set of services (e.g. naming, 
time, transactions, replication etc.) which further enhance the distributed 
programming environment.  
 
Sun’s Jini [8] may also be categorized into object oriented middleware. In Jini, 
service objects register with a centralized lookup-service which plays the role of 
matchmaker between clients and services. After a client finds a service, all 
interactions are performed in a location-transparent manner and without the aid 
of the lookup-service. Typically, object-based systems assume that a connection 
between a client and a service object is long-lasting, and therefore these systems 
do not address the possibility of disconnection in ubiquitous and mobile 
computing. 
 
Not all middleware are object based, however. Two other popular paradigms are 
event based middleware and message oriented middleware both of which mainly employ 
‘single shot’ communications rather than the request-reply style communication 
found in object based middleware. Event based middleware is particularly suited to 
the construction of non-centralized distributed applications that must monitor 
and react to changes in their environment. Examples are process control, Internet 
news channels and stock tracking. Ubiquitous and Mobile Systems cover 
applications characterized by the heterogeneity of systems and devices, as well as 
the (spontaneous) patterns of interconnection. Due to the unpredictability of 
interaction schemes and the preferred use of asynchronous communication 
patterns, system design based on the notion of events seems to be superior to 
classical client/server interaction schemes. It is claimed that event based 
middleware has potentially better scaling properties for such applications than 
object based middleware. Message oriented middleware, on the other hand, is biased 
toward applications in which messages need to be persistently stored and queued. 
Message oriented middleware supports data exchange and request/reply style 
interaction by publishing messages and/or message queuing in a synchronous 



 

and asynchronous (connectionless) manner. Workflow and messaging 
applications are good examples. 
 
The issues of mobile devices (heterogeneity, scare resources), network connection 
(limited bandwidth, high error rate, higher cost, and frequently unpredictable 
disconnections), and mobility (dynamic changes of the environment parameters) 
of ubiquitous and mobile systems posed new challenges to the design of 
middleware systems. The middleware need to be designed to achieve optimal 
resource utilization, adaptivity and dynamic reconfiguration. Reflective middleware is 
concerned with applying techniques from the field of reflection in order to 
achieve flexibility and adaptability in middleware platforms. Reflection is the 
capability of a system to reason about and act upon itself. A reflective system 
contains a representation of its own behavior, amenable to examination and 
change, and which is causally connected to the behavior it describes. “Causally-
connected" means that changes made to the system's self-representation are 
immediately reflected in its actual state and behavior, and vice-versa.  
 
Tuple Space Middleware systems exploit the decoupled nature of tuple spaces for 
supporting disconnected operations in a natural manner. By default they offer an 
asynchronous interaction paradigm that appears to be more appropriate for 
dealing with intermittent connection of mobile devices, as is often the case when 
a server is not in reach or a mobile client requires to intentionally disconnecting 
and saving battery and bandwidth. By using a tuple-space approach, we can 
decouple the client and server components in time and space. In other words, 
they do not need to be connected at the same time and in the same place. 
However, since JavaSpaces [9] and TSpaces [10], the common Tuple Space 
Middleware, typically require at least 60Mbytes of RAM, they are not affordable 
by most handheld devices available on the market nowadays. 
 
While traditional middleware for Distributed and Mobile environments do 
provide the basic mechanisms for different entities (or agents) to communicate 
with each other, they fall short in providing ways for agents to be context-aware. 
The ultimate goal of middleware for traditional computing environments is 
providing complete transparency of the underlying technology and the 
surrounding environments. Such an approach does not work for pervasive 
computing applications because being aware of the surrounding environment is 
the key to their effectiveness as we stated earlier. Moreover, Ubiquitous 
Computing environments feature a large number of autonomous agents. Various 
types of middleware (based on CORBA, Java RMI, SOAP, etc.) have been 
developed that enable communication interoperability between different entities, 
however, existing middleware have no facilities to ensure semantic 
interoperability between the different entities. Since agents are autonomous, it is 



 

infeasible to expect all of them to attach the same semantics to different concepts 
on their own. This is especially true for context information, since different 
agents could have a different understanding of the current context and can use 
different terms and concepts to describe context. A middleware for context -
awareness will address this problem by ensuring that there is no semantic gap 
between different agents when they exchange contextual information. 



 

C h a p t e r  2  

MIDDLEWARE SOLUTIONS 

2. Middleware Architectures for Context-Aware Computing 

A lot of work has been done in the area of context -aware computing in the past 
years, among which much of them are only concerned with one or more aspects 
in an ad hoc manner. In addition, most of them rely on proprietary a protocol, 
thereby set a barrier to interoperability of different systems, and exclude 
developers from reusing existing components. We are going to give a 
summarization of the most prominent projects in this research field. 
 
2.1 Context Toolkit [6] 

The seminal work of Context Toolkit developed a set of abstractions for sensors 
data processing in order to facilitate reuse and make context aware applications 
easier to build. Context Toolkit separates the low-level sensing from high-level 
applications, and introduces a middleware layer whose functionalities are 
collecting raw sensor information, translating it to an application-understandable 
format, and disseminating it to interested applications. In Context Toolkit, a 
“context widget” is a wrapper component that provides unified access interface 
to context. To handle context query and event notification, each context widget 
has a state that is a set of attributes and a behavior that is a set of callback 
functions triggered by context changes. The widget obtains raw contextual 
information from sensors and passes them either to interpreters or to servers for 
aggregation. Interpreters and servers use simple HTTP protocol for 
communication and the XML as the language model.  
 
The context is represented in the form of name value pairs which is not quite 
comprehensive and therefore lacks representation of all sorts of context. Also, no 
pluggable and reusable reasoning modules are present in the system.  
 
2.2 Solar [19] 

The Solar system architecture proposed a graph-based abstraction for context 
aggregation and dissemination. The abstraction models the contextual 
information sources as event publishers, and context aware applications as event 
subscribers. A number of event processing and routing mechanisms are designed 
to avoid redundant computation at context aggregation and interpretation nodes, 
and reduce data transmission in large scale context aware systems. Applications 



 

use a subscription language to construct a logical event tree, based on event 
streams registered in a context -sensitive naming hierarchy. 
 
But it too lacked proper context representation and support for inferring higher 
level context from lower level context/s in an appropriate way. 
 
2.3 Context Fabric [20] 

Context Fabric is actually an extension of the pioneering work of ParcTab system. 
It provides a distributed context-aware infrastructure with two fundamental built-
in services, namely event service and query service, to support the acquisition and 
retrieval of context data. Context Fabric uses an entity-relation styled logical 
context data model to represent the information about four kinds of concepts: 
entities, attributes, relationships, and aggregates. Context about each kind of 
entities are assigned network-addressable logical storage units called infospaces 
that can be directly queried from network. Context data in Context Fabric is 
encoded using XML, and stored in local file systems. XPath is utilized as the 
query language for addressing parts of the XML tree structure. 
 
Since context is encoded in the form of XML and it uses XPath, which may not 
be efficient for querying large scale data and may become bottleneck for the 
system. 
 
2.4 Gaia [15] 

The Gaia project developed at the University of Illinois is a distributed 
middleware infrastructure that provides support for context aware agents in smart 
spaces. Gaia adopts a predicate model of context data to enable agents to be 
developed that use first order logic rules to decide their behavior in different 
contexts. 
It also proposed that different logic reasoning and machine learning techniques 
can be adopted to support context interference according to different application 
requirements. DAML encoded ontologies is used to ensure semantic 
interoperability between different agents, as well as between different ubiquitous 
computing environments. All agents are implemented on top of CORBA, and 
use CORBA Naming Service and the CORBA Trading Service for service 
discovery. 
 
2.5 Motivation of Context-aware Middleware 

Different approaches have been suggested for promoting context-awareness 
among agents. The Toolkit approach proposed by Anind Dey et al [6] provides a 
framework for the development and execution of sensor-based context-aware 



 

applications with a number of reusable components. The toolkit supports rapid 
prototyping of certain types of context-aware applications. The other approach is 
developing an infrastructure or a middleware for context awareness. As said 
earlier, Context-aware Computing involves acquisition of contextual information, 
reasoning about context and modifying one’s behavior based on the current 
context. A Context-aware Middleware would provide support for each of these 
tasks and greatly simplify the tasks of creating and maintaining context-aware 
systems. Middleware can help in continuous data acquisition, analysis, and pattern 
detection to infer higher level context, and let developers focus mainly on 
developing the applications’ functionality rather than diverting their effort to 
hardware-specific issues. Besides, a middleware would be independent of 
hardware, operating system and programming language and provide uniform 
abstractions and reliable services for common operations. It would, thus, simplify 
the development of context-aware applications. It would also make it easy to 
incrementally deploy new sensors and context-aware agents in the environment. 
It would define a common model of context, which all agents can use in dealing 
with context. It would thus ensure that different agents in the environment have a 
common semantic understanding of contextual information. Finally, a 
middleware would also allow us to compose complex systems based on the 
interactions between a numbers of distributed context-aware agents. 
 
2.6 Desired Elements of Context-aware Computing System 

Context-aware computing relies on multiple independent and cooperative 
enabling technologies. Based on the extraction of literature review, we have 
identified a set of necessary functional elements that a context-aware system 
needs to support essential context aware mechanisms. As we argued in previous 
section, only a general middleware approach can combine independent functional 
elements in context aware computing, and melt them into a coherent system to 
provide a complete solution. These functional elements include: 
 
• Context Sensing 
In order to use context in services, there must be a mechanism to obtain the 
context data from diverse context sources. For example, the indoor location of a 
user can be obtained from an Infrared location sensor system, which detects the 
presence of a badge to conclude the location of the user wearing it. Context 
Sensing could be tightly-coupled with hardware sensors, while a component 
approach to decouple low-level sensing with high-level context usage can achieve 
reusable context sensing, thereby enabling the evolving of large scale context 
aware systems. 
 
• Context Model and Representation 



 

Context model forms the foundation for expressive context representation and 
high-level context interpretation [11, 12]. Existing context models vary in the 
expressiveness they support and the types of context they represent, while their 
common considerations should be how to capture general features such as 
properties of an entity and interrelation between contextual objects. On the 
context representation layer, ‘raw material’ of context is transformed into a 
machine-readable format based on the context model. This is actually an 
abstraction layer that acquires sensor data from context sources, and then 
annotates raw data with semantics that are structured around a set of contextual 
entities (e.g., ‘user’, ‘location’ and ‘device’.) and the relations (e.g., ‘locatedIn’) that 
hold between them. A uniformed context model is needed to facilitate context 
interpretation, context sharing and semantic interoperability.  
 
• Context Repository 
Context information is obtained from an array of diverse information sources. A 
centralized context repository can provide a persistent storage for distributed 
context, guarantees integrity of context, and offers shared mechanisms, relieving 
context-aware services from overheads caused by querying from distributed 
sensors [13]. When context is represented based on shared context model, 
context repository provides a foundation to merge interrelated information and 
enables further data interpretation. 
 
• Context Query/Aggregator 
To explore general means of access to interrelated context spread across 
distributed context repositories, we need a high-level mechanism for context -
aware services to issue queries without explicitly handling underlying data 
manipulation [14]. For example, a notification service for conference attendees 
require context like “find a list of researchers in this hall whose publications are in 
the same session with mine”. The low-level operations of such complex context 
retrieval task should not be exposed to end users. Context query poses design 
issues such as context query language, event notification, and query optimization. 
 
Similarly, Context Aggregator is responsible for satisfying certain context queries. 
Each context aggregation service performs a specific function. An example 
service can be detecting that user has awaken and performing certain actions. 
Based on required contextual information, it can either utilize the ontology 
reasoning module or context reasoning module or both. Upon detecting that 
certain context is composite one, it will retrieve meta-information from the 
repository about the specific context reasoning module providing the composite 
context. Once retrieved, it will invoke the corresponding reasoning module and 
return the result back to the application requesting the context. 
 



 

• Context Reasoning/Inferring 
Low-level information usually can not be directly understood and utilized by 
software services. Hence, there is a need to interpret low-level information and 
derive additional, high-level context. For example, a location based service wants 
to know the relative location with different levels of granularity (e.g., room-level, 
building-level, block-level) instead of sensor-driven position (the coordinates 
retrieved by the GPS system). In this case, we need to derive high-level location 
(e.g., ‘which block is the user in?’) from related contexts (e.g., GPS coordinates, 
the mapping between GPS coordinates and corresponding blocks). The context 
interpretation layer leverages reasoning/learning techniques to deduce high-level, 
implicit context needed by intelligent services from related low-level, explicit 
context.  
 
For example, the rule-based reasoning engine can deduce user’s current situation 
based on his location and environmental contexts. The inferred context might 
suggest that the user might be sleeping currently, since the time is 11 pm and he is 
staying at a dark, quiet ‘Bedroom’. Another example of context interpretation 
could be machine learning based behavior prediction. The intelligent system 
could learn the pattern of user’s actions from historical sequences of context data 
and then use this learned pattern to predict next event. For example, it could be 
predicted that once the user finished showering (turn off the electronic water 
heater) after 10:30 pm, he will check emails using the hand phone, and then go to 
bed after finishing reading them. Currently, context interpretation tasks are 
performed through various approaches including ad hoc interpretation, rule-
based reasoning [15], and machine learning [16]. 
 
• Context Discovery/Delivery 
In order for a context-aware service to use a certain kind of context, there is a 
need for context requestors to find the sources providing it. The aim of context 
discovery is to locate and access interested context sources in a self-configure 
manner. Issues of context discovery include service description, advertisement 
and event subscription [17]. 
 
The context delivery services perform the job of searching appropriate context 
aggregators and delivering them to the applications. These include registration, 
query and notification services. Context Aggregators register with the registration 
service to provide the information about the context they can deliver. Interested 
applications and agents query the registration service to find services of their 
interests. The registration service upon finding appropriate aggregator, returns the 
handler to the requested clients.  
 



 

Each context aggregator specifies the context it provides, by utilizing the 
concepts defined in the ontology repository. This standard schema sharing allows 
the different kinds of entities to be described and utilize by registration service to 
find useful services needed by the applications, thus allowing a flexible 
mechanism for exchanging descriptive information of various entities. In our 
framework, this semantic matchmaking [44], [CD4] is based on querying the 
Racer [18] Server which allows subsumption and classification of different 
concepts defined in the ontology. 
 
• Context-aware Application/Service 
Finally, on the uppermost level (context utilization layer), context aware services 
utilize both low-level and high-level context to adjust their behaviors. The smart 
phone might then decide that the user probably does not want to answer any 
phone call when he is sleeping at home and forward those calls to the voice 
message box. It also could take account of predicted context and response by 
automatically adjusting the air-conditioning of the bedroom and downloading 
emails after the shower before sleep. 



 

C h a p t e r  3  

CONTEXT-AWARE MIDDLEWARE FOR UBIQUITOUS 
COMPUTING SYSTEMS (CAMUS) 

3. Context-Aware Middleware for Ubiquitous computing 

Systems 

Based on the desired characteristics of a context-aware middleware for ubiquitous 
computing explained in previous chapter, here we outline briefly the main 
architecture of our middleware infrastructure. Further details are presented in the 
chapters following this one. 
 
3.1 A Layered Model for Context-Aware Computing 

From the functional elements defined in previous chapter, we proposed our 
Middleware Framework as a layered model depicted in figure 2. 

 
Figure 2: CAMUS Core Architecture. At Feature Extraction Agent, sensor signal will 
be preprocessed e.g. filtering, conversion, or contrast enhancement. Then features will 
be extracted, quantized/segmented, and encapsulated into feature tuples. Feature 
tuples are injected into Feature Tuple Space through Unification Interface (UI) for 
deducing context in upper layers (Context-Awareness Layers) 

The lowest layer of CAMUS consists of Feature Extraction Agents (FX Agents). 
These sensing agents extract the most descriptive features for deducing contexts 
in upper layers. In order to have a more expressive representation of contextual 



 

information, features are further quantized or segmented, resulting in a set of 
symbolic values that describe concepts from the real world. The quantized 
features are encapsulated in the form of Feature Tuple.  
 
Feature - Context Mapping layer performs the mapping required to convert a given 
feature into elementary context using reasoning mechanisms and base on the 
meta-information saved in the ontology repository.  
 
Ontology Repository provides the basic storage services in a scalable and reliable 
fashion and contains the domain ontology (concepts and properties), contextual 
information (including both elementary and composite contexts), and meta-
information (D = devices, S = sensors access mechanisms, L = Feature - Context 
Labeling, as well as the meta-information about the input, output and capabilities 
of pluggable reasoning modules = R).  
 
Reasoning Engine is a collection of various pluggable reasoning modules to handle 
the facts present in the repository as well as to produce composite contexts. 
Reasoning Mechanisms could be various kinds of logics e.g. Description Logic (DL), 
First Order Logic (FOL), Temporal and Spatial Logic, Fuzzy logic; or Machine 
Learning Mechanisms e.g. Bayesian networks and neural networks.  
 
On top of CAMUS, Context Aggregator is responsible for satisfying certain context 
queries and providing context to interested applications through Context Delivery 
Services. 
 



 

C h a p t e r  4  

UNIFIED SENSING FRAMEWORK 

4. Unified Sensing Framework 

 
4.1 Motivation 

Acquiring the users input from the real world is one of the challenges in context-
aware computing. However, the most interesting kinds of context are those that 
humans do not explicitly provide, and gathered from user’s environment. The 
environment in general contains a diverse nomenclature of sensors having 
different access mechanisms, different sensory data and dissimilar representation 
schemes of such data. This diversity leads to potential problems and complexity 
in design and implementation and is a hurdle in the realization of context aware 
ubicomp. Thus a mechanism is required, which serves to extract information 
from the heterogeneous sensors and present to the upper layers for deducing 
contexts, in a standardized and unified manner. 
 
4.2 Feature Extraction through Unification Interface 

In CAMUS we provide a unification interface for each sensing agent (named 
Feature Extraction, FX, Agent), as depicted in figure 3. Unification Interface (UI) 
is aware of the definitions of the feature constructs based on the sensor types. 
This aids in deciding which sensor values are to be extracted and aggregated from 
sensor outputs. At this lowest layer in the CAMUS design, containers that hold 
access mechanism implementations (or wrappers) are also provided for individual 
sensors, to hide the communication details and data polling frequency of sensors 
from the above layers. 

 



 

Figure 3: Unification Interface - Native drivers exist for individual sensors which are 
exposed to upper layers through a hardware abstraction layer, providing a standardized 
access to all sensors.  

The features, formulated after sensor access modules retrieve raw sensor values 
from the sensors, should be as descriptive of the contexts they are attempting to 
model as possible. Following diagrams show the use case diagrams and activity 
diagrams of sensor access module / unification interface working to make 
features available. 
 
If the features are discriminative enough, the recognition mechanisms would be 
simple and lightweight. In order to have a more expressive representation of 
context information, features are further quantized or segmented, resulting in a 
set of symbolic values that describe concepts from the real world. Fuzzy sets [21], 
[22] or crisp limits can be applied to quantize/segment the features. The 
probability (or confidence) associated with outputs of fuzzy quantization can be 
used as inputs of probability based context reasoning mechanisms [22], [23]. 
Numerous useful features might be generated by each sensor; and the feature 
representation must facilitate the identification of individual features uniquely as 
well as collection of features by the same source. This is achieved by allocating a 
unique feature identifier in conjunction with the sensor and type identifiers to 
each Feature Tuple (FT) in the space. 
 

FT= {Sesnor_ID, Type_ID, Feature_ID, Feature_Value, Probability, Timestamp} 

Table 1. Sample Feature Tuples. Sensor ID is assigned to each sensor board at 
development stage and mapped to corresponding location/device at deployment.  

Attribute Meaning 

Sensor_ID The unique ID of the sensor board, assigned at development stage & mapped to
corresponding location/devices at deployment stage 

Type_ID Sensor type e.g. audio, temperature etc., for further distinction of context
information sources, especially in case multiple sensor types on a single board. 

FeatureID Refers to feature category of each sensor type. It is actually the signature of
corresponding feature extraction function in the library of the sensing device. 

Feature Value Symbolic (e.g. light intensity) or absolute numerical value (e.g. temperature absolute
value) of the extracted and segmented sensor feature. 

Probability The uncertainty or confidence of the context information, could be 0/1 if the
feature is segmented using thresholds, or within [0, 1] range if fuzzy sets are applied.
This attribute is used to decide which feature values will be sent to backend system
(probability > 0) and useful for probability based context recognition mechanisms
e.g. Bayesian networks. 

Timestamp The absolute time when the feature is extracted. Used to keep consistency of
context information, and sometimes useful for temporal reasoning mechanisms. 

 



 

Table 2. Shows some sample features extracted from audio and video sensors 
(following the MPEG-7 specifications) with their symbolic values. 

Value 
 Sensor ID

Sen
sor 
Ty
pe 

Feature ID 
Numeri
c Value 

Quantized Value (Symbolic, 
Probability) 

Time 
Stamp 

1 (Silent, 0.9) 

3 

1 
(Au
dio
) 

1(Intensity) 

x (dB) 

2 (Moderate, 0.1) Xxxxx 

1 (Stable, 0.8) 3(Motion 
Pattern) 

NA 
2 (Regular, 0.2) Xxxxx 

6(Posture) NA 2 (Lying, 0.9) Xxxxx 
1 (TotalDark, 0.2) 

7 
 

2 
(Vi
deo
) 
 

7(Luminous 
Intensity) 

y (cd) 
2 (Dark, 0.8) 

Xxxxx 

 
In CAMUS, Feature Tuple Space (FTS) is employed as underlying 
communication and storage mechanism. Features are stored directly as objects 
independent in space and time and decoupled from the generating processes; an 
important advantage in the ubiquitous environment in terms of interoperability 
and scalability. Various sub-modules for feature extraction and context formation 
dynamically interact in the middleware by mere flow of objects in and out of the 
FTS. 

 



 

Figure 4:  Sensory data is retrieved through the unification interfaces (native drivers) 
and stored into Feature Tuple Space in the form of features. The features are extracted 
by Context Synthesis layer to generate context. 

 
Figure 5: Feature Tuple Space Architecture 

 
The notions of uniform feature tuple encapsulation and feature-context mapping 
meta-data empower CAMUS with the capability of incorporating nearly any 
sensing agents ranging from commodity off-the-shelf sensing devices e.g. 
microphone, camera; to autonomous smart sensing devices developed by other 
researchers. 
 
4.3 Feature - Context Mapping: Utilizing the Strength of Reasoning 

Upon the notification of feature change in the tuple space, this layer performs the 
mapping required to convert a given feature into context. The Feature - Context 
Mapping meta-information is saved in the ontology repository. Information such 
as user Id mapped to his name as well as his profile is saved in the ontology as a 
meta-information which enables this layer to do necessary mappings. If certain 
context is not present in the ontology repository and is requested by either 
context aggregator or reasoning module, it will register to the Feature Tuple 
Space for the feature, corresponding to that context. For example, the feature 
tuple in table 2 
 

FT1 = {3, 1, 1, 1, 0.9, xxxxx} 



 

 
would be mapped to corresponding context information 
 

{Location.Bedroom, Environment.Sound.Intensity = Silent,  
Probability = 0.9, TimeStamp = xxxxx} 

 
Every time a new sensor type is added into the system, the feature ontology will 
be updated with the meta-information of all new features provided by that new 
sensor type. Based on this ontology, a feature can be converted into markup 
format, and vice-versa. For example, the  feature tuple 
{6,1,1,null,00001001,1,20041210120000} can be mapped to corresponding 
context information:  
 
      <RFIDTag> 

<absValue>00001001</value> 
<probability>1</probability> 
<timestamp>20041210120000</timestamp> 

      <RFIDTag> 
 
This layer includes one Mapping-Manager, and some client mapping service. 
Mapping-Manager provides the essential mapping from feature tuples to feature 
markup, and allows other services to register for some context events (notice: this 
is differ from the Feature Tuple Space which allows registration for feature tuple 
events). The client mapping services are domain-specific. Each client mapping 
service uses the Mapping-Manager registration service to register for some low-
level contexts. When notified about the arrival of those concerned contexts, the 
client mapping service can utilize a reasoning engine to infer some high-level 
contexts. The strength of the reasoning engine decides the level and accuracy of 
mapped contexts.  
 



 

 
Figure 6: Feature – Context Mapping Layer Architecture 

 
For example, a location mapping service can register for all kinds of features 
related to location such as features from RFID, IDTag, Berkeley mote, i-
Badge … then the service bases on those feature contexts to infer the location of 
agents. However, using fuzzy logic to fuse the information from many sensors, or 
using Bayesian net to calculate the probability of location based on the 
probabilities of features, will provide more accurate location contexts than just 
inferring the location using description logic. 
  
Hence CAMUS provides a flexible mechanism for mapping from feature data to 
context data. Domain developers can freely decide whether they will create new 
contexts using a reasoning engine or not, and which kind of reasoning engines 
will be used. 
 
4.4 Discussion 

The basic benefits of using this approach are two fold. Firstly sensor access is 
unified through hardware abstraction layer and standardization which results in 
easy access for upper layers and masking of sensor heterogeneity. Secondly, the 
use of features allows better description of different sorts of environment 
parameters than raw sensor values and features can be organized, stored and 
delivered in an efficient manner. 
 
 



 

4.5 Summary 

Ubiquitous environments contain diverse range of sensors each utilizing its native 
access mechanisms and output formats. To provide a standardized representation 
of sensor data to the internal system modules and applications, CAMUS makes 
use of a unified access pattern to homogenize sensor interaction. As a first step, 
sensors are masked by a hardware abstraction layer in the unification interface. 
Access to sensors is still regulated by their native drivers and data formats. These 
native drivers and data formats are interfaced with the upper layers through 
unified and standardized interfaces, making access patterns similar for different 
types of sensors. Secondly, feature extraction agents use sensor data to formulate 
features and store these features in feature tuple spaces. These two mechanisms 
are used to provide the basis of a unified sensing framework. 



 

C h a p t e r  5  

FORMAL CONTEXT MODELING & REPRESENTATION 

5. Formal Context Modeling and Representation 

 
5.1 Motivation 

Context presentation is an important part of pervasive computing environments. 
Because context-aware applications must adapt to changing situations, they need 
a detailed model of users’ activities and surroundings that lets them share users’ 
perceptions of the real world. These entities may have different meanings 
associated with them in different pervasive environments. In order to have 
invariant meanings of these entities, when used at different times, in different 
situations, by different applications, they must be formalized, i.e. the context 
semantics should be formalized. Formalizing the context of an application has a 
number of clear advantages. First, it allows us to store the context for a long term 
since its meaning will remain same for future uses. The second advantage is for 
communicating the context universally with other systems. Third, formal 
meaning of the context leads to its testability of being a formalized knowledge. So, 
formalizing, the context model, helps to make a growing pool of well-tested 
context knowledge available to different context-aware systems. 
 
Most context-aware systems to date mainly focus on the contents of context, 
neglecting the importance of interactivity among applications. Some have model 
the context as name-value pairs [6] and entity relation model, while others have 
used objects [23] to represent context, with fields containing state of context, 
methods to access, modify and/or register for notification changes to context. 
However, context reuse and sharing among wider application domains demand a 
need for formal context modeling enabling common understanding of the 
structured context. A survey on Context Modeling Schemes is provided in 
Appendix A. 
 
• Formal Context Modeling using OWL Ontologies 
Context entities are the concepts in a domain of discourse, and to provide formal 
meaning of these concepts, ontologies are used. Within the domain of knowledge 
representation, the term ontology refers to the formal, explicit description of 
concepts, which are often conceived as a set of entities, relations, instances, 
functions, and axioms, leading to shared and common understanding that can be 
communicated between people and application systems [25]. Formalizing domain 



 

not only contains the vocabularies of concepts but relationships among them as 
well. W3C’s OWL (web ontology language) [26] allows us to achieve this goal in 
two steps. First, it allows us to define concepts and their inter-relationships e.g. 
describing person, devices, location etc. Second, it allows us to define instance 
data pertaining to some specific time and space e.g. Bob is watching television in 
the living room. Traditionally, ontologies are only used to describe domains (as 
mentioned above) but in OWL, the horizon of ontology has been broadened to 
include instance data as well, effectively making the knowledge base. 
OWL, a knowledge representation language, has explicit semantics associated 
with the knowledge, which provides reasoning capabilities used by intelligent 
systems and agents to infer useful contexts. As OWL is based on meta-modeling 
language (RDF [27]), it can be used to represent meta-information about sensors, 
we can also use OWL to represent access mechanisms to the sensors and 
associated policies. 
 
The following example shows the context ontology that describes a user named 
Hung. 
 

<User rdf:about=”Hung”> 
<name>Hung</name> 
<mbox>nqhung@oslab.khu.ac.kr</mbox> 
<homepage rdf:resource=”http://ucg.khu.ac.kr/~nqhung”/> 
<office rdf:resource=”#RoomB07”/> 
<officePhone>2493</officePhone> 
<mobilePhone>9999</mobilePhone> 
<! —More properties not shown in thisexample—> 
</User> 

 
• Benefits of Semantic Web Ontology for Context Modeling 
There are several potential advantages for developing context models based on 
Semantic Web Ontology. First, its expressiveness. Web ontology is modeled 
through an object-oriented approach, with expressive power entailed by their 
class/property constructors and axioms. Therefore it is more expressive than 
existing context models, allowing us to capture more features of various types of 
context.  
 
Second, Knowledge Sharing; the use of context ontology enables computational 
entities such as agents and services in pervasive computing environments to have 
a common set of concepts about context while interacting with one another. By 
allowing pervasive computing entities to share a common understanding of 
context structure, OWL ontologies enable applications to interpret contexts 
based on their semantics. 



 

 
Third, based on ontology, context -aware computing can exploit various existing 
logic inference mechanisms to deduce high-level, conceptual context from low-level, 
raw context, and to check and solve inconsistent context knowledge due to 
imperfect sensing. Because contexts described in ontologies have explicit 
semantic representations, Semantic Web tools such as Federated Query, 
Reasoning, and Knowledge Bases can support context interpretation. 
Incorporating these tools into smart spaces facilitates context management and 
interpretation.  
 
Fourth, Knowledge Reuse; Ontologies’ hierarchical structure lets developers reuse 
domain ontologies (for example, of people, devices, and activities) in describing 
contexts and build a practical context model or compose large-scale context 
ontology without starting from scratch. And lastly, it provides extensibility. 
Concepts in the context ontology are organized in form of taxonomies or 
hierarchies. Newly-defined concept can be easily added into the existing context 
ontology in a hierarchical manner. 
 
5.2 CONTEL – Context Model in CAMUS 

While context entities are conceptual entities, the information provided by them 
is called the contextual information. This contextual information has its own 
syntactic and semantic meanings. Some of the context entities are the producers 
of contextual information while others are consumers or both. Contextual 
information gathered from at least one sensor is called the ‘elementary context’ 
while ‘composite context’ is any combination of elementary contexts or 
elementary and composite contexts as shown in figure 7. 
 

 



 

Figure 7: Contextual information hierarchy 

• Basic Model 
Diverse context entities ranging from various kinds of devices e.g. PDAs, mobile 
phones, ambient displays etc., running various applications, to various 
environment conditions e.g. sound intensity, light, temperature, traffic etc., are 
utilized by various kinds of agents e.g. software agents, persons, groups etc. 
This variety leads us to categorize context entities, in our framework, mainly into 
agents, devices, environment, location and time. Location and time are kept 
separate from the other concepts to emphasize on the spatial and temporal 
aspects of the ubiquitous computing environment. These conceptual entities and 
their relationships are described in the ontology repository. Figure 8 shows the 
main context categories and few domain concepts of our context model, termed 
as, cont-el. 
 
The shadowed ovals show, in figure 8, the main context categories while 
rectangles represent few of the concepts under the corresponding context 
category. Many new entities (devices, softwares etc. ) may enter/leave the variable 
ubiquitous environment, but they can be made part of the system by adding their 
definitions at runtime into the ontology database and related to existing entities 
by various ontology language (OWL) constructs like subClassOf, disjointWith etc. 
So, representing context entities in the ontology brings all benefits of ontology 
world. 



 

 
Figure 8: Expandable Cont-el Basic Categorization and Some Domain Concepts 

• Detailed Model 
Context entities and contextual information are described in the ontologies; 
facilitating various parts of the ubiquitous computing environment to interact 
with each other effectively. We have described ontologies for a home domain. 
The different ontologies made are based on basic categorization described above. 
In the following paragraphs, a part of different ontologies is described for the 
home domain. 
 



 

For the entities related to Agent, we have top level concept called Agent. It has 
been further classified into SoftwareAgent, Person, Organization, and Group. 
Each Agent has property hasProfile associated with it whose range is 
AgentProfile. Also, an Agent isActorOf some Activity. Activity class, representing 
any Activity, can be classified based on the Actor of it e.g. SingleActivity (which 
has only one actor), GroupActivity (which has Group as its actor and can have 
many SinlgeActivity instances). An Activity having some object of action on 
which it is done called ActivityOnObject like CookingDinner, TurnOnLight, or 
WatchingTV etc., while SelftActivity has no object of action e.g. Sleeping, or 
Bathing. Activity itself is not related to time and location but whenever activity 
happens, it generates an ActivityEvent (subclass of Event and 
LocationContextObject), encapsulating both time and location information. 
 
The Device ontology is based on FIPA device ontology specification [28]. Every 
Device has properties of hasHWProfile, hasOwner, hasService, and 
hasProductInfo. Device is further classified into AudioDevice, MemoryDevice, 
DisplayDevice, NetworkDevice. PDA is considered here as subClassOf 
AudioDevice, DisplayDevice, NetworkDevice, MemoryDevice and 
PersonalDevice. All different devices have associated device profiles e.g. 
DisplayDevice hasDisplayProfile of DisplayScreenProfile containing properties 
resolution, color, width, height and unit. The hasService property of Device class 
has Range of Service. Service, in our framework, has at present Software subclass 
which is further sub-classified into disjoint classes Application and OS.  
 
The environmental context is provided by the various classes in the Environment 
ontology. Humidity, Sound, Light and Temperature are different environmental 
information we are utilizing in our framework. This sensed information is 
available though different sensors deployed in the smart environment, and used 
by the applications to adapt their behavior. An Environment is unionOf all 
different variables (temperature, light, sound and humidity) mentioned above. 
Each of them has hasParameter property which links them to the different 
information gathered from environment. For Sound, the hasParameter has the 
range of AudioParameter class, which has subclasses, namely, ACDCParameter 
(ACDC stands for Average Crossing Direction Change), HarmonicityRatio, 
Intensity, TransientDetection etc. VideoParameter has been classified into 
MotionPattern, PixelChangeVariance, PixelPercentageChange, Posture, 
ZoomComponent etc. 
 
Location ontology, an important aspect of ubiquitous computing environment, 
has SpatialObject as its top level class. This class is equivalent of SpatialObject 



 

defined at NASA Jet Propulsion Lab space ontology2. We have imported this 
ontology into our space ontology, as it describes useful information related to 
spatial objects. Place is a SpatialObject and has IndoorPlace and OutdoorPlace as 
it two subclasses. Each Place has hasEnvironment property which describes the 
environment conditions like temperature, humidity etc. A Place is a isPartOf 
some other Place. As we have defined ontology for the home domain, we have 
concepts like BedRoom, BathRoom, DinningRoom and LivingRoom etc. in our 
ontology. SubRoom isPart of Room, and represents an interesting place inside 
room such as OnBed, BesideDinningTable, InFrontOfTV, InSofa etc. 
LocationContextObject is anything which can have location context, having 
properties of locatedIn, locatedNearBy, locatedFarAwayFrom etc. 
 

... 
<owl:Class rdf:ID="Activity"/> 
<owl:ObjectProperty rdf:ID="generatesEvent"> 
 <rdfs:domain rdf:resource="#Activity"/> 
 <rdfs:range rdf:resource="#ActivityEvent"/> 
 <rdf:type  
   rdf:resource="&owl;InverseFunctionalProperty "/> 
 <rdf:type rdf:resource="&owl;FunctionalProperty"/> 
</owl:ObjectProperty> 
<owl:Class rdf:ID="ActivityEvent"> 
 <owl:equivalentClass> 
  <owl:Class> 
   <owl:unionOf rdf:parseType="Collection"> 
    <owl:Class rdf:about="#InstantActivityEvent"/> 
    <owl:Class rdf:about="#IntervalActivityEvent"/> 
   </owl:unionOf> 
  </owl:Class> 
 </owl:equivalentClass> 
 <rdfs:subClassOf  
 rdf:resource="&contellocation;LocationContextObject"/> 
</owl:Class> 
<owl:Class rdf:ID="IntervalActivityEvent"> 
 <rdfs:subClassOf rdf:resource="#ActivityEvent"/> 
 <rdfs:subClassOf    
   rdf:resource="&conteltime;IntervalEvent"/> 
</owl:Class> 
<owl:Class rdf:ID="InstantActivityEvent"> 
 <rdfs:subClassOf rdf:resource="#ActivityEvent"/> 
 <rdfs:subClassOf  
   rdf:resource="&conteltime;InstantEvent"/> 
</owl:Class> 
<owl:ObjectProperty rdf:ID="containsActivity"> 
 <rdfs:domain rdf:resource="#Activity"/> 
 <rdfs:range rdf:resource="#Activity"/> 
 <rdf:type rdf:resource="&owl;TransitiveProperty"/> 
</owl:ObjectProperty> 
... 

... 
<owl:Class rdf:ID="Environment"> 
 <owl:equivalentClass> 
  <owl:Class> 
   <owl:unionOf rdf:parseType="Collection"> 
    <owl:Class rdf:about="#Humidity"/> 
    <owl:Class rdf:about="#Light"/> 
    <owl:Class rdf:about="#Sound"/> 
    <owl:Class rdf:about="#Temperature"/> 
   </owl:unionOf> 
  </owl:Class> 
 </owl:equivalentClass> 
</owl:Class> 
<owl:Class rdf:ID="Light"> 
 <rdfs:subClassOfrdf:resource="#Environment"/> 
 <rdfs:subClassOf> 
  <owl:Restriction> 
   <owl:onProperty rdf:resource="#hasParameter"/> 
   <owl:allValuesFrom rdf:resource="#LightParameter"/> 
  </owl:Restriction> 
 </rdfs:subClassOf> 
</owl:Class> 
<owl:Class rdf:ID="Parameter"/> 
<owl:Class rdf:ID="LightParameter"> 
 <rdfs:subClassOf rdf:resource="#Parameter"/> 
</owl:Class> 
<owl:Class rdf:ID="LuminousIntensity"> 
 <rdfs:subClassOf rdf:resource="#LightParameter"/> 
</owl:Class> 
<owl:Class rdf:ID="Bright"> 
 <rdfs:subClassOf rdf:resource="#LuminousIntensity"/> 
</owl:Class> 
<owl:Class rdf:ID="TotalDark"> 
 <rdfs:subClassOf rdf:resource="#LuminousIntensity"/> 
</owl:Class> 
<owl:Class rdf:ID="Dark"> 
 <rdfs:subClassOf rdf:resource="#LuminousIntensity"/> 
</owl:Class> 
... 

Figure 9: Few definitions from Activity and Environment ontology in OWL 

Temporal information is ubiquitous in real world situations and also considered 
as common need for ubiquitous computing applications. For time, we are using 
                                                 
2 http://sweet.jpl.nasa.gov/ontology/space.owl# 



 

the concepts from DAML-Time ontology [29]. TemporalThing, a general 
concept, has subclass of InstantThing, IntervalThing and Event. InstantEvents 
(subclass of Event and InstantThing) can be thought of points which don’t have 
any interior points e.g. entering a room, turning the TV on, and turning lights off. 
While IntervalEvents (subclass of Event and IntervalThing) denote events, that 
span some interval of time e.g. watching movie, playing games, or attending the 
meeting. Every TemporalThing has begins and ends properties pointing to the 
InstantThing and denotes its beginning and end. inside relation is between 
IntervalThing and InstantThing stating that some instant is inside the interval. 
before indicates that some TemporalThing (sleeping) has its end before the 
beginning of some TemporalThing (waking up). More details of our different 
ontologies can be found at our website3. 
 
5.3 Context Repository in CAMUS – multi-domain data 

management, knowledge sharing and querying 

The Context Repository provides the basic storage services in a scalable and 
reliable fashion and contains the domain ontology and context information 
(including both elementary and composite context).  
 
Domain Ontology.  
Domain ontology contains the domain concepts and properties with formal 
semantics described in OWL and explained in detail in the context modeling. 
 
Context Information.  
Here context is any information saved by the Feature - Context Mapping layer 
gathered from the environment through lower layers of the architecture and 
explained in detail in the context modeling. 
 
Meta-Information.  
Having well structured meta-information about the various characteristics of the 
system allows flexibility and acts as a customizable solution for the specific needs 
of the use case. In our framework, we save meta-information about the devices 
(D in figure 2), sensors access mechanisms (S), feature to context labeling (L) 
(used by Feature - Context Mapping layer) as well as the meta-information about 
the input, output and capabilities of various pluggable reasoning modules (R). 

                                                 
3 http://ucg.khu.ac.kr/ontology/0.1/ 



 

 
Figure 10: Context Repository Structure 

One of the main issues in pervasive computing is that how to manage the context 
data over a large number of domains. A ubiquitous computing system can consist 
of many subsystems running on various domains such as home domain, office 
domain, university domain, etc. Furthermore, many ubiquitous systems can 
collaborate with each other to build a large pervasive environment. The use of 



 

ontology can help sharing the knowledge about data among different domains 
and systems. However, such a distributed and dynamic environment requires an 
efficient mechanism to store and retrieve context data over multi-domain 
repository.  
 
To solve that problem, CAMUS uses OWL format to store context data, and 
maintains a meta-graph to manage the meta-data about all the domain 
repositories. Using OWL format, the Context Repository can be backed by some 
kinds of DBMS such as MySQL, or just use text files if the system needs to run 
on some resource-constrained environment. When handling OWL data using 
Jena library [30], each database can be considered as a group of models, each 
model is a collection of contexts. The ontologies defining context data schemas 
have hierarchical structure, so each context data model itself is a sub-graph of the 
big graph combining all the ontologies. Consequently, it is feasible to build a 
meta-graph of all graphs in a ubiquitous environment. That meta-graph stores the 
information about the models of each domain, names and namespaces of the 
models, and especially the contexts provided by each model in a hierarchical 
structure.   
 
Context data can be retrieved by RDQL [31] queries. The queries will be parsed 
into list of condition triples. Then the contexts mentioned in condition triples will 
be used to search all the models which can provide those contexts from the meta-
graph. After that, for each concerned model, all the related statements will be 
extracted by using the template statement built from the condition triples. Jena 
library allows the possibility to integrate many statement sets into one model 
before executing the query.  
 
Because each Context Repository Manager module runs as a service, so it can 
advertise itself as well as discover other Repository Manager services. Whenever it 
discovers a new repository, it will integrate the meta-graph of that new repository 
into its own meta-graph. Then every query will be executed following the 
algorithm described above.  
 
Example: 
The following pseudo code illustrates the query algorithm: 
    Query query = new Query(queryString); 
    Triple[] triples = get all the condition triples from query 
    Model model = ModelFactory.createDefaultModel(); 
    for each triple i in the triples list { 
      String[] modelLabels = ContextDataFactory.getContextDataNameForTriple( 
          triples[i]); 
      for each model label j in the model labels found { 
        get all the statements related to the triple and add into model 
      } 
    } 
    //set data source 



 

    query.setSource(model); 
    QueryExecution qe = new QueryEngine(query); 
    //execute query 
    QueryResults results = qe.exec(); 
    ContextRecordset rs = new ContextRecordsetImp(results); 
 

 
5.4 Discussion 

The purpose of the formal modeling is to invariant meanings of the terms used in 
the context aware computing. It allows incremental information pooling and 
interoperability with other systems. For permanent storage, OWL is converted 
into relational DBMS by using the Jena framework API. This has certain 
performance limitations and is not very good solution of efficient storage of large 
scale contextual data. We believe the database storage schemes especially for 
OWL should be investigated along with different efficient query mechanisms to 
retrieve stored data. 
 
5.5 Summary 

In this chapter, we described why formal modeling is important in heterogeneous 
context-aware systems. It should be applied to the degree allowed by the domain 
of the system. Ontologies based on formal modeling approaches support 
knowledge sharing, reuse and logical reasoning. Basic and detailed context model 
is presented followed by the context repository, our storage model for such 
modeling scheme. Jena was used to store data in the MySQL database and 
RDQL to query over it. 



 

C h a p t e r  6  

REASONING ENGINES 

6. Reasoning Engines 

 
6.1 Motivation for Multiple Reasoning Mechanisms? 

Different types of entities (software objects) in the environment must be able to 
reason about uncertainty. These include entities that sense uncertain contexts, 
entities that infer other uncertain contexts from these basic, sensed/defined 
contexts, and applications that adapt how they behave on the basis of uncertain contexts. A 
middleware infrastructure is expected to facilitate computing entities with a 
variety of reasoning and/or learning mechanisms to help them reason about 
context appropriately. Using these reasoning or learning mechanisms, entities can 
infer various properties about the current context, answer logic queries about 
context or adapt the way they behave in different contexts. 
 
Agents can reason about context using rules written in different types of logic like 
first order logic, temporal logic, description logic (DL) [32], higher order logic, 
fuzzy logic, etc. Different agents have different logic requirements. Agents that 
are concerned with the temporal sequence in which various events occur would 
need to use some form of temporal logic to express the rules. Agents that need to 
express generic conditions using existential or universal quantifiers would need to 
use some form of first order logic (FOL). Agents that need more expressive 
power (like characterizing the transitive closure of relations) would need higher 
order logics. Agents that deal with specifying terminological hierarchies may need 
description logic. Agents that need to handle uncertainties may require some 
form of fuzzy logic.  
 
Instead of using rules written in some form of logic to reason about context, 
agents can also use various machine learning techniques to deal with context. 
Learning techniques that can be used include Bayesian learning, neural networks, 
reinforcement learning, etc. Depending on the kind of concept to be learned, 
different learning mechanisms can be used. If an agent wants to learn the 
appropriate action to perform in different states in an online, interactive manner, 
it could use reinforcement learning or neural networks. If an agent wants to learn 
the conditional probabilities of different events, Bayesian learning is appropriate. 
Appendix B shows some sample reasoning mechanisms. 



 

6.2 Reasoning Mechanisms for High-level Context in CAMUS 

The need for context reasoning modules arises because not all information can be 
gathered from sensors. Some high-level contexts such as the location or current 
activity of user can only be inferred base on a combination of many other 
contexts. Once high-level context is saved in the repository; it is just a normal 
context like other elementary contexts, and can be used for further inferences. 
 
Context Reasoning layer includes one to many Reasoners which handle the facts 
present in the repository as well as to produce composite contexts. The 
Reasoners can provide the entailed knowledge not formally present in the 
repository using various kinds of logics to support inference; description logic, 
first order logic, temporal logic and spatial logic to name a few. Moreover, since 
every context in CAMUS has probability property, many kinds of reasoning over 
uncertainty such as Bayesian inference or fuzzy logic can also be applied.  
 

 
Figure 11: Reasoning Layer in CAMUS 

The reasoning service is used by some context mapping services and context 
aggregators. They invoke the Reasoners through a fixed API, providing the 
Reasoners with a context data which can be considered as a knowledge base 
containing all the facts needed for inference. All new inferred facts will be 
inserted into that context data for later queries. The use of a fixed interface for all 
kinds of reasoning engine makes it possible to add and handle different 
Reasoners. The developers can then use any kind of reasoning they want.  
 
To provide more help to developers so that they can concentrate on developing 
rules or networks for reasoning and not be burdened with the low-level details, 
CAMUS defines wrappers for each Reasoner type. For example, a wrapper of 
Jena generic rule Reasoner allows the developer to easily add a new Reasoner just 
by declaring the rule file name and some namespace abbreviations.  



 

Example 
The following example illustrates how to add and invoke a rule-based reasoner: 
/* declare the prefixes for namespaces */ 
ContextReasonerManager.registerPrefix("conagnt", 
rtmm.camus.vocabulary.contel.Agent.NS); 
ContextReasonerManager.registerPrefix("env", 
rtmm.camus.vocabulary.contel.Environment.NS); 
ContextReasonerManager.registerPrefix("conloc", 
rtmm.camus.vocabulary.contel.Location.NS); 
 
/* add a new reasoner providing the fule file */ 
ContextReasonerManager.addReasoner("Location", ReasonerType.GENERIC_REASONER, 
"etc/contel.rules"); 
 
/* declare some statements */ 
ContextStatement hasLocation = ContextFactory.createStatement(null, 
"hasLocation", null); 
ContextStatement PastLocationDescription = ContextFactory.createStatement(null, 
null, "PastLocationDescription"); 
sms = new ContextStatement[] {PastLocationDescription, hasLocation}; 
 
/* invoke the reasoner to do reasoning, providing the reasoner name, the 
context data name and the required statements */ 
cdm.invokeReasoning("Location", "Data", sms); 

 
• Ontology Reasoning Mechanisms 
High valued ontologies depend heavily on the availability of well-defined 
semantics and powerful reasoning modules. The expressive power and the 
efficiency of reasoning provided by OWL, (the semantics of OWL can be defined 
via a translation into an expressive Description Logics (DL)), make it an ideal 
candidate for ontology constructs. The facts gathered from context entities make 
a factual world in OWL, consisting of individuals and their relationships asserted 
through binary relations.  
 
Ontology reasoning helps us to find subsumption relationships (between 
subconcept-superconcept), instance relationships (an individual i is an instance of 
concept C), and consistency of context knowledge base, provided by Racer 
Server. In the design phase of formalizing the context entities, OWL reasoning 
services (such as satisfiability and subsumption) can test whether concepts are 
non-contradictory and can derive implied relations between concepts.  
 
Let us take an example to see how ontology reasoning can help deducing implied 
context. In location ontology, the property locatedIn is a TransitiveProperty, and 
isPartOf is subProperty of locatedIn. So when knowing that Bilbo is locatedIn 
Bed, and Bed is a part of BedRoom which is part of Home, the system can 
deduce that Bilbo is locatedIn BedRoom and Home.  
 
Another example is how to map between the features we receive from Feature 
Extraction layer to simple contexts. Different sub classes of Parameter class have 



 

different hasValue restrictions on sensorTypeID, featureID and quantiziedLevel. 
Receiving a feature tuple with sensorTypeID = 1, featureID = 1 and 
quantiziedLevel = 1, we can create an instance of class Parameter with them, and 
then use OWL Reasoner to infer that the new instance is of type AudioParameter, 
Intensity and Silence. 
 
• Context Reasoning Mechanisms 
However, many types of contextual information cannot be easily deduced using 
only ontology inference. In addition to ontology reasoning, we can also use logic 
inference. A set of rules can be defined to assert additional constraints for context 
entity instances when certain conditions (represented by a concept term) are met. 
 
Over the concepts and relations defined in Cont-el, we can do a lot of reasoning 
based on many types of logics, such as description logic, description temporal 
logic, and spatial logic. We will take a closer look at how Cont-el supports these 
kinds of reasoning. 
 
The spatial reasoning is based on the Location ontology and Region Connection 
Calculus [33].  We can infer about the spatial relations among the symbolic 
representation of space, such as spatiallySubsumes or 
isDisconnectedFrom relation between two SpatialObject. Here we 
illustrate one of those RCC rules: 
 
[ (?x spc:spatiallySubsumedBy ?z), 
  (?z rcc:isDisconnectedFrom ?y). 

     (?x rcc:isDisconnectedFrom ?y) ] 
 
Based on the Time concepts in our ontology, we can define a set of rules for 
temporal reasoning. Temporal relations e.g. meets, before etc. and their 
inverses e.g. metBy, after etc. are taken from [34]. So we can define a set of 
temporal reasoning rules like this example:  
 
[instant-before: 
     (?x rdf:type tme:InstantThing), (?x tme:at ?timeX),      
     (?y rdf:type tme:InstantThing), (?y tme:at ?timeY),  
     lessThan(?timeX,?timeY) 
 ( (?x tme:before ?y)] 
 
[interval-before: 
 (?x rdf:type tme:IntervalThing), (?x tme:ends ?xE), 
 (?y rdf:type tme:IntervalThing), (?y tme:begins ?yB),  
 (?xE tme:before ?yB) 



 

 ( (?x tme:before ?y)] 
 
The inferred temporal and spatial contextual information can be used for higher 
level reasoning. For example, categorizing activities into PastActivity, 
CurrentActivity and IntentionalActivity help defining some more complex 
inference. Following are some rules taken from our current implementation: 
(note that each time before calling the time reasoner, we have to update the at 
property of Now – a special instance indicating the current time, an individual of 
class NowInstantThing - with the current timestamp). 
 
To infer that an activity is PastActivity  
[past-act: 
 (?a rdf:type act:InstantActivity), 
 (?a act:containsActivityEvent ?e), 
 (?a rdf:type act:InstantActivityEvent), 
 (?e tme:before ?n) ,  
 (?n rdf:type tme:NowInstantThing) 
 ( (?a rdf:type act:PastActivity)] 
      
If agent has Waken Up and is Bathing then the Oven will Reheat the Breakfast 
 
In DLRUS syntax [17], this rule can be expressed like this:  
 

� � � � �((OvenReheatingBreakfast  ()  (WalkingUp  PastActivity  Bathing  
CurrentActivity)) 
 
And here is the realization in Jena rule syntax: 
 
[reheat: 
 (?a1 rdf:type tme:WakingUp), (?a1 rdf:type 
act:PastActivity), 
 (?a2 rdf:type tme:Bathing), (?a2 rdf:type 
act:CurrentActivity) 
  [(?o act:isActorOf ?a3),  
     (?a3 rdf:type acthome:ReheatBreakfast) 
        (?o rdf:type devhome:Oven), 
makeInstance(?a, act:isActorOf, 
acthome:ReheatBreakfast, ?a3)]] 
 
Such temporal concepts and relations can play a useful role in the reasoning 
about contexts. All concepts and relations are written using the Protégé 2000 [35] 
which allows writing vocabularies in OWL. At present, we are using the Jena 



 

Semantic web toolkit to insert the context information as it allows parsing, 
managing, querying and reasoning the ontologies programmatically. 
 
However, Jena has limited support for other types of inferences, for example 
default reasoning and uncertainty reasoning. So we are considering using some 
other reasoning mechanisms, such as Bayesian network for uncertainty reasoning, 
and the Theorist framework for default and abductive reasoning. Cont-el 
ontologies and current reasoning mechanisms over it can provide contextual 
information, as input, for those higher inferences. 
 
6.3 Discussion 

To enrich the knowledge base of a ubiquitous system, using reasoning 
mechanisms to infer more information is a noble solution. Unifying the interface 
of all reasoning engines so that the developers can easily add new reasoners and 
handle the reasoning process is quite a good approach.  
 
However, this approach requires a huge effort to learn as many types of reasoners 
as possible and then make each reasoner type a simplified interface. Currently, 
only the wrapper for Jena generic rule reasoner is done. There is still a lot of 
future work needed to build the wrappers for other kinds of reasoning engines, 
especially some engines which can deal with the uncertainty like Bayesian Net or 
Fuzzy logic reasoner. Those reasoners can provide more accurate inference 
results, and they are suitable for the ubiquitous environments which are full of 
uncertainty.  
 
Furthermore, we should consider applying some data mining and AI techniques 
into our middleware. For example, from the historical information of user 
location, user activity, the environment features, combine with user profile, some 
data mining algorithms can be used to mine the association rules which describe 
user preferences or user route. Another example is that we can build the decision 
trees to predict future actions of user. Training the Bayesian net, creating the 
neuron network or applying some machine learning mechanisms to learn more 
about the expected behaviors of the ubiquitous systems to adapt the preferences 
of users are also some future directions.  
 
6.4 Summary 

CAMUS utilizes a variety of reasoning and/or learning mechanisms to help 
computing entities reason about context appropriately. Many reasoning 
mechanisms should be supported to provide the developers a large range of 
selection. Also each type of reasoning mechanism has its own advantages. 
Ontology reasoning (inferencing over OWL format ontologies and context data), 



 

description logic, temporal logic and spatial logic reasoning have been studied to 
apply into CAMUS.  
 
All the reasoners are managed and invoked through a unified interface. In future, 
we will continue to improve the reasoning layer in number of supported reasoner 
type, as well as in the quality of the reasoners to be used.  
 
Besides, some data mining techniques and AI algorithms will be considered in the 
next step of CAMUS to make the ubiquitous environment more intelligent. 
 



 

C h a p t e r  7  

CONTEXT PROVISION 

7. Context Provision/Aggregation 

 
7.1 Motivation 

For success of large scale open distributed systems, the need for interoperability 
is not new issue. The emergence of different architectures for context aware 
ubiquitous computing systems, whether they are infrastructure based (middleware 
approach) or standalone application specific systems, will require handling their 
need for interoperability. Though much work is being carried out in different 
dimensions in context aware ubiquitous computing systems, and different 
research studies have proposed to use semantic web supported ontologies for 
contextual data representations, but our study/practical experience [36] of such 
approach has showed that it lacked performance. Since purpose was to support 
semantic interoperability with other systems, but for some reasons or the other, 
representing all the contextual data in OWL is not efficient approach. Context 
aware ubiquitous computing systems sometimes require different 
methods/techniques because of efficiency or lack of resources of mobile devices. 
 
Context aggregation service is responsible for satisfying certain context queries. 
Each context aggregation service performs a specific function. An example 
service can be detecting that user has awaken and performing certain actions. 
Based on required contextual information, it can either utilize the ontology 
reasoning module or context reasoning module or both. Upon detecting that 
certain context is composite one, it will retrieve meta-information from the 
repository about the specific context reasoning module providing the composite 
context. Once retrieved, it will invoke the corresponding reasoning module and 
return the result back to the application requesting the context. The current 
architecture of context aggregation is based on service oriented architecture [37].  



 

 
Figure 12: Context Aggregator Functioning 

Then, applications can find it via querying the delivery service and requesting for 
their specified context aggregator. Since context aggregator produces composite 
context by using lower level basic context, it needs the support of reasoning 
engine modules to produce such composite context. The basic context is 
gathered from the CAMUS through the context data manager. Once, the 
composite context is found by applying reasoning techniques on the set basic of 
basic contexts, it is again saved in to context repository using the context data 
manager interface.  
 
Interface to request for contexts from CAMUS 
Context Consumers (applications) can query the contexts from CAMUS by 
calling the API of the Context Aggregators.  
 

Request for contexts using RDQL-like query  

Example: query for the location of Bilbo and find all the people who are in the same 
place with him. 
 
/**********************************************************  
* get the vocabularies from Context Catalog 
* If the vocabularies are already known, we can skip this step 
***********************************************************/ 
String uri = ContextCatalog.LocationOntology.Location.uri; 
String name = ContextCatalog.LocationOntology.Location.name; 
String locatedIn = ContextCatalog.AgentOntology.Agent.locatedIn.label; 

 
/**********************************************************  
* get the location  



 

* SELECT ONE will select only one available context  
***********************************************************/ 
ContextObject[] locations = LocationCA.queryContext(“ SELECT ONE ?location  
WHERE (?user locatedIn ?location)  
AND (?user name ‘Bilbo’)”); 
 
if (location!=null) { 

ContextObject location = locations[0]; 
 
String locationURI = location.getProperty(uri).getValue(); 
String locationName = location.getProperty(name).getValue(); 
 

/**********************************************************  
* get the list of people  
***********************************************************/ 
ContextObject[] people = LocationCA.queryContext(“ SELECT ?pp  
WHERE (?pp locatedIn ?location)  
AND (?location uri ‘“ + uri + “’)”; 

} 

Request for contexts using Template 

Example: query for all information of Bilbo. 
 

/**********************************************************  
* get the vocabularies from Context Catalog 
***********************************************************/ 
String agentClassName = ContextCatalog.AgentOntology.Agent.getClassName(); 
String agentName = ContextCatalog.AgentOntology.Agent.name; 
String agentUri = ContextCatalog.AgentOntology.Agent.uri; 
String agentAge = ContextCatalog.AgentOntology.Agent.age; 
String locatedIn = ContextCatalog.AgentOntology.Agent.locatedIn.label; 
 
/**********************************************************  
* create the template 
***********************************************************/ 
ContextClass agentClass = LocationCA.getContextClass(agentClassName) ; 
ContextIndividual agent = LocationCA.createIndividual(agentClass) ; 
agent.addProperty(agentname, “Bilbo”); 
 
/**********************************************************  
* search for contexts which match the template 
***********************************************************/ 
ContextObject[] agents = LocationCA.searchContext(agent); 
 
if (agents!=null) { 

ContextObject bilbo = agents[0]; 
 
String bilboURI = bilbo.getProperty(agentUri).getValue(); 
int bilboAge = (new 
Integer(bilbo.getProperty(agentAge).getValue())).intValue(); 
 
ContextObject bilboLocation = bilbo.getProperty(locatedIn); 

} 

 
 Request for contexts using simple search 

Example: query for all context related to the string “Bilbo”. 
 

ContextObject[] contexts = LocationCA.searchContext(“Bilbo”); 
 



 

The result will be an array of individuals which has the label contains “Bilbo”, 
for examples : BilboLocation (of class Location), BilboActivity (of class 
Activity), …  

 
 Request for context using URI 

Example: query for all info of Bilbo, given the URI of that agent 
 

ContextObject bilbo = LocationCA.getContext(“http://khu.ac.kr/Bilbo”); 
Or: 

ContextIndividual bilbo = 
LocationCA.getIndividual(“http://khu.ac.kr/Bilbo”); 

 
7.2 Dynamic Interaction 

The approaches, mentioned (e.g. representation of contextual data in OWL) 
above, may not be used in all cases but even then, interoperability is an important 
issue for successful deployment of the context aware ubiquitous computing 
systems. Service oriented computing paradigm if applied to context aware 
ubiquitous computing systems can give promising results. One such example of a 
service can be user location service, providing user location in a particular area. 
The goal is to provide semantically rich and flexible model that can simplify 
development of context aware ubiquitous computing systems. If we think of 
facilities provided by some ubicomp system as services, we need to define the 
important parameters of services for such vision. The three entities in SOA are 
service provider, service consumer and the service brokers. In context aware 
ubiquitous computing systems, the analogy will result in context provision 
services (called context aggregators above), service consumers or applications and 
context brokers. Such brokers can be centralized or part of some federation as 
this is not the main issue discussed here. A workflow of such a system can be 
made as shown in figure below. Here composition is the final step which will be 
performed when user requested some service not available with the broker and it 
needs to find a set of services which can provide same goal. 



 

 
Figure 13: System flow for composition of context aggregators 

The service is described semantically after being developed. It is then registered 
with broker service and the job of service provider is done. Now, if the client 
wants to find some service, she will make a template and submit it to the broker. 
If some match is found, it will return that service reference but if no such 
requested service is available, the broker will check if the client has allowed 
composing services if no single service match exists. It will then transfer the 
template to the composition component which will handle composition and run 
the composite process inside its engine.  
 
7.2.1 Context Service Description 
For discovery and composition of context services, the first and most important 
requirement is their appropriate description. Since only syntactic interface of the 
service is not sufficient for its discovery and usage, Quantitative and Qualitative 
(or Q) semantics are needed. Quantitative semantics is related to context service 
specification i.e. service name, operations/methods provided by the service 
through its exposed interface along with the mechanism used to infer higher 
(composite) context from the raw data (basic context) in those operations. The 
following attributes of a service are considered important for attaching 
quantitative semantics. 

Table 3. Quantitative attributes of a context service 

Ontological class that closely resembles the context service name to signify its 
domain 



 

Ontological class of operation i 
Ontological classes of the Pre-conditions of operation i 
Ontological classes of the Inputs of operation i 
Ontological classes of the Outputs of operation i 
Ontological classes of the Post-conditions of operation i 
Ontological classes of the Possible exceptions thrown by operation i 
Ontological classes of the reasoning mechanism used to infer higher level context 

 
Since operations of a context service correspond closely to its name, both the 
ontological concepts for the operations and the service domain are kept in one 
ontology named service ontology while concepts matching different data types 
for inputs and outputs of operations are kept in data type ontology. Similarly, 
preconditions and post-conditions are maintained in conditions ontology while to 
mention the quality of context/s being provided by a service, reasoning 
mechanism used to infer higher context is considered here as a metric and 
represented in reasoning approach ontology. This reasoning approach ontology 
will help us to select the best service if a group of services are providing same 
context but using different mechanisms to infer higher context. The reason we 
have included this parameter in each service is that we believe that one reasoning 
mechanism cannot be used for inference of different contexts. For some higher 
level context, simple rule based mechanism may be efficient to infer it from 
simple raw context but for some other higher context, complex reasoning 
mechanism may be needed. An example can be detecting whether user is sleeping. 
One simple way may be to use simple rule like if it is no noise in room, AND 
light is off, then user is sleeping but another approach may use complex Bayesian 
network to infer the status of user in the room.  
 
Qualitative semantics of an operation i of the context service represents its 
excellence. This excellence will be in terms of its execution time, context 
freshness, reliability and availability. Since all these excellence parameters are 
comparative parameters, they can be represented in the form of tuple as shown 
below. 
{excellence parameter, comparison operator, value, 
unit} 

An optional hardware used parameter can be included in qualitative semantics to 
mention the hardware which provided the basic/raw context to the service. An 
example usage can be user location because we can get location through different 
hardware providing different accuracy e.g. using WLAN, RFID, ibutton etc. 
Once context service is fully described, it can be then registered with the broker 
service. Here, the job of the service developer is done as he successfully registers 
his service after fully annotating it by describing its Q semantics. 



 

 
7.2.2 Context Template (Target Context) – CT or TC 
The client application submits the target context to the broker (The target context 
is used by the broker service) to find the best matching available service. There 
are two possible scenarios in our system. Either the application developer is 
interested in only finding one service which can fulfil his requirements submitted 
via target context, or he specifies that if the broker service cannot find one 
suitable service, then the job of finding a set of services which can perform the 
same functionality can be delegated to the context service process composer 
(CSPS). Target context specifies the abstract function the client application is 
interested in, with the set of input and output concepts it is looking for. It will be 
actually a set of service level parameters (SLAs) and Q semantics the client is 
interested in. E.g. if the client is interested in user location and it is willing to 
provide user URI and expecting Location in terms of GPS location, then it can 
be defined roughly as: 
Domain (CT) = Location Provider Service 

Ontological class of required operation = UserLocation 

Ontological class of required input = URI 

Ontological class of required output = GPSLocation 

Context Freshness < 5 Sec 

Hardware Used = RFID || iButton 

In this way, the client specifies its requirements in more expressive way and there 
are more chances to find suitable service as compared to simple search based on 
keywords.  
 
7.2.3 Context Discovery Service – Broker 
Context discovery/broker service is registration/advertisement and discovery 
service whose function is to maintain a set of services registered with it and 
finding possible matches of service if requested by client application. As context 
service description is provided by each service to the broker, the search in broker 
is based on semantics provided by context services. The target context is matched 
semantically against a set of service descriptions available with the broker and is 
based on Q semantics. Such descriptions are maintained in the Context Service 
Descriptions (CSD) Repository. In CAMUS, at present, this job is being handled 
by Context Delivery Service. 
 
7.2.4 Context Service/s Process Composer 
Reusability is an important concept in traditional as well as service oriented 
paradigms. Process composer allows us to create new values from the existing 
context services. Composite services apply in many situations as one service 



 

depends on another service for certain context. An example can be of a user 
status detection service which depends on another service for providing user 
location. This composition is either based on achieving a set of goals or following 
the workflow systems approach. Once a certain process is compiled, it is then 
enacted in the Execution Engine, which is responsible for scheduling, monitoring 
and managing events among a set of services in the process. 
 
7.3 Architecture required for dynamic interaction 

The system architecture is based on the required components which are necessary 
for successful operation of such a system. This is self explanatory because of the 
description given above and we will not provide its details here. 

Context 
Aggregator Designer

CAD

Context Service
Descriptions CSD

Advertisement

Context Service
Process Composer

CSPC

Target Context

Registration/Discovery
(Broker) Service

Service
Description

Scheduler Event 
Manager

Execution
Engine

Runnable  Process

Abstract
Process Modeler 

APM

Target 
Context

Context 
Aggregator Designer

CAD

Context Service
Descriptions CSD

Advertisement

Context Service
Process Composer

CSPC

Target Context

Registration/Discovery
(Broker) Service

Service
Description

Scheduler Event 
Manager

Execution
Engine Scheduler Event 

Manager

Execution
Engine

Runnable  Process

Abstract
Process Modeler 

APM

Target 
Context

 
Figure 14: Required architecture for dynamic interaction 

7.4 Discussion 

Although in this chapter, and the chapter on delivery services, it is emphasized on 
semantic matchmaking and dynamic composition of service, there is still one 
issue which is not being dealt. The purpose of delivery and composition system is 
to find and compose services in most efficient way but the decision of which 
services should be required by the application are still with the application 
developer. There is no way that applications can decide intelligently that which 
context they need and in this way, query the delivery and composition subsystem 
to find those interested contexts. In simple words, it is two steps process, first is 
the identification of the context an application requires and second is provision 



 

of the context to the interested application. First goal is presently left with the 
developers of context-aware applications while second is being dealt by the 
system we are currently enhancing i.e. context delivery and dynamic composition. 
 
7.5 Summary 

We presented why context provision is important along with dynamic 
composition of services. Once system gathers useful information from the 
environment and its surroundings, and saves it in the form of context, the 
question remains how to deliver this context to the applications. So, we discussed 
context aggregators and their goals to provide context. Also, dynamic 
composition of context-aware services is discussed if there is no one service 
which can fulfill application requirement and composition of multiple services is 
required at runtime. 



 

C h a p t e r  8  

CONTEXT DELIVERY SERVICES 

8. Context Delivery Services 

 
8.1 Motivation 

A context aware system gathers and dissipates information relevant to a user in 
order to enrich the software functionality and facilitate adaptive behavior. With 
the plethora of information gathered from the physical and computational 
environment, there is a need for an efficient delivery mechanism to filter out 
unrelated information and communicate the relevant contextual information to 
its respective clients. Context delivery is the final step in the context awareness 
process starting from gathering raw data from environment and logical sensors, 
feature extraction, context synthesis and reasoning to finally delivering context to 
the interested client or application. It facilitates the context-based interactions by 
relating the desired contextual information with the interested context consumer. 
The clients of a context delivery system include context producers (context aware 
middleware), that produce and advertise the existence of context; and context 
consumers (context aware applications), that query certain type of context they 
are interested in, which is consumed on availability.  
 
In a simple service provider / consumer environment, it is assumed that the 
service provider and service consumer know each other and the service is 
published, discovered based on syntactic parameters i.e., the consumer can 
lookup the service solely basing on syntax queries. In case the service provider 
and consumer do not use the same syntax, the desired service could not be 
provided even if it exists. Similarly, the service interfaces are static and known in 
advance by the interacting clients. No new functionality might be added to the 
services while they are executing. Moreover, security and access control models 
for information are well understood in case of static service provider and 
consumer interactions. 
 
These assumptions no longer hold true in case of context aware environments. A 
context aware system maintains a vast set of heterogeneous context clients 
(applications). Furthermore, new type of applications and contextual information 
might be added to the system at runtime which should be incorporated in the 
system without requiring an update in the service interface towards the existing 
client applications. Similarly, only syntax-based queries might not be able to 



 

identify the desired service since the representations of the ‘same concept’ might 
be different at the client and the service. Finally, some properties of the 
information raise unique challenges for the design of an access control 
mechanism such as: information can emanate from more than one source and 
flow through nodes administrated by different entities and it might change its 
nature or granularity before reaching its final receiver; policies might not be 
installed on all nodes before-hand and the user might not possess knowledge 
about the complete policies existing in a context aware environment; and 
minimum human intervention should be needed to keep the system running in a 
reliable and secure manner.  
 
In order to meet the additional challenges posed by the peculiar nature of context 
aware systems, we can no longer rely on traditional service registration and 
delivery mechanisms. The main motivation behind context delivery services in 
CAMUS is two fold: 
• To provide a discovery and registration mechanism which can utilize the 

underlying contextual information’s syntax as well as semantics in order to 
make more intelligent and accurate matchmaking decisions between the 
clients and services 

• To incorporate dynamic and autonomous access-control mechanisms in the 
context delivery process to ensure privacy and overall integrity of the system 

 
8.2 Requirements of Delivery Services 

The basic requirements of the context delivery system can be enumerated as (a) 
the system should be able to deliver a vast set of context to a variety of diverse 
applications, (b) the system should be extensible in order to incorporate new 
applications and new contextual information as the context aware system matures, 
(c) capability to define logical constrains for more desired matching of the 
context advertisements and context queries, (d) cater for semi-structured data in 
case the context aware applications that need to utilize contextual information 
does not provide exact specifications of the required context, (e) policies defined 
for access control should be dynamic in nature in order to incorporate changing 
system trust level, (f) access control mechanism should be autonomous to 
minimize human intervention, and (g) access control should be interactive to 
cater for situations in which user has incomplete knowledge about the existing 
policies of the system. 
 
These requirements suggest that the context delivery mechanism and 
corresponding representation scheme for advertising and querying context and 
defining policies must be flexible to incorporate a variety of applications and 
clients, yet expressive enough to avoid ambiguity in delivering desired contextual 



 

information. In our middleware, context is represented using OWL and 
Ontologies which not only allow representation of available contextual 
information, but also facilitate representing relationships between different 
concepts and sharing of similar understanding between various entities in a 
context aware system. Keeping in view the requirements of the context delivery 
service and the representation scheme of the underlying data model for context, 
semantic web concepts for matchmaking [38] seem to be most closely related to 
the requirements stated above for the delivery of context from the middleware to 
the applications. 
 
In CAMUS, the context delivery services are present at the top layer of the 
system performing the job of searching appropriate context aggregators and 
delivering them to the applications. These services perform the registration, 
lookup/query and notification functions. Context Aggregators register with the 
registration service to provide the information about the context they can deliver. 
Interested applications and agents query the registration service to find services of 
their interests. The registration service upon finding appropriate aggregator, 
returns the handler to the requested clients. Each context aggregator specifies the 
context it provides, by utilizing the concepts defined in the ontology repository. 
This standard schema sharing allows the different kinds of entities to be 
described and utilize by registration service to find useful services needed by the 
applications, thus allowing a flexible mechanism for exchanging descriptive 
information of various entities. 
 

 
Figure 15: Context Delivery Service Placement in CAMUS 

8.3 Semantics-based Discovery and Registration 

The fundamental operations that take place in a service registration and 
matchmaking process include: 
 



 

Advertising: The party interested in making available some service publishes an 
advertisement with the matchmaking service to let other interested parties know 
about its existence 
Querying: Query is submitted to the matchmaking service to find out a relevant 
advertisement among the ones available. Constraints are provided in the query 
over aspects of interest to filter out unrelated services. 
Browsing: The matchmaker stores the advertisements in a repository that can be 
browsed by interested parties for manual search of advertisement of interest.  
 
A set of description languages such as WSDL, UDDI [39], ebXML present 
mechanism for similar operations but the limitation lies in the lack of ability to 
assign logical constraints on advertisement and queries, and ability to deal with 
semi-structured data input. Semantic matchmaking offers strong representation 
languages such as RDF and its extension DAML+OIL [40]. RDF is an ontology 
language that allows expressing contextual information along with their 
relationships but is limited in representing constraints on information. 
DAML+OIL extend RDF to incorporate Boolean operators and quantifiers 
which provides a great deal of expression in defining constraints for matching 
advertisement and queries. Currently, OWL is the standard language for 
ontologies description and will be used. In [41], a framework is presented which 
uses semantic web for matchmaking in e-commerce. Similar concepts can be 
extended for the provision of context delivery in the context aware middleware 
systems.  We can view the context consumers and context producers as the 
interacting parties where context producers advertise the context they produce 
and context consumers query and utilize the corresponding contextual 
information. 
 
At the modular breakdown, the context delivery using semantic matchmaking is 
similar to regular delivery services. The actual difference lies in the representation 
scheme for context announcement and query specification. The semantic 
meanings attached with the constraints specified for the contextual data available 
or required leverages flexibility and common understanding of concepts. In 
addition, since the underlying representation scheme is ontology-based, it enables 
extensibility of the concepts, reusability and inheritance. These benefits are 
reflected in delivering context as the delivery mechanism uses the same semantic 
concepts. The important aspects are to identify the format for context 
advertisement and query. Existential and universal quantifiers and Boolean 
expressions supported by the representation language will be dealt with in detail 
to use them for the purpose of specifying constraints. Inheritance, specialization, 
generalization and other relationships can exist between various concepts in 
ontology. These relationships can be used to process queries in which specific 
details are not provided by the subscriber. 



 

8.4 Policy-based Interactive Autonomous Access Control 

A pervasive context aware system senses information from the physical and 
computational environment and infers useful contextual situations in a user-
centric manner. This information, more often than not, is very personal to the 
user and if available to an unauthorized person can be a serious intrusion in the 
user’s privacy and security. Access control to information is as critical as it is 
challenging in context aware computing. The properties of the information raise 
unique challenges for the design of an access control mechanism in context aware 
environment such as: information can emanate from more than one source and 
flow through nodes administrated by different entities; it might change its nature 
or granularity before reaching its final receiver [42]; policies might not be installed 
on all nodes before-hand and the user might not possess knowledge about the 
complete policies existing in a context aware environment. Moreover, keeping in 
view the scale and complexity of the context aware systems, minimum human 
intervention should be needed to keep the system running in a secure and reliable 
manner.  
 
The Semantic Web as a whole is largely conceived as a completely open system, 
in which everything is published for everyone to see. It is far from clear how 
access control could or should be applied, e.g., to the information in an ontology 
or a knowledge base. Reasoning engines typically can’t enforce security policies, 
and the DAML language, for instance, has no facility to limit visibility of concepts 
or attributes [43]. It is clear that the capabilities of the context representation 
scheme can not be exploited to enforce access control over the information 
contents. The context delivery mechanism fills this void by incorporating 
dynamic policies at the services level as well as at the system level on the whole.  
 
Various context aware systems are directing efforts now to incorporate privacy 
and security techniques in the pervasive environments. The foremost concern is 
to define access control policies that can be suitable in a pervasive environment. 
The major concerns are: the policies need to be dynamic in nature; the granularity 
of control to information needs to be identified; how to cope with changing 
policies basing on the context at run-time; how can the clients trust the system 
while providing personal information to it for access and validation. Some of 
these issues can be overcome if autonomic access control techniques are 
employed in context delivery. In [44], the authors discuss about the following 
three operations for making access control decisions and defining policies: 
 
Deduction: Deduction is the default process that most access control techniques 
employ. In deduction, given a defined policy and a set of credentials provided by 
the client, it is decided whether to grant the access or not. It checks if a request 
for access can be granted or not. 



 

Abduction: In abduction, given a defined policy and a request to access some 
resource or service, it is decided what minimum credentials are required so that 
the given request can be granted. This process is specifically useful in context 
aware environments where the client might not what credentials it needs to 
provide to access a specific service. In that case, the delivery service will request 
the client to provide the missing credentials and if the clients provide valid 
credentials, the request is granted, else denied. 
Induction: Induction utilizes a heuristic function along with some positive 
examples of scenarios in which the request should be granted and some negative 
examples of scenarios where the request should be denied. Basing on this 
information, the induction process tries to identify the policy that satisfies the 
validity of the granted requests. The induction process is useful in the case where 
a single static policy can not be defined. This is true for context aware systems 
since the context changes at run-time so should the policy to incorporate the new 
situation. 
 
By utilizing these three operations, an interactive and autonomous access control 
mechanism can be put in to effect. Existing approaches of access control do not 
rely on such techniques and hence the policies are mostly static which can not be 
modified at run-time to incorporate changing system privacy requirements in a 
pervasive environment. In [45], the authors extend the existing access control 
model by incorporating roles and delegation mechanism but they only focus on 
controlling access to devices such as printers and do not define access control 
over information which is more critical in a pervasive environment. In [42], the 
authors argue that the access control should be at the information level since the 
major concern is to maintain the privacy of the contextual information. They 
provide architecture to maintain access control in a distributed fashion. However, 
the access control mechanism is not interactive and autonomous. In CAMUS, we 
intend to incorporate an autonomous access control mechanism which can also 
utilize the underlying semantics of the system to provide services more closer to 
the users needs and capabilities. 
 
8.5 Architectural Overview of Context Delivery Module 

The context delivery module handles functions related to service registration and 
lookup but it is different from regular service repositories in that the matching 
process makes use of the underlying semantics of the system while providing 
controlled access to the context providers using autonomous policy based access 
control mechanism. The overall architecture of the context delivery module is 
represented below. 
 



 

 
Figure 16: Overview of Context Delivery Service Architecture 

The services (context aggregators) utilize the registration interface to make their 
information known to the applications. Lookup interface enables the applications 
to find appropriate matching context providers. Policies/rules database contains 
the system level policies as well as optional aggregator services level policies and 
rules defining the requirements or conditions to access some specific service 
provided by the context aware middleware. This process is handled by the access 
control module.  
 

 
 

Figure 17: Context Delivery Service - Modular Breakdown 

The matchmaking module matches the appropriate service with the client 
provided the access control policies are not violated. Further breakdown of the 
context delivery module is represented in the figure above. 



 

The two main entities the delivery services interact with are the context providers 
i.e., the context aggregators in the CAMUS middleware and the context 
consumers i.e., the context aware applications that utilize the contextual 
information provided by the middleware. These modules utilize the interface 
exposed by the delivery services to perform actions like registering a service 
(aggregator), looking up a service or registering for event notifications regarding 
services or events of interest. Internally, the context delivery service is composed 
of a Context Delivery Manager module which handles the requests from the 
aggregators and applications and dispatches them to the corresponding sub 
modules.  Every time a new registration request is received from the context 
aggregator, an instance of Registration Module is created to process the request. 
Matchmaking Module handles the lookup and matching request on behalf of the 
applications. This module incorporates semantic matchmaking capabilities to 
make use of the underlying semantics of the context data structures and 
ontologies to come up with a match to the most appropriate set of context 
aggregators to fulfill the applications’ contextual requirements. Access Controller 
manages the policy/rules database which contains system level access policies and 
optional service (aggregator) level policies. A match is computed and returned to 
the service only if the access control policies are not violated. If a match is found 
and the matched service has some access policies, then the matchmaking module 
utilizes the access controller to identify whether the access can be granted or 
denied. 
 
Lease Manager keeps track of the freshness and validity of the registrations and 
matchmaking requests present with the manager. It renews or cancels the 
requests basing on the time interval the service/client provided while requesting a 
service or event registration. This soft state registration process helps in 
identifying stale registrations and cleaning up the context delivery registry. The 
data structure used to keep the service registrations or matchmaking requests are 
represented by the Context Service Descriptor which is specialized into Context 
Advertisement and Context Lookup for specifying specialized attributes related to 
service registration or service lookup respectively. 
 
8.6 Discussion 

The research and development for context aware middleware systems is in an 
evolutionary stage. A standard development methodology or design specifications 
does not exist as yet. Same goes for various context delivery techniques. Many 
systems employ CORBA based communication and delivery infrastructure [24]. 
This facilitates in discovery and event notifications in a distributed environment 
but the context delivery mechanism only deals with the syntactic comparison and 
does not provide semantic matching capability. Agent based approaches for 
context sharing and delivery provides dynamism and flexibility but need an 



 

extensive support platform for hosting agents which might not be feasible for all 
the context aware applications. Web services provide standard representation 
semantics which can support a variety of applications but they do not support 
logical constraints on the parameters of communication messages. Similarly, all 
the existing paradigms lack support for semi-structured data in case the context 
requesting application has limited knowledge about the context producer or is 
interested in only a subset of contextual information provided by a specific 
producer. Use of semantic matchmaking in context delivery facilitates the 
requirements specified for our context delivery service as explained later. 
Currently, efforts are underway to enable semantic matchmaking capabilities in 
the UDDI repository for web services [46] [47]. In [48], the authors give 
architecture and implementation regarding ontology based service discovery. 
They provide the degree of matching basing on weather the service is an exact, 
partial or no match. While semantic matchmaking enables support for incomplete 
or semi-structured information, it does not provide any access control over the 
contextual information. It is interesting to combine both paradigms to provide a 
delivery service that provides the two important functionalities of semantics 
based search and dynamic autonomous policies for access control. As a specific 
case, Jini Network Technology’s discovery and registration mechanism will be 
enhanced to incorporate semantics based autonomous access control and search 
mechanism. 
 
On the down side, incorporating access control requires a lot of information 
inflow on behalf of the applications i.e., the applications are required to provide 
some credentials to match the policies. This process might be slow in case some 
mobile user just wants to retrieve general information e.g., weather, light 
conditions, humidity, goods available in the market etc from the context aware 
system which are not subject to privacy constraints. In such scenarios, policies 
can be written to grant unhindered access to services that provide such contextual 
information. Similarly, incorporating ontologies and semantics in service search 
poses additional computation burden but given the better hit rate of semantics 
based matching and high computational capabilities of today’s computers, it is 
not a major concern. However, there is a need to carefully define the data 
structure to represent policies and semantics so that the representation scheme 
facilitates these mechanisms. RDQL and OWL are the candidate languages for 
defining semantics as already used in the middleware. For access control, various 
information description languages such as Policy Description Language, XML 
Access Control Language [49] are present. Currently survey is being done to find 
the most suitable description language for our purpose. 
 



 

8.7 Summary 

Context delivery is the final step in the context awareness process starting from, 
gathering raw data from environment and logical sensors, feature extraction, 
context synthesis and reasoning to finally delivering context to the interested 
client or application. It facilitates the context-based interactions by relating the 
desired contextual information with the interested context consumer. In this 
chapter, it is identified that a useful context delivery system should be able to 
deliver a large number of contextual information to a diverse range of clients, 
should be extensible, capable of defining logical constraints for desired contextual 
information and able to deal with semi-structured data while upholding the access 
policies and rules associated with the overall system as well as the individual 
services it provides. Semantic matchmaking techniques are identified to be useful 
to achieve the desired characteristics in a context delivery system. While semantic 
matchmaking utilizes the underlying ontologies, it does not provide any 
mechanism to implement access control. Autonomous policy based access 
control is utilized to allow privacy of the contextual information that and integrity 
of the system as a whole. The result is a comprehensive delivery mechanism with 
effective matchmaking capabilities and reasonable privacy.  
 
 



 

C h a p t e r  9  

COMMUNICATION MECHANISMS 

9. Managing Distributed Communication Issues in a Context 

Aware Middleware Infrastructure 

 
9.1 Motivation 

Most of the current context aware systems that have been prototyped are limited 
to providing context at a small physical scale e.g. a campus environment [52], a 
laboratory, a home [53] etc. At such a scale, the problems of a distributed 
environment do not present themselves adequately since the sensors are confined 
to a limited space (allowing easy sensor management), the context synthesis and 
delivery services run on a single system, system contact points are known [4] and 
dynamic discovery of system services is not required. In a practical scenario, a 
fully functional and effective context awareness system will provide context 
services over a vast stretch of environments ranging from homes, campuses, 
market places to city blocks and larger precincts. To manage such extended 
spaces it is necessary to separate the overall environment into smaller logical 
domains and incorporate a robust coordination and management framework as 
dictated by following reasons: 
• The limitation in the communication range of most sensors makes it 

necessary for input gathering software components to exist in physical 
proximity to the sensors. Since sensors are diversely deployed in a ubiquitous 
environment, multiple input gathering components of a context aware system 
require coordination and management for data procurement. 

• The synthesis of context is a complex process because environment sensors 
cannot pinpoint users activities in an exact manner and user context has to be  
interpreted  using logical, rule based systems or systems based on Bayesian 
networks etc. The complexity involve in context synthesis may require special 
computing devices for efficient performance e.g. a dedicate cluster of 
workstations set aside for context synthesis of all the entities registered with 
the system. 

• Context is not limited to a confined physical space since a typical user of 
context provision services is mobile, moving from one domain to another e.g. 
a commuter traveling from home to office and then to some market place. 
Employing a single system to manage context synthesis and delivery for a 



 

large environment consisting of many sub-domains can be performance 
limiting. It is best that the whole environment is segregated into separate 
logical domains and clone sub-systems handle the steps involved in the 
context delivery process in each domain individually. These sub-systems 
effectively appear as small active spaces which can coordinate amongst each 
other to present the overall active space environment. 

 
In order to carry out these varying specialized tasks and incorporate a 
considerably large number of hardware and software clients and contributors, a 
distributed setup becomes inevitable. Objects that interact in a distributed system 
need to be dealt with in ways that are intrinsically different from objects that 
interact in a single address space [54]. 
 
Dynamic yet seamless integration and interactions among various components of 
a context aware system becomes significant in order to complement the working 
of the system and to accomplish a synergized effect. Various techniques such as 
agents based interactions [55] and broker services [15], [20] have been employed 
for this purpose.  
 
In [36], the authors have proposed a Context Aware Middleware for Ubiquitous 
Computing (CAMUS) to address the discussed issues. As the details of CAMUS 
middleware architecture with respect to context synthesis and data procurement 
have been adequately discussed in [12], we focus our discussion of CAMUS 
towards the coordination and managements aspects in the middleware in Sec. 8.2. 
Sec. 8.3 deals with the design considerations for the coordination framework 
which leads to a service oriented design as explained in Sec 8.4. A runtime 
overview of CAMUS is given in Sec. 8.5. The discussion is concluded with an 
analysis of our framework and future directions in Sec. 8.6. 
 
9.2 Coordination Challenges in CAMUS Infrastructure 

The core CAMUS infrastructure consists of four main components that 
individually handle the tasks of sensor management and data acquisition, feature 
extraction, context synthesis, storage, and context delivery. Generally middleware 
infrastructures are designed in modular and layered fashion to enable separation 
of concerns and provide a smooth flow of operations.  



 

 

Figure 18: Layered abstraction of CAMUS architecture 

In CAMUS architecture, following requirements for coordination arise when 
functionality is distributed amongst components on specialized systems. 
 
9.2.1 Logical and Physical Separation 
In CAMUS, the heterogeneity at the sensor level is handled through the 
Unification Interface which provides a unified access interface to hardware 
sensors. 

 

Figure 19: Unification Interface - Native drivers exist for individual sensors which are 
exposed to upper layers through a hardware abstraction layer, providing a standardized 
access to all sensors. Real-time  

The foreseeable problem that is related to heterogeneous sensors deployed in the 
environment is the limited communication range of sensors e.g. RFID, infrared, 
blue-tooth radio enabled sensors. It implies that the software components 
responsible for managing the sensors (start, stop, reset, discover, register etc) and 
retrieving measurements of environmental parameters have to be located in 
proximity to the sensors. However, deploying sensor access components close to 
sensors is a tricky task due to the distributed nature of sensors. With the 
distribution of sensors being wide and sparse, deployment of access components 
close to sensors becomes difficult and we have to adopt a divide and conquer 
strategy by expending more than one access module to cover the set of sensors 
exhaustively and combining their results for context generation later on. 



 

In context aware systems, the data retrieved from sensors is initially encapsulated 
in a data format before being synthesized into context. Since an entity’s context is 
an interpreted result from a collection of features, it cannot be derived from a 
single sensory source. This constraint necessitates that such intermediate data is 
placed in storage till adequate information sources contribute and reasonable 
context can be inferred. In CAMUS, a tuple space [9], [10] is employed as an 
underlying storage mechanism, for data acquired from sensors, providing a 
domain-wide persistent space. Various sub-modules for feature extraction and 
context formation dynamically interact in the middleware by mere flow of objects 
in and out of the ‘feature’ tuple space (FTS). 
 
Instead of multiple sensor access modules storing the procured data in a single, 
central repository, it serves the performance requirements best that multiple 
localized repositories are used in conjunction with multiple sensors access 
modules. This not only reduces the communication delays but also the load 
which would have been incurred in case of a central repository serving multiple 
concurrent read, write, and search operation requests. Moreover, it enables the 
storage of spatially related contextual information in separate spaces. Fault 
tolerance and scalability can be achieved by enabling multiple repositories to 
synchronize their stored contents in the manner of a distributed file system. 
 
To incorporate reusability and context sharing we use OWL [26] for context 
modeling. A functional context aware system will be entrusted with context 
generation of a considerable number of entities at any given time and combined 
effect of context inference (calculation), repository access and context history 
storage amounts to a computationally demanding task. Instead of employing a 
single context synthesis component to interpret context on behalf of all entities 
present in the system, this task can be logically segmented into 
compartmentalized domains with each domain responsible for context 
management within its own boundary e.g. a home domain.  
 
Context Delivery services lie at the top of the CAMUS layered architecture and 
consist of asynchronous Context Event Service and synchronous Context Query 
Service. The context delivery services retrieve context for interested applications 
based on semantic matchmaking techniques [41], [56]. 
 
9.2.2   Dynamic System State  
Context aware environment is dynamic as the system needs to actively detect, 
consider and respond to changes in its runtime environment. Systems built for 
such environments should be able to respond to change both flexibly and 
automatically. Distributed systems are inherently unstable due to network 



 

unreliability and this instability is increased in context aware systems due to 
participation of wireless technologies, devices and dynamic network topologies.  
 
In order to ensure synergized operations of various distributed components of 
the system, it is important that each module has a realistic and loosely consistent 
view of the system. A mechanism to identify the state of the system and to 
generate relevant information messages for the interested components is required. 
A distributed even notification mechanism enables such communications. Note 
that this event mechanism is different than the one involved in context delivery 
services as it maintains the internal state of the system as perceived by the 
cooperating peer components instead of external state which is visible to the 
context aware applications interacting with the system. 
 
9.2.3 Context Domains 
Ubiquitous computing environment is characterized by various domains e.g. 
home, office, university etc. and context information can be formally modeled to 
represent a particular domain. To achieve this, individual components need to be 
affiliated with a specific domain to relate coherent environments and entities, and 
to confine them within a logical boundary. Figure 20 depicts a two domain 
scenario. 

 

Figure 20: Home and University domains. Individual components join only one 
domain at a time. It is to be noted that Lookup Services (LUS) are not domain 
associated but serve discovery and registration services for more than one domain 

9.2.4   Internal Security Considerations 
Upholding system integrity demands that distributed components can trust each 
other mutually i.e. requirements of authentication, authorization, and integrity are 
met. For example, the context synthesis engine needs to be sure that it is taking 
input from a genuine FTS rather than a rogue process serving dubious 
information. This requirement pertains to system’s internal trust requirement and 



 

not to confidentiality requirements that are demanded by external applications 
interacting with the system. 
 
9.3 Design Considerations for Coordination Framework 

CAMUS has been designed to be deployed not as one system, but as multiple 
clone systems each responsible for managing context awareness in its allocated 
zone. For example, in Figure 20 the core components of CAMUS system, namely 
sensors access modules (Unification interface), feature (intermediate sensory data) 
repository (FTS) and context synthesis component, are logically bound to one 
domain. There functionalities are restricted to serving context in their area of 
allocation.  
 
Various components of the context aware infrastructure will be deployed mostly 
distributed and physically apart from each other within a given domain. In such a 
scenario, the foremost issue that presents itself is that of discovery of individual 
components based on appropriate parameters. Since the whole system can work 
only when input from complementing components (i.e., sensor access modules to 
feature extraction to context synthesis and delivery) can be transformed and 
passed on sequentially by each layer up through the hierarchy, it becomes 
indispensable to allow individual components to be discoverable by each other. 
In such a scenario an approach is needed by which all he components can make 
themselves, their capabilities and their functionality known to others through a 
discovery and registration mechanism. Components must also be able to search 
for each other basing on the functionality they require. In general, for a 
coordination framework, requirements can be listed as follows: 
 

1. Well defined interfaces for communication between components 
2. Registration of components capabilities and services 
3. Discovery of individual components by peers 
4. Searching of components based on required functionality 
5. Notifications for important events pertaining to system state 
6. System safeguard against temporary failures of individual components 
7. Scalability to allow for system growth without reconfiguration 
 

The requirements and design constraints lead us to a service oriented solution 
presented in the next section. Individual components can be modeled as services 
which advertise attributes to aid their discovery and expose well defined 
interfaces for communication. 
 



 

9.4 Service Oriented Approach to Middleware Coordination 

The core CAMUS coordination sub-system is based on Service Oriented 
Architecture (SOA) [57] where core components are distributed services residing 
on the network to be published, discovered and invoked by each other. It also 
allows a software programmer to model programming problems in terms of 
distributed services offered by components to anyone, anywhere over the 
network.  
The most important benefit achieved by employing the concepts of service-
oriented architecture is that service’s implementation is separated from its 
interface. In other words, it separates the “what” from the “how.” Service 
consumers view a service simply as an endpoint that supports a particular request 
format or contract. Service consumers are not concerned with how the service 
goes about executing their requests; they expect only that it will. Consumers also 
expect that their interaction with the service will follow a contract, an agreed-
upon interaction between two parties. The way the service executes tasks given to 
it by service consumers is irrelevant. This aspect of SOA is directly relevant to 
our design goal of achieving decoupling between the functional aspect of 
CAMUS (context provision) from the internal system coordination and 
management. 
 

 

Figure 21: Service oriented operation 

The main entities involved in an SOA interaction include a service provider, a 
service consumer and a registry. A service consumer can search for a service provider 
through the registry. Performance and reliability measurements include a service 
contract that specifies the interaction mechanism between the service and the 
consumer, a service lease specifying the amount of time for which the contract is 
valid and a service proxy acting as a convenience entity for interaction with the 
service. The service provider supplies a service proxy to the service consumer. 
The service consumer executes the request by calling an API function on the 
proxy. The service proxy, shown in Fig. 21, finds a contract and a reference to the 



 

service provider in the registry. It then formats the request message and executes 
the request on behalf of the consumer.  Proxies can improve performance by 
eliminating network calls altogether by performing some functions locally. Figure 
21 shows a typical setup of a service oriented system. 
 
To implement CAMUS architecture based on SOA, several existing technologies 
were investigated including Web Services, Java RMI, Jini [8], UPnP and Corba etc 
which are capable of, to one extent or another, satisfying the stated requirements. 
Web services and Jini are notable implementation of SOA and for reasons stated 
in Sec. 9.6, Jini technology was found to be the closest match to our requirements. 
Following figure shows an abstract overview of core CAMUS services interacting 
with a Jini lookup service component and highlights the independence between 
modules’ implementation and coordination framework. 
 

 
Figure 22: Abstract overview of core CAMUS services using a Jini Lookup service for 
discovery and registration 

9.4.1 Registration Mechanism and Formation of Domains 
When a component becomes available, it joins a specific domain by registering 
the attributes and capabilities it affords along with a downloadable proxy with a 
service registry, specifically a Jini Lookup Service (LUS) [58]. Other components in turn, 
can discover the service by looking up specific attributes they are interested in. 
This process can be either direct query or by a notification subscription for a 
specific module with the registry service. In any case, when the module of interest 
becomes available, its proxy is downloaded from the registry that exposes 
interfaces on which remote calls can be invoked for communicating back and 
forth between components.  
 
The attributes published vary from basic properties such as name, service type, 
location, and status etc. to specialized capabilities of the module for more specific 
lookup provision. For instance, an FTS publishes following set of attributes 
during its individual registration: 



 

  
Entry FTSAttributes [] = new Entry [7];  
FTSAttributes [0] = new Location (  “room 312”, “floor 3”, “engineering building” ); 
FTSAttributes [1] = new Name ( “RTMM Lab FTS ” );  
FTSAttributes [2] = new Status ( StatusType.NORMAL ); 
FTSAttributes [3] = new Domain ( “University” ); 
FTSAttributes [4] = new FTSCapability ( FTSCapability.READ ); 
FTSAttributes [5] = new FTSCapability ( FTSCapability.WRITE ); 
FTSAttributes [6] = new FTSCapability ( FTSCapability.EVENTS );  
 
Unification Interface can lookup the feature extraction module if it needs to write 
some newly gathered features, whereas a Context Synthesis module can access it for 
reading features or for registering events of interest with the FTS. It should be 
noted that components can specify the location during lookup operations so they 
can locate other components (FTS in this case) in their proximity. Similarly, 
queries can be further restricted to domains memberships, e.g. an FTS belonging 
to ‘Home’ domain may search only for Unification Interfaces of ‘Home’ domain. 
 
9.4.2 Distributed Event Notification Mechanism and Leasing 
The event notification mechanism has a two-fold purpose. Firstly, it allows 
distributed components to locate and communicate with each other 
asynchronously. Second, in conjunction with the leasing mechanism, it helps in 
maintaining the state of the system as explained later.  In addition to the regular 
subscription notification events, Jini supports Event Mailboxes which can receive 
event notifications on behalf of their clients and deliver them later upon request. 
This concept is used in supporting disconnected operations, unexpected failures 
of components and maintaining history of events of interest. 
 
In a dynamically changing environment where a module can become unavailable 
at any time due to network delays or failure, it is formidable to find faulty or 
erroneous components. The soft state maintained using a leasing mechanism 
resolves this problem by limiting the time for which a module can be registered. 
Failure to renew the lease by the end of the registration time implies that the 
module is no longer available. The module can re-register with same attributes 
when it later becomes available. Both the events for unavailability and availability 
afterwards are notified to the interested clients. This results in fault tolerance and 
easy maintenance of the system state and eliminates burden on the client of 
tracking voids in the communication. 
 
9.4.3 Managing Trust  
In a context aware system, where coordination between components is 
distributed and loosely coupled, maintaining trust between the end points i.e., the 



 

communicating components is of significant importance. The issue is further 
aggravated when this procedure involves downloaded code such as a remote 
proxy of the service module. The service consumer needs to be sure that it is 
getting the correct services that it required and the service itself needs to be sure 
that unauthorized access to it is prohibited. Client authentication by the service is 
mostly based on asymmetric key pairs or use of digital certificates which is 
beyond the scope of this research. As of Jini Network Technology version 2, 
adequate security mechanisms have been incorporated in the Jini architecture 
itself to safely deduce that for purposes of large scale deployment, core Jini 
security components are enough for achieving reasonable security. 
 
9.4.4 Scalability 
Scalability refers to the ability of system to manage scale changes towards the 
larger extremes. In a scenario where system users increase in number or the 
system has to manage a larger area equipped with a greater number of sensors, 
change in system configuration becomes inevitable. A usual impact is an increase 
in the responsibility of system components which may serve as a performance 
penalty. To meet such a challenge at runtime, one of the solutions is to increase 
the number of system components handling the tasks that now offer an increased 
workload. For example, in case of CAMUS, an increase in the number of sensors 
in a domain can result in deployment of additional sensor access modules and/or 
feature tuple spaces. This challenge is addressed through federation of services 
which is the ability of services to be linked together, or federated, into larger 
groups. 
 
Efficient coordination amongst components requires that the increase in number 
of components does not hamper the discovery and registration process (which is 
one of the corner stones of coordination in service oriented architecture). 
Multiple lookup services handling the task of discovery and registration can be 
federated and their clients (middleware services) can be configured to query these 
lookup services in a manner that distributes the system load across a number of 
lookup services thus avoiding a bottleneck. With the support of federation, the 
number of components in the system can be safely increased as per demand and 
the sphere of responsibility of these components can be broadened without 
affecting performance. 
 
9.5 CAMUS Runtime synopsis 

The authors have implemented a coordination framework for CAMUS 
middleware infrastructure based on Jini.  Individual components of CAMUS are 
deployed as services and their responsibility is limited to logical domains. A Jini 
service browser provided by IncaX™ [59], which allows to discover and view Jini 



 

services deployed across the network, is used to observe the CAMUS 
infrastructure at runtime.  

 
Figure 23:  IncaX Service Browser snapshot of CAMUS system deployed in a 
UNIVERSITY domain. Though components register with a single LUS, lookup 
services available elsewhere form a federation by registering with each other, making it 
possible for registered clients of these LUS to broaden their effective known network 
boundaries.  A selection of attributes of executing components is shown next to each 
service.  

Figure 23 and 24 give a snapshot of the CAMUS system in a UNIVERSITY and 
HOME domain respectively. Components register with a central LUS services to 
announce their presence and to search for other components. (Detailed 
description of module attributes has been clipped for purposes of clarity). 
Though the components are shown to register with a single LUS in the snapshot, 
in reality their existence is announced to multiple lookup services and lookup 
services themselves register with each other to form a global community of 
CAMUS components. This is known as ‘federation of services’ in Jini 
terminology and greatly reduces the burden on registering entities in terms of 
time spent on finding lookup services, lease renewal and searching for other 
components. 



 

 
Figure 24:  IncaX Service Browser snapshot of CAMUS system in a HOME domain. 
Jini Event Mail Box service is utilized for notification of asynchronous events. 

9.6 Discussion 

The functionality of the components in the CAMUS system is independent of the 
discovery, registration and coordination scheme. A discovery and registration 
service is attached with each component which enables them to announce and 
locate each other. These services keep track of all the available service registries 
(Jini Lookup Service) present in a given domain and facilitate the process of 
registration and discovery. The only thing required by the components is to 
provide a remote interface implementation that can be used as a proxy to 
communicate back with these components. This decoupling of the functionality 
from the communication scheme leverages flexibility to update or replace the 
components without affecting the communication infrastructure and vice versa.  
 
The idea behind use of Jini as a discovery and registration technology and use of 
its event model is to separate the functions of context formation (data gathering, 
context inference, storage and delivery) from the interaction and management of 
various components of the system. Ample research has been done in pinpointing 
the requirement of such a setup and issues arising due to distribution of system 



 

components. Some issues worth putting further effort into include testing system 
performance under network load conditions, disconnected operation and 
safeguarding single points of failure (absence of any registration service) by 
providing backup/fall back registration mechanisms (multicast announce).  
 
As a task for future enhancements, we aim to extend the service search capability 
available in Jini by identifying and incorporating service attributes related to 
services in a context aware domain. Another area is the representation scheme for 
data acquired from the sensors. Most systems utilize a single representation 
scheme for both elementary sensor data and higher level context by using a 
variety of schemes such as name-value pairs in XML format [4], object oriented 
representation [15], black-board systems [60] and ontologies [61]. However, 
separation of concerns dictates a two-level representation scheme for 
representing elementary data gathered from the sensors at a lower level and 
contextual data formed after synthesis at a higher level. We employ the black-
board approach (tuple repository) for representing sensor data and ontologies for 
representing context. The combination of these two representation schemes 
results in greater flexibility and loose coupling at the sensor level and provision of 
common understanding and higher semantic representation at the contextual 
level. Further detail on this issue is beyond the scope of this paper and is reserved 
for future work. 
 
In the existing solutions for context awareness, a variety of approaches have been 
tried to enable coordination in the framework. In [4], XML messages over HTTP 
(TCP/IP) are used between various components for this purpose. This approach 
is useful since both these protocols are practically ubiquitous. However, the 
toolkit does not provide a discovery mechanism and the communicating 
components need to know the exact location of each other in order to interact, 
hence the coordination is not dynamic and scalable. A number of middleware 
solutions use Corba based coordination and communication [61], [62] which 
provides dynamic resource discovery but due to its hard-state registration and 
lack of support for leasing mechanism, the system behaves reactively instead of 
proactively to the changing system dynamics. Web services and UDDI based 
approaches [63] provide a platform-independent mechanism for service 
description, discovery and usage but it limits the flexibility and expressiveness in 
the service descriptions to simple attributes URL and string comparisons. 
Similarly, UPnP provides device-level coordination and low level abstraction but 
does not support service-level coordination mechanism as required by this 
approach.  
 
Implementation of our system in Java allows us to utilize the Java activation 
framework [64] as a performance enhancing measure through which services can 



 

be transferred from main memory to persistent storage when idle, and can be 
made available as and when they are requested by a client. Activation also aids in 
fault tolerance when sudden system crashes render services unavailable by 
restarting the services from the last known good configuration. 
 
Jini was found out to be the closest match to the specific requirements of our 
system. Particularly, the possibility of querying components by attributes, 
downloadable proxies and independence from transport protocol were the main 
support features which were found lagging in other similar technologies such as 
UPnP. Moreover, the advantages of leasing mature remote and distributed event 
notification model and event mailboxes provided by Jini can be utilized to full 
extent in distributed middleware architecture as CAMUS.  
 
9.7 Summary 

To summarize, the chapter discusses the requirements related to distributed 
coordination within context aware middleware infrastructures in terms of 
component discovery and management, dynamic system state and multiple 
context domains. A service oriented coordination framework based on Jini 
Network Technology is discussed to address the issues. 



 

C h a p t e r  1 0  

FUTURE RESEARH ISSUES 

10. Some Research Issues for consideration/future work 

 
10.1 Consideration Factors for System Paradigms 

Let us have a look at some of the envisioned consequences for research in 
applications of Ubiquitous Computing systems. In this section we try to give 
taxonomy of typical Ubicomp applications. The relevant coordinates for the 
taxonomy are depicted in Figure 25, and we believe that these scales are 
important for characterizing Ubicomp applications on a qualitative level, which in 
turn affect the middleware system paradigm. This is especially useful for us in the 
construction of any real application or testbed system. 

 

 
Figure 25: Three Dimensions of Ubicomp Systems 

 
• System Focus or Scope 
Applications are designed to cover some application domain. A common 
classification in this area is "People, Places, and Things" originating from the HP 



 

Cooltown research project [65]. Usually, one can identify a central focus of an 
application related to one or two of these topics. For example, a tourist guide is 
focused on giving information to a user. This is the main focus. However, it gives 
information about places; therefore, it has places as a secondary focus. But to be 
successful it has to bring information about places to users in an appropriate way 
(for the user), hence, "people" is the main focus ("subject") and places are the 
secondary focus ("objects") of the system. 
 
• System Scale 
Scale is an important factor for system and application design. Is a system 
designed for a rather small place and covers a rather small range (e.g. a Smart 
Home application) or does it scale up to something like a public space (e.g., a 
train station) or even to cover something larger like a city or a country 
(geographical scale)? Obviously, this has some fundamental influence on system 
design. Another sub-dimension is the number of participants in a system. A 
Smart Home application might have to handle a couple of dozens objects and 
subjects (the fridge, the home entertainment center, the garage door, etc. Here 
the requirements for system design are completely different. For example for a 
smaller application it might be perfectly sufficient to have no common 
infrastructure for data exchange and communication, and an ad-hoc network and 
broad- or multicast communication might suffice. On a larger scale this approach 
is not feasible due to the traffic this style of communication implies. 
 
• System Dynamics/Evolution 
This is the most driving factor for Ubicomp applications. Ubicomp is inherently 
"mobility driven" and "dynamic"; People are moving, as well as things, and 
sometimes even the places are moving around (e.g., cars or trains). This imposes 
serious design challenges for system, as well as for application designers: 
Associations between communicating parties are volatile, so might be 
data/information (especially by third parties), data is belonging to someone else; 
everything is - in a sense - "floating around." And the consequences would be: 

• System and application design will have to take dynamics (on every level) 
into account 

• Bindings will be casual and volatile, due to mobility.  
• Systems have to be built along with a changing society, not against. 

 
Also a consequence of the highly dynamic nature of Ubicomp applications is the 
need for evolvable systems. It can be expected that such systems must be open, 
flexible, and extensible. The reason is obvious; we cannot make assumptions 
about the capabilities, the operating systems, the installed software, or the style of 
communication devices have. On the other hand, we cannot make assumptions 
about what services can be used, what QoS can be expected, or what "version" of 



 

service is "installed". Therefore, it is mandatory to build systems in an open, 
flexible, and extensible fashion. Especially in highly dynamic systems with many 
different users this requirement is extremely important. Systems might be more 
long-lived than devices the users bring along; therefore, they have to be extensible 
to new standards and requirements. On the other hand, users cannot make 
assumptions about the services and infrastructure they will find at different places. 
Their devices must be capable of adapting to the situation found at hand. For 
instance, service discovery is important. Not every public place has the same 
infrastructure and services "installed". Every party has to have the capability to 
evolve and adapt.  
 
A mandatory requirement for Ubicomp systems and applications is that the actual 
functionality is determined at "runtime" opposed to determine the functionality at 
"compile time," i.e., the moment the device is deployed. Here an important 
requirement is to have an effective and efficient data-management in term of 
retrieval of relevant information, like relevant services, relevant data (e.g., for 
Context determination) and other information needed depending on the actual 
application. 
 
10.2 Privacy and Security Issues 

Security issues and privacy concerns must be addressed in CAMUS. The dynamism and 
ubiquity of the pervasive computing paradigm raise new issues for information 
security and user privacy. This is an especially difficult case because an important 
feature of context aware computing is to share information across users and 
systems. Therefore, we need a well-established privacy mechanism that can 
balance context sharing and information security for context aware computing 
[11], [66]. 
 
10.3 Programming Toolkits for the development of context-aware 

applications 

A Toolkit layer will provide graphical application interfaces for developing 
Context-aware Application as well as specifying Privacy Policy, Application Policy 
for dealing with uncertainty, etc. 
 



 

 
Figure 26: Toolkit approach 

 
10.4 Future Research for Context Ontology 

The idea of exploring Web Ontology Language to model context creates 
opportunities, while also opens up several open issues for further study. Here we 
discuss three main issues: 1) Model Transformation for Machine Learning, 2) 
Extending OWL for quantitative features, and 3) Privacy Control. 
 
Model Transformation for Machine Learning. As we mentioned, in addition to logic 
reasoning, machine learning is another feasible approach to derive high-level 
context from low-level context. In fact, a large amount of context-aware tasks 
(e.g., a home-care service uses predicted user behaviors to optimize inhabitant 
comfort) require machine learning mechanisms. Unlike logic reasoning that can 
be directly supported by ontology models, machine learning requires training data 
in form of different dedicated models (e.g., Markov chains, feature vectors, etc). 
Therefore, it requires further study on how to transform ontology based context 
model to dedicated models for specific learning mechanisms. One direction is to 
study the model requirements of general machine learning algorithms (e.g., 
Markov chains, Bayesian learning, neural networks, reinforcement leaning, etc), 
and provide an algorithm-specific model transformation mechanisms. 
 
Extending OWL for quantitative features. Through the above study in context 
modeling, we can see that OWL and entailed description logic are necessary for 
modeling general concepts of context. However, the limitation of description 
logic makes OWL insufficient for modeling quantitative features of context such 
as order, quantity, time, quality of information, or uncertainty/probabilities. 
Unfortunately, capturing such features is critical to certain tasks such as data 
fusion dealing with uncertain or incomplete sensor context. Therefore, we need 
study how to extend OWL models with capabilities to express quantitative 
concepts, thereby enabling temporal reasoning and probabilistic reasoning in a 
formal approach. 

 
 

CAMUS Middleware Infrastructure 

Toolkit Layer 

Application Layer 



 

 
Privacy Control. The dynamism and ubiquity of the pervasive computing paradigm 
raise important challenges for information security and privacy. Moreover, 
Semantic Web as a whole is largely conceived as an open network to share 
information, and can not support any privacy control mechanism. Therefore, we 
require the context model to provide a working privacy mechanism that can 
balance knowledge sharing and information privacy for context aware computing. 
 
10.5 Challenges in Context Reasoning 

The decision on what kind of logic or learning mechanism to use depends on not 
only the power and expressivity of the logic, but also other issues like 
performance, tractability and decidability. According to the feature of the tasks, 
different learning mechanisms can be used in a hybrid manner. For example, 
learning based on Bayesian networks and explicit rules written in probabilistic or 
fuzzy logic are useful in different scenarios. Bayesian networks are useful for 
learning the probability distributions of events and enable reasoning about causal 
relationships between observations and the system state. They, however, must be 
trained before they can be used, but because they are flexible and can be retrained 
easily, they can adapt to changing circumstances. Probabilistic logic is useful when 
we have precise knowledge of events’ probabilities; fuzzy logic is useful when we 
want to represent imprecise notions. Both probabilistic and fuzzy logic are useful 
in scenarios where getting data to train a Bayesian network is difficult. This is 
especially true in the area of security. Beside this first challenge in choosing the 
most relevant reasoning mechanism for each high level context, middleware 
system must also facilitate the ability to plug in new reasoning mechanisms. The 
use of fixed APIs between the reasoning engines and other software entities using 
them appears to be a feasible solution for adding different reasoning engines 
easily, and it is currently being applied in CAMUS. So now a crucial task for 
future is to improve the performance of the system by revising the query 
algorithm. Another work is creating more wrappers for various kinds of 
Reasoning Engines to provide more help to the developers. 
 
10.6 Context Delivery – Semantics-based Autonomous Access 

Control and Matchmaking  

The idea behind establishing context aware systems is to gather and dissipate 
information relevant to a user in order to enrich the software functionality and 
facilitate adaptive behavior. With the vast expanse of information gathered from 
the physical and computational environment, there is a need for an efficient 
delivery mechanism to filter out unrelated information and communicate the 
relevant contextual information to its respective clients while maintaining the 



 

privacy of the information and integrity of the system. For a context delivery 
system to be feasible, the system should be able to deliver a vast set of context to 
a variety of diverse applications, should be extensible in order to incorporate new 
applications and new contextual information as the context aware system matures, 
have capability to define logical constrains for proper matching of the context 
advertisements and context queries, and cater for semi-structured data in case the 
context aware applications that need to utilize contextual information does not 
provide exact specifications of the required context. These requirements suggest 
that the context delivery mechanism and corresponding representation scheme 
for advertising and querying context must be flexible to incorporate a variety of 
applications, yet expressive enough to avoid ambiguity in delivering desired 
contextual information. In [41], a framework is presented which uses semantic 
web for matchmaking in e-commerce. Similar concepts can be extended for the 
provision of context delivery in the context aware middleware systems.  We can 
view the context consumers and context producers as the interacting parties 
where context producers advertise the context they produce and context 
consumers query and utilize the corresponding contextual information.  
 
Various context aware systems are directing efforts now to incorporate privacy 
and security techniques in the pervasive environments. The foremost concern is 
to define access control policies that can be suitable in a pervasive environment. 
The major concerns are: the policies need to be dynamic in nature; the granularity 
of control to information needs to be identified; how to cope with changing 
policies basing on the context at run-time; how can the clients trust the system 
while providing personal information to it for access and validation. Some of 
these issues can be overcome if autonomic access control techniques are 
employed in context delivery. 
 
The important aspect of this research is to identify the format for context 
advertisement and query. Existential and universal quantifiers and Boolean 
expressions supported by the representation language will be dealt with in detail 
to use them for the purpose of specifying constraints. Inheritance, specialization, 
generalization and other relationships can exist between various concepts in 
ontology. These relationships can be used to process queries in which specific or 
exact details are not provided by the subscriber. Existing context aware 
middleware systems lack in the capability of assigning logical meanings to input 
and output parameters of delivery process and do not support semi-structured 
data. In the approach presented, these deficiencies are overcome by employing 
the semantic matchmaking with DAML+OIL as the representation language. 
Syntax and semantics for context announcement and context query are being 
analyzed. 



 

10.7 Autonomic Sensing Agents - Scope, Vision, Challenges 

As difficult it is to foresee what will happen in the communications area in the far 
future, there are some constant initiatives that drive technology throughout the 
years. The vision for new communication paradigms is formed by the fact that 
technology and consequently communications are mainly driven by the urge to 
make our lives better. 
 
Throughout human evolution, human lives become better with the use of tools. 
The more intelligent the tools, the greater the degrees of freedom we possess to 
move towards better health, knowledge, productivity and safety. In this meeting 
there was a general consensus on the fact that the intelligence of communication 
networks should be increased. Taking a step forward, new communication 
paradigms should focus on the development of intelligent, self-cognitive 
networks that no longer act as a means to simply propagate information from 
one machine to the other, but become a living partner of individual and societal 
activities. In this context, it is foreseen that we will move towards the 
development of cognitive situated networks that will play a significant role in 
person- and society-focused communications. One key area in this field is the 
development of cognitive sensor networks that will be able to bridge the physical 
world with the digital world [68], [69] and to promote health [70], [71], [72] safety 
[71], productivity and knowledge through communication of the network with 
the environment. 
 
Cognitive sensor networks will be built with the deployment of large numbers 
of autonomous sensor and actuator nodes. Using a large number of specialized 
sensors and actuators in a dense network we will be able to acquire localized and 
situated information of certain metrics gathered from the physical and/or digital 
environment. These networks will use this collection of situated measurements in 
order to recognize and control certain events in the physical and/or the digital 
world, for promoting health, safety, communications and knowledge. Thus, 
sensor networks will be used to monitor environmental phenomena and identify 
emerging threats, or they can be used to monitor the functionality of 
physical/digital/cyber networks and be able to foresee and cope with emerging 
problems. In other words, the use of sensing and measuring equipment in a 
physical and/or digital network can increase its self-cognition. On the other hand, 
with the use of specialized sensors, sensor networks will be able to monitor the 
behavior of living organisms, both in their individual and societal activities [72], 
or they will be able to communicate with the senses and minds of living 
organisms to expand the frontiers of human perception [68]. Finally, cognitive 
sensor networks will enable interaction with the environment in a new and 
visionary way, forming civilization-focused networks. This vision involves 



 

communicating planned human activities to the environment, so that the impact 
of these activities can be evaluated in advance [73]. 
 
In cognitive sensor networks, the nodes are only significant to a certain level. The 
intelligence of such networks does not lay on the nodes themselves, which have 
very limited recourses and capabilities, but in the size and complexity of the 
network. Sensor and actuator nodes can be considered as simple context agents 
in a complex autonomous network. Since the goal is to form an intelligent 
network that will act as a living partner of individual and societal activities, 
cognitive sensor networks will be responsible of coping with a variety of diverse 
applications with contradictory characteristics. Therefore, the architecture of the 
network cannot be universal for all applications. In fact, the architecture of the 
network could be seen as a programming language that is used to solve a problem 
[74]. The applications will evolve around the user and the network will evolve 
around the applications. This will lead to a new concept of network, where the 
resources are deployed only where are needed and where are really necessary. 
 
10.7.1 Objectives – Research themes 
There are several challenges that have to be addressed in order to pave our way 
from the current technology to the vision of cognitive sensorized societies. These 
challenges include several issues integrating interdisciplinary areas of research, 
from implementing the nodes to building the intelligence of the network. 
 
• Implementation 
One of the main challenges is to be able to implement sensor and actuator nodes 
that will be able to support the concept of bridging the physical and the digital 
world. These nodes have to reach sub-mm levels, integrate silicon to neuron 
interfaces [68], [75] and maximize their computational power, memory and 
survivability, in very small dimensions, and with extended mobility capabilities. 
Moreover, the communication [76], [77], [78], [79] and architectural issues [73], 
[74], [80] of the nodes have to be re-examined. The network deployment method 
should also be reconsidered; paving the way for “Spray Computers” that form 
randomly situated networks [81]. 
 
• Cross- or non- layered architectures 
As mentioned before, the power of cognitive sensor networks lies in the 
networks themselves, rather than in the nodes. Since the intelligence of the 
network must be enhanced to cope with diverse goals, the layered structure of the 
protocol stack must be reconsidered. Cross-layer architectures or software-based 
non-layered architectures must be sought to achieve coordination between nodes 
and optimization. Moreover, the goals of optimization have to be reconsidered, 
in order to address other issues than the traditional goals to increase the 



 

bandwidth of the network [80], or to achieve connectivity [82]. Special emphasis 
will be devoted to decentralized optimization strategies, based on game 
theoretical approaches, as a general tool to find out the communication strategies 
as a function of the operative environment, rather than imposing the 
communication structures a-priori [77]. New hybrid solutions should be analyzed 
for enabling a wider range of interactions among the user, the environment and 
the network. To describe this novel architectural model and assess the capabilities 
of the network, it will be of primary importance to establish the fundamental 
limits through the formulation of a network information theory that will 
encompass the partial results available nowadays [76], [77]. 
 
• Autonomic Situated Communications 
There is a general consensus on the need to create a self-organizing 
communication network concept which should be technology independent, task- 
and knowledge- driven, scalable, and based on cross-layer or non-layer 
approaches. A major challenge in this vision is to create autonomous intelligent 
networks, which will additionally take into account the location of its nodes [83]. 
The goal is to create a network “self-ware” based on universal and fine-grained 
multiplexing of numerous policies, rules and events that is done autonomously, 
but facilitates desired behavior of groups of situated network elements [73].  
 
• Distributed and Context Based Applications 
Cognitive sensor networks that connect the physical and the digital world can 
promote health, safety, and communications from a microscopic to a 
macroscopic level in a seamless, secure and meaningful way. Key challenges in 
this context are to define how we can produce distributed communications [81], 
how we can provide access to healthcare everywhere, how we can identify 
individuals and objects in time and space [84], how we can apply semantic tagging 
on sensor data [84], [85], how to distribute management to achieve goals [84], [86]. 
Key aspects to be considered are principles to ensure the security and 
trustworthiness of distributed applications [87], [88], and the effects and 
interactions which these communication paradigms will have on human and 
social aspects [69], [83] in relation to the sensorized societies. Above all, strong 
ethical issues arise concerning security and privacy in human societies and the 
level of control in natural environments [68]. 



 

C h a p t e r  1 1  

IMPLEMENTATION DETAILS 

11. Implementation Details 

 
11.1 Implementation progress 

In the first prototype, for sensor layer, we finished the HAL Manager to manage 
all the sensors. WLAN driver and WLAN Feature Extraction Agent have been 
done to get the location of PDA. We also made the driver and FEA for Berkely 
Mote to get the light value and light level of the environment.  
 
The Feature Tuple Space is also finished, based on IBM Tuple space.  
 
The core functions of Feature to Context Mapping module have been done. 
Based on the main mapping module Mapping Manager, a client Mapping service 
has been built to map from the location and environment features to some 
location and environment contexts. Moreover, this client mapping module can 
infer the location of user base on the location of PDA. To do this inference, a 
location reasoning engine was built based on Jena generic rule reasoner. The 
Context Reasoning Manager and the unified API for all kinds reasoning engines 
are also done.  
 
To store the context data, we finished the context repository backed by MySQL. 
The repository manager module provides the context query over multi models.  
 
There are three context aggregators have done so far : a general context 
aggregator which provides some general contexts, and two testing aggregator – 
the Agent Aggregator providing some agent  information and agent location, the 
Environment Aggregator providing some environment aspects.  
 
To deliver the context, we introduce a simple version of Context Delivery service, 
which does not contain the Match Making Algorithm.  
 
Jini is used to communicate among the modules in Camus.  
 



 

11.2 System workflow 

 
Figure 27: The system workflow  

 
11.2.1 From sensor data to feature tuple 
The context of users and environment is gotten by the sensor drivers, then 
supplied to Feature Extraction Agents as raw sensor data. Feature Extraction 
Agents fuses the sensed data and extract the valueable data. Those data will be 
converted into feature tuple format, and be inserted into Feature Tuple Space.  
 
To insert the feature tuples into Feature Tuple Space, the Feature Extraction 
Agents use the write API of Feature Tuple Space.  
 
11.2.2 From feature tuple to context markup 
Knowing which features it needs, the mapping modules registers to Feature 
Tuple Space to be notified about the existing of certain new feature tuples.  



 

 
When new feature tuples come, the Feature Tuple Space sends notify messages 
together with the coming feature tuples. Those feature tuples will then be 
converted into context marlup format, and saved into context repository.  
 
11.2.3 From low-level context to high-level context 
Here comes the crucial job of a context-aware system. Some reasoning engines 
will be invoked to infer some new facts from the facts that are existed in the 
context repository.  Each reasoning engine will works over a group of context 
data and related ontologies, which acts as a knowledge base. By this way, system 
developers can use any reasoning method they want to get the high-level context 
data they need. The new infered facts will also be inserted into the context 
repository, and be treated as normal facts in the next reasoning time.  
 
11.2.4 Context information is ready to be delivered 
There are certain Context Aggregators to prepare the context data which is 
needed by certain kinds of application. Context Aggregators take care of building 
the RDQL queries for each required data and calling Context Repository 
Manager module to process those queries. After receiving the data from 
repository, based on each situation, Context Aggregators will decide whether they 
should invoke some reasoning engines to get more data.  
 
Each Context Aggregator has to register to Context Delivery service about its 
provided services (the core of that registration is the information which Context 
Aggregators can supply).  
 
11.2.5 Acquiring the context information 
When an application needs some context information, it will send some messages 
to the Context Delivery service to lookup for the Aggregator which can provide 
those contexts.  
 
Context Delivery service use semantic match-making mechanism to find the 
appropriate Context Aggregators.  
 
After that, the application acts the role of context consumer, getting the context 
data directly from the Context Aggregators which act as Context Providers.  
. 

11.3 UML design  

11.3.1 Unified Sensing Framework  
11.3.1.1 Class Diagram 



 

a. Feature Extraction through Unification Interface 
 

 
Figure 28: Sensor Access Module - The lowest layer of CAMUS Architecture 
interfacing with environment sensors. 

 

 
Figure 29: Hardware Abstraction Layer Manager (HALManager), Sensor, and Sensor 
Driver (WlanPdaSensorDriver in this case) 

 
The above two diagrams show the main classes involved in achieving unified 
access mechanisms and are collectively called as Unification Interface. These 
classes make up a Sensor Access Module. The HALManager is an object 



 

contained by the SensorAccessModule. It manages the attached sensors and 
provides housekeeping methods of adding, removing and modifying sensors. The 
sensors are represented in software by a Sensor class which contains, apart form 
some defining properties a reference to a sensor driver. In the above diagram, an 
example has been shown of an implementation class for WlanPdaSensorDriver. 
 
b. Feature Tuple Space 
 

 
 
Figure 30: Class diagrams of FeatureTupleSpace related classes 
 
The Feature Tuple Space module expose two interfaces to the clients. 
FTSPutManager interface is used to perform write-privilege operations such as 
write, delete, update on the tuple space whereas FTSGetManager interface is used 
to perform read-privilege operations such as read, take, and scan on the tuple 
space. This interface is also used for event registration by the upper layers. 
FTSManagerImpl implements and manages these interfaces from the inside. With 
every write request, an instance of FTSWriter is created which handles the 
operations on behalf of the writing clients. FTSReader facilitates the read 
operations by implementing the related methods on the tuple space. 
FTSEventRegistrar module keeps track of the registration for events from the 
interested clients and generates notifications to their specified callbacks. When a 
registration request arrives, an instance of FTSEventHandler is created which 
continuously listens to the events taking place in the tuple space and notifies 
whenever it sees an event in which it’s client has registered interest. The data 



 

structure used to represent a feature in the tuple space is encapsulated in the 
FeatureTuple class instance. To handle similar features from multiple sensors 
which provide redundancy, MultiFeatureTuple class instances are used. 
FTSEvent and FTSSubscription comprise the data structure used to store the 
event types and subscriptions. Descriptive class diagrams of each of these are 
shown below: 
 
 
 
 
 
 
 
 
 
 
 
Figure 31: Class diagrams of FeatureTuple and FTSEvent Classes 
 

 
 
Figure 32: Class diagrams of FTSEventHandler and FTSIndexer Classes 
 

 
 
Figure 33: Class diagrams of FTSEventRegistrar interface and its implementation class 
 



 

 
Figure 34: Class diagram of FTSManager and two implementing classes namely: 
FTSPutManager and FTSGetManager 
 
 

 
Figure 35: Class diagram of FTSReader interface and its implementation class 
FTSReaderImpl 
 
 
 
 
 
 
 
 
 
Figure 36: Class diagram of FTSSubscription and FTSSearcher classes 
 
 



 

 
 
Figure 37: Class diagram of FTSWriter interface and its implementation class 
FTSWriterImpl 
 
 

 
Figure 38: Class digram of MultiFeatureTuple showing that this class is an extension of 
FeatureTuple class 
 
c. Feature to Context Mapping 



 

 
Figure 39: Mapping layer 

The main class of Context mapping layer – ContextMappingManager – is a 
service which allows other services to register for some contexts. When other 
services register for contexts, they have to provide the callback handler which 
implements the FCMCallback interface, and the require contexts, or an context 
event which implements the FCMEvent interface.  
 
Another class, FTSCallbackFactory, manages the built-in Callback classes. The 
callback classes implement the FTSCallback interface provided by Feature Tuple 
Space. One of the callback classes is FTSCallbackAbstract, which taking care of 
converting the feature tuple to context markup by default. All other callback 
handlers should inherit this class.  
 



 

A mapping client can implement the FCMCallback interface. It registers itself to 
the ContextMappingManager. It can also utilize a ContextReasoner to infer some 
high-level contexts while mapping, and it calls the methods of 
ContextDataManager service to insert new contexts into context repository.  
 
11.3.1.2 Sequence Diagram 
a. Feature Extraction through Unification Interface 

 
 
Figure 40: Diagram showing sequence of operations within the SensorAccessModule 

The above figure shows sequence of operations that generally take place in the 
SensorAccessModule and what steps are involved in interaction of 
SensorAccessModule with the CDM and Feature Extraction Agents. The 
amdin/user can initialize and finalize the module and also add, remove and 
modify the sensors. Feature Extraction Agents access features through the 



 

HALManager of the SAM module and store these features in the Feature Tuple 
Space. It is the task of the SAM module to discover Feature Tuple Spaces and 
make them available to the Feature Extraction Agents. The diagram can be 
studied in detail for purposes of clarity. 
 
b. Feature Tuple Space 
 

 
Figure 41: Registration for an event with FTSManager 
 
The above figure shows, apart from steps involved in initialization of the 
FTSManager, the registration for an event with the FTSManager. A reference is 
obtained for FTSManager by the interested entity which calls ‘register’ method on 
FTSEventRegistrar object. The FTSEventRegistrar first gets a reference to the 
TupleSpace object from the FTSManager. The FTSEventRegistrar object creates 
a new FTSEventHandler which collects events that arise in the TupleSpace (write, 
delete, update etc) and filter the events that were requested by the interested 
entity. An object is provided by the interested entity which implements the 
callback interface to receive the event notifications. The notify method of this call 



 

back object is invoked whenever an event of interest is generated. The process 
continues until the registration expires or the FTSManager is halted.  
 

 
Figure 42: FTS Read operation and sequence of steps 
 
In the above figure, it is shown that an FTSManager creates an FTSReader for 
each request from the FeatureToContextMapping object to read feature tuples 
from the FTS. The FTSReader first gets a reference to the TupleSpace object 
from the FTSManager. A combination of count, read and take methods are used 
to access the features from the FTS. To search for a particular feature, 
FTSManager also holds an FTSSearcher object. 



 

 

 
Figure 43: FTS Write operation and sequence of steps 
 
In the above figure, it is shown that an FTSManager creates an FTSWriter for 
each request from the FeatureExtractionAgent object to write feature tuples to 
the FTS. The FTSWriter first gets a reference to the TupleSpace object from the 
FTSManager. A combination of write, delete, and update methods are used to 
add, delete or modify the features in the FTS. FTSIndexer maintains indexes 
provided during write operations for quick search and retrieval later on. 
 
c. Feature to Context Mapping 



 

 
Figure 44: Mapping 

 
To do the mapping, first, the ContextMappingManager service should be started. 
Then one or more client mapping services will be run. A client mapping service 
will register to ContextMappingManager for some contexts, and the 
ContextMappingManager itself will map those required contexts into feature 
tuples, call FTSCallbackFactory to create the callback handler, then register to the 
Feature Tuple Space. 
 
When receiving the notification (which contains some new feature tuples) from 
Feature Tuple Space, the handler maps the new feature tuples into context 
markups, inserts them into context repository, and notify the client mapping 
service for new context event. Then the client mapping service can call the 
reasoner to do some reasoning for some composit contexts.  
 
11.3.2 Context Repository  
11.3.2.1 Class Diagram 
Data classes 
The following class diagram shows the basic data structures used to represent all 
kinds of context data in the context repository.  



 

 
Figure 45: Basic data structure for context repository 

 
All the context can be considered as a ContextIndividual, which have type of a 
ContextClass. For example, a user can be an Individual of Class Person. 
ContextIndividual and ContextClass are generalized to Context Object.  
A Context Class can have many ContextProperty, and a ContextIndividual can 
have many ContextIndividualProperty, which is a specialized class of 
ContextProperty.  
 
A Property can be a datatype property, which is a literal and has the getType 
method returning a RDFDatatype, or an object property, which is a 
ContextIndividual and has the getType method returning a ContextClass.  
 
Control Classes 



 

 
Figure 46: Control classes for context repository 

The main class of the Context Repository is the ContextDataManager. This class 
provides all the needed methods to handle the contexts. Contexts can be handle 
in format of ContextIndividual, ContextClass, ContextProperty, … 
ContextDataManager manages many ContextData, which can be considered as 
some groups of context data. Each ContextData has its own info, including name, 
data location (namespace and URI), location of the schemas (each ContextData 
can have zero to many schemas). 
 
ContextDataManager also contains the queryContext() method, which executes 
the RDQL queries over context repository and return the result in format of 
ContextRecorset – a data structure which is a simple imitation of Recordset in 
SQL.  



 

 
Another similar method is searchContext() which searchs for the context data 
matches the provided template.  
 
The ContextDBManager helps handle the database.  
 
11.3.2.2 Sequence Diagram 
 

 
Figure 47: Data adittion by administrator 

After starting the ContextDataManager service, the admin can add some context 
datas into the repository. Everytime a new context data is added, the meta graph 
of all the context datas will be updated. 
 
Those context datas then can be retrieved by name or namespace.  
 



 

The above sequence diagram also illustrates the multi-domain query mechanism 
which has been already describe in section 5.3. 
 
11.3.3 CAMUS Reasoning Engines  
11.3.3.1 Class Diagram 

 
 
Figure 48: Reasoning Engine  

The ContextReasonerManager manages all the reasoners in the system through a 
unified interface : Context Reasoner. All the reasoners will implement this 
interface. For each type of reasoner, one or more abstract class will be create to 
handle the basic functions of that reasoner type, help simplifying the job of 
creating a new reasoner.  
 
The most common method of a reasoner is invokeReasoning, which do 
reasoning over a provided ContextData, to infer some statements, or infer the 
new contexts required by a RDQL query.  
 
 
11.3.3.2 Sequence Diagram 



 

  
Figure 49: Addition of Reasoner 

Any service like ContextAggregator, or client mapping service, can call the 
ContextReasonerManager service to add a new Reasoner, get an existing 
Reasoner, then do reasoning by calling the invokeReasoning of the reasoner.  
 
This sequence diagram is used for all kinds of rule base reasoning engines. Hence 
it provides the developers maximum simplicity in handling the reasoning task in a 
ubiquitous system. They just have to compose the rule sets and decide the 
context data which be used, and the middleware take care of all other work from 
creating the reasoner to inserting the new infered data into the repository.  
 
For other kinds of reasoning engines, the same simple mechanisms are being 
developed. Generally speaking, all of them will follow this sequence diagram, with 
a small different in the addReasoner() method.  
 
11.3.4 Context Provision/Aggregation  
11.3.4.1 Class Diagram 
Since context aggregator is a service, it requires CARegistration class which is 
responsible for its registration with the delivery service so that the interested 
clients can discover it when required. While ContextAggreator is the basic 
interface for all kinds of aggregator implementations and is implemented by 



 

ContextAggregatorImp, which provides generic methods of addition, deletion 
and searching of context (related to that aggregator) from the context repository, 
a storage location for all contextual data.  

 
Figure 50: Class diagram for context aggregator module 

Also, simple LocationContextAggregator is present here in diagram with 
functionality of locating a certain user managed by this aggregator.  
 
11.3.4.2 Sequence Diagram 
CA Initialization 
Simple initialization procedure is mentioned below with aggregator registering it 
when initiated. 



 

camus::App

«implementation class»

init()

mapping::CARegistration

CARegistration(contextAggregator)

doRegistration()

 
Figure 51: Context Aggregator Registration 

 
11.3.5 Context Delivery Services 
11.3.5.1 Class Diagram 
 



 

 
 
Figure 52: Context Delivery Module’s Class Diagrams showing class relationship 
 
ContextDeliveryManager is the interface that provides functions to register and 
lookup the relevant context aggregators. It is implemented by 
ContextDeliveryManagerImpl class. The implementation utilized techniques such 
as semantics based matchmaking and access control to provide a comprehensive 
context delivery system. These functions are supported by MatchmakingModule 
class and AccessController respectively. Matchmaking module contacts the 
underlying ontology database to incorporate semantics in the service matching 
process. Access controller module manages the policy/rules database which 
contains the system level and service level access control policies. 
RegistrationModule handles the service registration on behalf of the context 
aggregators. The queries and service registrations are encapsulated in 
ContextLookup and ContextAdvertisement respectively which extend the 
ContextServiceDescriptor. A QueryElement is a collection of one or more 
service descriptors. Since these data structures are not in OWL format, Converter 
module is used to convert them to the format required to map and match with 
ontologies. Further breakdown of these classes is shown in the individual 
descriptive diagrams as follows: 
 



 

 
 
Figure 53: Context Advertisement Class Diagram 
 

 
 
Figure 54: ContextDeliveryManger Class Diagram 
 

 
 
Figure 55: Context Lookup Class Diagram 
 
 
 
 
 
 
 
 
 



 

 
Figure 56: Converter Class and ContextServiceDescriptor Class Diagram 
 

 
 
Figure 57: Lease Manager and MatchmakingModule Class Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 58: QueryElement and RegistrationModule Class Diagram 
 
11.3.5.2 Sequence Diagram 
 

 



 

 
Figure 59: Sequence Diagram showing initialization of ContextDeliveryManger instance 
 
In the above figure, an instance of CDM is created by the user/admin. As an 
initial step, CDM instantiates a lease manager and an expiration handler is created 
in the form of ExpirationManager to handle a clean exit of the CDM when it 
shuts down. This finalize operation and sequence of steps is shown in the 
following figure. 
 

 
 
Figure 60: Sequence Diagram showing finalization of ContextDeliveryManager instance 
 

 
Figure 61: Sequence diagram showing Lookup operation 
 
In the above figure, CDM manager is queried by the application by passing a 
ContextServiceDescriptor (CSD) object. CDM passes this CSD object to the 
MatchmakingModule which returns any matching results if and when they exist. 
It makes use of a ‘register your interest’ mechanism by registering the user query 
with the RegistrationModule in combination with the LeaseManager. For the 



 

requested amount of lease, the RegistrationModule is bound to make matching 
results available when they are found.  In case lease expires, it’s the job of the 
LeaseManager to renew the lease if the application is interested to keep on 
looking for an extended period of time. In case lease is not required to be 
renewed, the query is dropped and the registration is cancelled. Registration of 
query (CSD) sequence is shown in the following figure. 
 

 
Figure 62: Sequence Diagram showing Registration Operation 
 

11.4 Scenario Description – Meeting Room Scenario 

Suppose it is scheduled that there will be a meeting in the Meeting Room 205. In 
the meeting, Professor L. will give a presenation. The system holds the 
information about all the expected audiences for the meeting. The presentation 
material has also prepared.  
 
The students and professor has their own PDAs. Whenever a person enters the 
meeting room, the WLAN Feature Extraction Agent sends the information about 
presence of his PDA to the system, so that the system can infer that the person is 
in the room. When CAMUS regconizes that all the expected audiences as well as 
the presenter have come, it will assume that the meeting can be started. Then an 
alert message will be popped up to ask the presenter whether he wants to start 
the presentation or not. If he agree to start, the presentation material will be 
displayed. Concurrently the system will send the control message to the light 
dimming control, to adjust the appropriate light level (normally the light should 
be off during the presentation). 
 
The system can also sense and tell the users about some environment 
information such as the light level and current temperature. Then based on the 



 

adjustment of users, the system can “learn” the users’ preferences and use that 
information for later automatically controlling the devices.  
 
11.5 Prototype Description 

 
11.5.1 Prototype modules 
The Camus prototype contains following services :  

• Sensor Access Module (with Graphic User Interface) 
• Feature Tuple Space service 
• Mapping Manager  
• Location Mapping (the client mapping service) 
• Context Data Manager  
• Context Reasoning Manager 
• Context Delivery service 
• Agent Context Aggregator  
• Environment Context Aggregator  

 
Besides, there’s one Meeting Broker application illustrating how to utilize the fun
ctions provided by Camus services.  
 
11.5.2 System environment 
CAMUS demonstration runs on JVM and uses Jini lookup service. So you have t
o set up Java and Jini 
 

• Set up Java runtime environment 
After install the JVM, set JAVA_HOME variable and put the path to JAVAHO
ME\bin to the PATH variable. 

 
• Set up Jini 

After install Jini, set JINI_HOME variable 
 

• Set up IBM Tuple Space 
FTSManager service use IBM Tuple Space, so you have to set up IBM Tuple Spa
ce. First copy the IBM tuple space into one folder. Then set the TSPACES variab
le to that folder  
 
11.5.3 System configuration 
Change the config files 
 

• JINI_HOME\config 



 

o start-activatable-reggie.config 
o start-phoenix.config 

 
 private static codebase = ConfigUtil.concat(new Object[] { 
 "http://", "IP OF THE JINI LOOKUP SERVER", ":8085/reggie-dl.jar"}); 
 

• FTS:  
o fts.congif 

 CAMUS_HOME ="FOLDER CONTAINS FTS"; 
 ipToUse = "IP OF THE COMPUTER WHERE FTS IS RUNNING"; 
 
 initialLookupLocators=new net.jini.core.discovery.LookupLocator[]{ 
  new LookupLocator("jini://IP OF THE JINI LOOKUP SERVER") 
 }; 

• CD:  
o cdm.congif : same to FTS 

• SAM:  
o sam.congif : same to FTS 

• Mapping Manager 
o fcm.congif : same to FTS 

• Context Data Manager:  
o cdr.congif : same to FTS 

• Location Mapping service:  
o loc-map.congif : same to FTS 

• Agent CA:  
o ca-agent.congif : same to FTS 

• Environment CA:  
o ca-envi.congif : same to FTS 

• Demo app:  
o app.congif : CAMUS_HOME and initialLookupLocators 

 
11.5.4 Initialize the communication enviroment : starting the Jini services 

In JINI_HOME\scripts, run following services:  
 + start-ws.bat 
 + start-phoenix.bat 
 + start-activatable-reggie.bat 

 
11.5.5 Running the prototype midleware serivces: 
 
11.5.5.1 FTS 
When starting the runFTS.bat service, this console will be displayed:  



 

 
Figure 63:  Feature Tuple Space console. 



 

11.5.5.2 SAM 
The GUI of SAM: 
 

 
Figure 64:  SAM user interface. 



 

- First, add some sensors by loading some sensor drivers (those drivers hav
e to be built as jar files) 

 

 
Figure 65:  SAM user interface after adding MOTE and WLAN sensors. 



 

- Second, add the feature extraction agents for those sensors (feature extrac
tion agents also have to be built as jar files) 

 

 
Figure 66:  SAM user interface to add and execute Feature Exaction Agents. 

 
- Select one sensor, one FTS and start execution 



 

11.5.5.3 Context data manager service 
This console will be displayed when starting the runCRM.bat:  
 

 
Figure 67:  Context Data Manager console 

 
11.5.5.4 Feature to context mapping manager service 
 

 
Figure 68:  Context Mapping Manager console 

 
11.5.5.5 Location Mapping service 
Run the file runLocationMapping.bat. The console should close after running. 



 

11.5.5.6 Agent Aggregator 
 

 
Figure 69:  Agent Aggregator console 

 
11.5.5.7 Environment Aggregator 
  

 
Figure 70:  Environment Aggregator console 

 
11.5.6 Running the prototype application: 
 
11.5.6.1 Introduce the application user interface 



 

 
Figure 71:  The user interface of Meeting Room application. 

 
The user inteface of this prototype application contains a Light meter, a 
Temparature meter, a User in Room list and a Light level indicating text box.  
- The Light meter indicates Light (by absolute value) in room  
- The Temperature meter indicates Temperature in room  
- User in Room list shows all the users in the room 
- The small box at the bottom show the Light level in room 

 
11.5.6.2 Changing the application seting 
User can go to Setting to change the Configuration of the application and also 
select the presenation file for the coming Presentation  
 
When select Setting, the following panel will be displayed :  



 

 
Figure 72:  Configuration panel of the application. 

 
- Room number : select the current room 
- Number of user : the minimum number of users needed to start the meet

ing 
- Preferred temperature : if the temperature is higher or lower than this Pre

ferred temperature, the air conditioner control will adjust the temperature
 (this function hasn’t been implemented due to lackness of device) 

- Same to Preferred Light 
- Presentation Light : when starting the Presentation, the light will be adjust

 to this level 
 
To select the presentation material, in Presentation file: click Choose File to select
 a file. Then Save. 
 
11.5.6.3 Application function : detect the approriate time to start the prsentation based on 
users’ presences 
When all expected users are in the room (including the students and professor), 
the program will ask if you want to start the presentation. 



 

 
Figure 73.:  Pop-up dialog to get user’s confirmation about starting the presentation. 

 
If select Yes, the presentation file will be opened, and the Light level will be 
adjust according to the Presentation Light setting.  
 
11.6 Prototype Evaluation 

Currently, the performance of the prototype is not good. The system run a bit 
slowly compare to other systems, due to the delay time for remote calls between 
the modules.   
 
However, the prototype proves the feasibility and all the advantages of the 
middleware, which are describe in above parts.  
 
11.7 System APIs to interact with the applications and u-Gateway 

 

 



 

Figure 74:  How CAMUS interacts with applications and u-Agent modules of u-
Gateway. 

 
11.7.1 Input API – Feature Tuple Space API 
rtmm.camus.fts.put.FTSPutManager 
 
 public FTSWriter getFTSWriter () throws java.rmi.RemoteException ; 
 public FTSWriter getFTSWriter (long lease) throws java.rmi.RemoteException ; 
 public void returnFTSWriter (FTSWriter w) throws java.rmi.RemoteException ; 
 
rtmm.camus.fts.put.FTSWriter 
 long MAX_LEASE = Long.MAX_VALUE; 
 public FTSTupleID write ( FeatureTuple tuple )  throws java.rmi.RemoteException ; 
 public FTSTupleID write ( FeatureTuple tuple, long lease )   throws 
java.rmi.RemoteException; 
 public FTSTupleID write ( FeatureTuple tuple, String index ) throws 
java.rmi.RemoteException; 
 public FTSTupleID write ( FeatureTuple tuple, String index, long lease )    throws 
java.rmi.RemoteException;  
 public FTSTupleID [] writeN ( FeatureTuple [] tuples ) throws 
java.rmi.RemoteException  ; 
 public FTSTupleID [] writeN ( FeatureTuple [] tuples , long lease )   throws 
java.rmi.RemoteException ; 
 public FTSTupleID [] writeN ( FeatureTuple [] tuples , String index )  throws 
java.rmi.RemoteException; 
 public FTSTupleID [] writeN ( FeatureTuple [] tuples, String index, long lease )  throws 
java.rmi.RemoteException ; 
  
 public int delete (FeatureTuple template) throws java.rmi.RemoteException; 
 public int deleteN (FeatureTuple [] template) throws java.rmi.RemoteException; 
  
 public FTSTupleID update ( FeatureTuple tuple )  throws java.rmi.RemoteException; 
 public FTSTupleID [] updateN ( FeatureTuple [] tuples ) throws 
java.rmi.RemoteException; 
 
11.7.2 Output API – Context Delivery and Context Aggregator 
rtmm.camus.cdm.match.CDMatchmakingManager 
  
public Object[] getAggregator (String [] params) throws java.rmi.RemoteException; 

 



 

The API for Context Aggregator is Service-specific  
 
Example: 
/* 
 * this is the general context aggregator 
/* 
rtmm.camus.ca.ContextAggregator 
 
  public ContextRecordset queryContext(String query) ; 
  public ContextObject[] searchContext(String contextLabel); 
  public ContextObject[] searchContext(ContextObject contextObject); 
/* 
 * this is the context aggregator to provide agent’s information 
/* 
 
rtmm.camus.ca.AgentContextAggregator 
  public ArrayList listAgent () throws java.rmi.RemoteException; 
  public AgentModel getAgent (int agentID) throws java.rmi.RemoteException; 
  public void addAgent (AgentModel ag) throws java.rmi.RemoteException; 
  public void deleteAgent (String agentID) throws java.rmi.RemoteException; 
  public String getUserLocationByAgentID(String agentID) throws 

java.rmi.RemoteException; 
  public String setAgentActivity(int agentID, String activity) throws 

java.rmi.RemoteException; 
  public String setEnvironmentPreference(int agentID, String activity, String 

environmentType, String value) throws java.rmi.RemoteException; 
 
/* 
 * this is the context aggregator to provide environment’s information 
/* 
 
rtmm.camus.ca.EnvironmentContextAggregator 
  public double getCurrentTemperature(String placeName);  
  public String getCurrentLightIntensity(String placeName);  
  public double getCurrentTemperature(int userID); 
  public String getCurrentLightIntensity(int userID); 

//light value : “TotalDark”, “Dark”, “Normal”, “Bright” 
 

rtmm.camus.ca.datamodel.AgentModel 
  public String getName() { 
    return name; 
  } 
  public void setName(String name) { 
    this.name = name; 
  } 
  public int getId() { 



 

    return id; 
  } 
  public void setId(int id) { 
    this.id = id; 
  } 
  public String getRFID() { 
    return RFID; 
  } 
  public void setRFID(String RFID) { 
    this.RFID = RFID; 
  } 
  public String getPDAIP() { 
    return PDAIP; 
  } 
  public void setPDAIP(String PDAIP) { 
    this.PDAIP = PDAIP; 
  } 
  public String getMoteID() { 
    return MoteID; 
  } 
  public void setMoteID(String MoteID) { 
    this.MoteID = MoteID; 
  } 
 

 
 
 



 

C h a p t e r  1 2  

CONCLUSION 

12. Conclusion 

CAMUS envisions a comprehensive middleware solution that not only focuses 
on providing context composition at the software level but also facilitates 
dynamic features retrieval at the hardware level by masking the inherent 
heterogeneity of environment sensors. Complexity is handled by providing 
‘separation of concerns’ between environment features extraction, contextual data 
composition and context interpretation. The use of Feature Tuple Space and 
distributed communication protocol promise a possibility of extending CAMUS 
largely in both scale and scope. Different reasoning mechanisms are incorporated 
in CAMUS as pluggable services, ranging from rules written in different types of 
logic to machine-learning mechanisms.  
 
One of the fundamental characteristics of context-aware systems is formalization 
of context models, expressing entities independent of any specific application. 
Although complete formalization is impossible but it can be applied to the degree 
allowed by the domain for relatively stable or invariant entities. Using ontologies 
to describe the entities formally support also knowledge sharing, reuse, and 
logical reasoning. We believe that formalizing domains should be seen as 
emergent phenomenon constructed incrementally, leading to the sharing of 
contextual information among heterogeneous context-aware systems. Here, also 
we discussed how formal modeling is useful for heterogeneous ubiquitous 
computing environment and presented our ontology for the home domain. We 
also discussed reasoning capabilities provided once context models are formalized. 
Moreover, CAMUS is backed by a OWL format context data repository which 
offers the best support for uncertainty to increase the accuracy of context 
information, as well as a distributed querying mechanism which help building a 
large system over multi domains.  
 
With a systematic approach, CAMUS is proved to be a flexible and reusable 
novel middleware framework. 



 

R e f e r e n c e s  

REFERENCES 

References 
 
[1] M. Weiser: Scientifc America. The Computer for the 21st Century. (Sept. 1991) 
94-104; reprinted in IEEE Pervasive Computing. (Jan.-Mar. 2002) 19-25 
[2] http://www.ubiq.com/hypertext/weiser/SciAmDraft3.html 
[3] Schilit, B. N., N.I. Adams, and R. Want: Context -Aware System Architecture 
for Mobile Distributed Computing. PhD thesis, 1995 
[4] Dey, A.K., et al.: A Conceptual Framework and a Toolkit for Supporting the 
Rapid Prototyping of Context-Aware Applications. Anchor article of a special 
issue on Context-Aware Computing, Human-Computer Interaction (HCI) 
Journal, Vol. 16. (2001) 
[5] Pascoe J., Ryan, N. S. & Morse, D. R. (1998). Human-Computer-Giraffe 
Interaction – HCI in the field. Proceedings of the Workshop on Human 
Computer Interaction with Mobile Devices, Glasgow, Scotland. 
[6] Context Toolkit project http://www.cs.berkeley.edu/~dey/context.html 
[7] W. Emmerich. Engineering Distributed Objects. John Wiley and Sons, Ltd., 
2000. 
[8] K. Edwards. Core JINI. Prentice Hall, 1999. 
[9] Sun. Javaspaces. http://www.sun.com/jini/specs/jini1.1html/js-title.html, 
2001. 
[10] IBM. T Spaces. http://www.almaden.ibm.com/cs/TSpaces/, 2001. 
[11] Xiaodong Jiang, James A. Landay: Modeling Privacy Control in Context –
Aware Systems. IEEE Pervasive Computing, Vol. 1, No. 3 July-September 2002. 
[12] Philip Gray and Daniel Salber: Modeling and Using Sensed Information in 
the Design of Interactive Applications. 8th IFIP International Conference, EHCI 
2001, Toronto, Canada, 2001 
[13] Guanling Chen and David Kotz: Context Aggregation and Dissemination in 
Ubiquitous Computing Systems. In Proceedings of the Fourth 1EEE Workshop 
on Mobile Computing Systems and Applications, June 2002.oi 
[14] Jeffrey Heer, Alan Newberger, Chris Beckmann, and Jason I. Hong: liquid: 
Context -Aware Distributed Queries. Ubiquitous Computing, 5th International 
Conference, Seattle (UbiComp 2003), October 12-15, 2003. 
[15] Anand Ranganathan, Roy H. Campbell: A Middleware for Context -Aware 
Agents in Ubiquitous Computing Environments. In ACM/IFIP/USENIX 
International Middleware Conference, Brazil, June, 2003. 



 

[16] S. K. Das, D. J. Cook, A. Bhattacharya, E. O. Heierman, III, and T.-Y. Lin: 
The Role of Prediction Algorithms in the MavHome Smart Home Architecture, 
IEEE Wireless Communications Special Issue on Smart Homes, 9(6), pages 77-
84, 2002. 
[17] G. Thomson, S. Terzis, and P. A. Nixon: Towards Dynamic Context 
Discovery and Composition. The First UK-UbiNet Workshop, London, UK, 
2003. 
[18] Haarslev, V., Moller, R.: Racer: A Core Inference Engine for the Semantic 
Web. In: EON2003, Sanibel Island, Florida. (Oct. 2003) 
[19] Guanling Chen and David Kotz.: Solar: An Open Platform for Context –
Aware Mobile Applications. In Proceedings of the First International Conference 
on Pervasive Computing (Pervasive 2002), Switzerland, June, 2002. 
[20] Hong, J. I., et al.: An Infrastructure Approach to Context -Aware Computing. 
HCI Journal, 2001, Vol. 16. 
[21] Zadeh, L.: Fuzzy Sets. Information and Control 8, (1965) 338-353 
[22] Korpipaa, P., Koskinen, M., Peltola, J., Makela, S. M., Seppanen, T.: Bayesian 
approach to sensor-based context awareness. In: Personal and Ubiquitous 
Computing, Vol. 7, Issue 2. (July 2003) 113-124 
[23] Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Revised second 
printing. Morgan Kaufmann, San Francisco. (1988) 
[24] S. S. Yau, F. Karim, Y. Wang, B. Wang, S.Gupta: Reconfigurable Context-
Sensitive Middleware for Pervasive Computing. (Jul.-Sep. 2002) 33-40 
[25] J. Davies, D. Fensel, F. V. Harmelen: Towards the Semantic Web, Ontology-
Driven Knowledge Management, John Wiley & Sons. (Nov. 2002) 
[26] W3C Web Ontology Working Group: The Web Ontology language: OWL. 
http://www.w3.org/2001/sw/WebOnt/ 
[27] Klyne, G., Caroll, J. J.: Resource Description Framework Abstract Concept 
and Syntax. W3C Recommendation. (10 Feb. 2004) 
[28] FIPA Device Ontology Specification. 
http://www.fipa.org/specs/fipa00091/SI00091E.pdf  
[29] Hobbs, J. R.: A Daml ontology of time. 
http://www.cs.rochester.edu/~ferguson/daml/damltime-nov2002.txt. (2002) 
[30] Jena: A Semantic Web Framework for Java. http://jena.sourceforge.net/ 
[31] Andy Seaborne: RDQL – A Query language for RDF. 
http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/  
[32] Baadar, F., Horrocks, I., Sattler, U.: Description Logics. Handbook on 
Ontologies. (2004) 
[33] D. A. Randell, Z. Cui, and A. Cohn. A spatial logic based on regions and 
connection. In: Principles of Knowledge Representation and Reasoning (KR92), 
San Mateo, California, Aug. (1992) 



 

[34] Allen, J. F., Ferguson, G.: Actions and Events in Interval Temporal Logic. 
Technical Report 521, The University of Rochester, Computer Science 
Department, Rochester, New York. (Jul. 1994) 
[35] Protégé Project. http://protege.stanford.edu 
[36] Hung, N.Q., Shehzad, A., Kiani, S. L., Riaz, M., Lee, S.: A Unified 
Middleware Framework for Context Aware Ubiquitous Computing. In: 
EUC2004, Japan. (Aug. 2004) 
[37] M.P. Papazoglou and D. Georgakopoulos: Service oriented computing. 
Communications of the ACM, Vol. 46, No. 10. (Oct 2003) 
[38] Trastour, D., Bartolini, C., Gonzalez-Castillo, J.: A Semantic Web Approach 
to Service Description for Matchmaking of Services. HP Labs Bristol. HPL-001-
183. (2001) 
[39] Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S.: 
Unraveling the Web Services Web – An Introduction to SOAP,WSDL, and 
UDDI. In: IEEE Internet Computing, vol. 6, no. 2,(2002) 86–93 
[40] I. Horrocks. DAML+OIL: a reason-able web ontology language. In Proc. of 
EDBT 2002, number 2287 in Lecture Notes in Computer Science, pages 2–13. 
Springer, Mar. 2002 
[41] Li, L., Horrocks, I.: A software framework for matchmaking based on 
semantic web technology. In: WWW 2003, ACM. (2003)  331-339  
[42] Hengartner, U., Steenkiste, P.: Acccess Control to Information in Pervasive 
Computing Environments. In: 9th Workshop on Hot Topics in Operating 
Systems (HotOS IX), 2003 
[43] Ranganathan, A., McGrath, R. E., Campbell, R. H., Mickunas, M. D.: Use of 
Ontologies in a Pervasive Computing Environment. In: The Knowledge 
Engineering Review, vol. 18, no.3, (2004) 209-220, Cambridge University Press 
[44] Koshutanski, H., Massacci, F.: Deduction, Abduction and Induction, the 
Reasoning Services for Access Control in Autonomic Communication. In: 
proceedings of the 1st IFIP TC6 WG6.6 International Workshop on Autonomic 
Communication (WAC 2004), October 2004, Berlin, Germany. Springer, 2004 
[45] Kagal, T., Finin, L., Josh, A. Trust-Based Security in Pervasive Computing 
Environments. In: IEEE Computer, pages 154–157, Dec. 2001 
[46] Sheshagirim, M., Sadeh, N. M., Gandon, F.:Using Semantic Web Services for 
Context-Aware Mobile Applications. In: MobiSys 2004 Workshop on Context 
Awareness, Massachusetts, USA (Jun. 2004)  
[47] Pokraev, S., Koolwaaij, J., Wibbels, M: Extending UDDI with context-aware 
features based on semantic service descriptions. In: International Conference on 
Web Services (ICWS), 2003 
[48] Broens, T., Pokraev, S., Sinderen, M., Koolwaaij, J., Costa, P. D.: Context-
aware, ontology-based, service discovery. In: EUSAI 2004, pp. 72–83,. Springer, 
2004 
[49] http://xml.coverpages.org/xacl.html 



 

[50] S. Jang, Woo, W.: Ubi-UCAM: A Unified Context-Aware Application Model. 
In: Context 2003, Stanford, CA, USA. (Jun. 2003) 
[51] Gellersen, H.W., Schmidt, A., Beigl, M.: Multi-Sensor Context-Awareness in 
Mobile Devices and Smart Artefacts. In: Mobile Networks and Applications, Vol. 
7. (Oct. 2002) 341-351 
[52] Burrell, J. and Gay, G.K. (2002). E-Graffiti: evaluating real-world use of a 
context-aware system. In: Interacting with Computers 14 (2002), 301-312. 
[53] Kidd, C.D., et. al.: The Aware Home: A Living Laboratory for Ubiquitous 
Computing Research. In: Cooperative Buildings, 
http://citeseer.ist.psu.edu/kidd99aware.html (1999) 191-198 
[54] Waldo, J., Wyant, G., Wollrath, A., Kendall, S.: A Note on Distributed 
Computing. In: Mobile Object Systems: Towards the Programmable Internet. 
Springer-Verlag, Heidelberg, Germany, April 1997, pp. 49-64 
[55] Yang, K., Galis, A.: Policy-Driven Mobile Agents for Context-Aware Service 
in Next Generation Networks. In: Mobile Agents for Telecommunication 
Applications (MATA), 5th International Workshop, Morocco, (Oct. 2003) 
[56] Trastour, D., Bartolini, C., Gonzalez-Castillo, J.: A Semantic Web Approach 
to Service Description for Matchmaking of Services. HP Labs Bristol. HPL-001-
183. (2001) 
[57] Furmento, N., Hau, J., Lee, W., Newhouse, S.: Darlington, J. 
Implementations of a Service-Oriented Architecture on top of Jini, JXTA and 
OGSA. In: Proceedings of the UK e-Science Program All Hands Meeting 2003, 
Nottingham, UK. Sept., 2003 
[58] Sun Microsystems, Inc.: JiniTM Technology Core Platform Specification 
http://java.sun.com/products/jini/2_0index.html 
[59] IncaX Service Browser: http://www.incax.com  
[60] Mamei, M., Zambonelli, F., Leonardi, L.: Tuples on the Air:  
a Middleware for Context-Aware Multi Agent Systems. In: 23rd International 
Conference on Distributed Computing Systems Workshops (ICDCSW'03), 
Providence, Rhode Island, USA, May 2003 
[61] Román, M., et al.: Gaia: A Middleware Infrastructure to Enable Active 
Spaces. In: IEEE Pervasive Computing, pp. 74-83, Oct-Dec 2002 
[62] Yau, S. S., et al.: Reconfigurable Context-Sensitive Middleware for Pervasive 
Computing,” IEEE Pervasive Computing, joint special issue with IEEE Personal 
Communications, 1(3), July-September 2002, pp.33-40 
[63] Keidl, M., Kemper, A.: Towards Context Aware Adaptable Web Services. In: 
Proceedings of the 13th World Wide Web Conference (WWW), New York, USA, 
May 17-22, 2004, pp. 55-65 
[64] William Grosso: Activation Framework. In: Java RMI, O’Reilly & Associates, 
Inc. CA 95472, USA, October 2001 Ch. 17 
[65] Cooltown Project, http://www.cooltown.com/cooltown/index.asp 



 

[66] Asim Smailagic, Daniel P. Siewiorek, Joshua Anhalt, David Kogan, and Yang 
Wang, : Location Sensing and Privacy in a Context Aware Computing 
Environment. Pervasive Computing, 2001 
[67] Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S.: 
Unraveling the Web Services Web – An Introduction to SOAP,WSDL, and 
UDDI. In: IEEE Internet Computing, vol. 6, no. 2,(2002) 86–93 
[68] Antonis Kalis: Communication Paradigms, Life, the Universe and Everything 
[69] Rebecca Allen: The Return of the Physical World 
[70] Thomas von der Gruen: Wireless Body Area Networks in Healthcare 
Applications 
[71] Ulf Keijer: Smarthomes 
[72] Duska Rosenberg: Understanding Mediated Communication 
[73] Mikhail Smirnov: Managing Internet complexity in Autonomic 
Communication 
[74] Michel Riguidel: Communications and Computer Science in 2020 
[75] Giuseppe Riva: Immersive Virtual Telepresence and Virtual Residence in 
Communication 
[76] Javier Fonollosa: Capacity limits and trade-off analysis advanced transmission 
configurations 
[77] Sergio Barbarossa: Connectivity of self-organizing networks: Resource 
optimization based on Coop. Transmis. 
[78] Robert Plana: Advanced micro and nanotechnologies for future 
communications 
[79] Alexander Dmitriev: UWB communications with chaotic carriers 
[80] Ioannis Stavrakakis: NETWORK as an info ANYTHING Engine 
[81] Franco Zambonelli: Spray Computers: frontiers of pervasive computing - the 
need for novel 
[82] Roger Whitaker: Device Intelligence for 2020 
[83] Alois Ferscha: Ideas on Pervasive Computing 
[84] Fabrizio Davide: Strategic direction towards Autonomic Communitation 
[85] Simon Dobson: Why communicate 
[86] Lidia Yamamoto: Self-Management in Autonomic Communication 
[87] Ulrich Lang: Modelling security for complex, heterogeneous, distributed IT 
systems 
[88] Fabio Massacci: Quality of Protection for Communications 
 



 

A p p e n d i x  A  

CONTEXT MODELING SCHEMES 

A.1. Introduction 
In the past a variety of context models were subject of research, because a well 
designed model is a key access to the context in any context-aware system. While 
early models mainly addressed the modeling of context with respect to one 
application or an application class, generic context models are of interest since 
many applications can benefit from these. While some models take the users 
current situation, e.g. “in a meeting” into account, others model the physical 
environment, i.e. locations. First steps towards a common understanding of 
context have been published, mostly with respect to location, identity, and time. 
The objective of most current research is to develop uniform context models, 
representation and query languages as well as reasoning algorithms that facilitate 
context sharing and interoperability of applications. 
 
In this appendix we want to make a survey of the most relevant current 
approaches to modeling context for ubiquitous computing. 
 
A.2. Typical Context Modeling & Integration 
Requirements for UbiComp 
In the literature several definitions of the term context can be found [36, 35, 32, 37, 
10, 16, 41]. A detailed discussion of the differences within these definitions is out 
of the scope of this paper but has some impact on the models introduced in the 
next section. A selection of some context-aware mobile computing research is for 
instance provided by [10, 39].  
 
Ubiquitous computing systems make high demands on any context modeling 
approach in terms of: 
1. High level of formality (for): It is always a challenge to describe contextual 
facts and interrelationships in a precise and traceable manner. For instance, to 
perform the task “print document on printer near to me”, it is required to have a 
precise definition of terms used in the task, for instance what “near” means to 
“me”. It is highly desirable, that each participating party in an ubiquitous 
computing interaction shares the same interpretation of the data exchanged and 
the meaning “behind” it (so called shared understanding). 
2. Distributed composition (dc): Any ubiquitous computing system is a 
derivative of a distributed computing system (cf. figure 1) which lacks of a central 
instance being responsible for the creation, deployment and maintenance of data 



 

and services, in particular context descriptions. Instead, composition and 
administration of a context model and its data varies with notably high dynamics 
in terms of time, network topology and source. 
3. Partial validation (pv): It is highly desirable to be able to partially validate 
contextual knowledge on structure as well as on instance level against a context 
model in use even if there is no single place or point in time where the contextual 
knowledge is available on one node as a result of distributed composition. This is 
particularly important because of the complexity of contextual interrelationships, 
which make any modeling intention error-prone. 
4. Quality of information (qua): The quality of a information delivered by a 
sensor varies over time, as well as the richness of information provided by 
different kinds of sensors characterizing an entity in an ubiquitous computing 
environment may differ. Thus a context model appropriate for usage in 
ubiquitous computing should inherently support quality and richness indication. 
5. Incompleteness and Uncertainty (inc): The set of contextual information 
available at any point in time characterizing relevant entities in ubiquitous 
computing environments is usually incomplete and/or  ambiguous, in particular if 
this information is gathered from sensor net works. This should be covered by 
the model, for instance by interpolation of incomplete data on the instance level. 
6. Applicability to existing environments (app): From the implementation perspective 
it is important that a context model must be applicable within the existing 
infrastructure of ubiquitous computing environments, e.g. a service framework 
such as Web Services. 
 
The mentioned requirements are in particular important for any context modeling 
approach applied to a ubiquitous computing environment. Some of the 
requirements are addressed within a certain approach’s context model, some are 
addressed within the associated reasoning system, and some are not addressed at 
all within a certain approach. 
 
A.3. Modeling Approaches 
Throughout this section we will survey the most relevant context modeling 
approaches. These are classified by the scheme of data structures which are used 
to exchange contextual information in the respective system. (Obviously some of 
them may be classified in more than one category. In these cases they are listed in 
the most representative one.) 
 
A.3.1 Key-Value Models 
The model of key-value pairs is the most simple data structure for modeling contextual 
information. 
 



 

Already Schilit et al. [35] used key-value pairs to model the context by providing 
the value of a context information (e.g. location information) to an application as 
an environment variable. The key-value modeling approach is frequently used in 
distributed service frameworks (e.g. Capeus [34]). In such frameworks, the 
services itself are usually described with a list of simple attributes in a key-value 
manner, and the employed service discovery procedure (e.g. SLP, Jini… see [39]) 
operates an exact matching algorithm on these attributes. 
 
In particular, key-value pairs are easy to manage, but lack capabilities for sophisticated 
structuring for enabling efficient context retrieval algorithms. 
 

 
 
A.3.2 Markup Scheme Models 
Common to all markup scheme modeling approaches is a hierarchical data 
structure consisting of markup tags with attributes and content. In particular, the 
content of the markup tags is usually recursively defined by other markup tags. 
 
Typical representatives of this kind of context modeling approach are profiles. 
They usually base upon a serialization of a derivative of Standard Generic Markup 
Language (SGML), the superclass of all markup languages such as the popular 
XML. Some of them are defined as extension to the Composite Capabilities / 
Preferences Profile (CC/PP) [44] and User Agent Profile (UAProf) [46] standards, which 
have the expressiveness reachable by RDF/S and a XML serialization. These 
kinds of context modeling approaches usually extend and complete the basic 
CC/PP and UAProf vocabulary and procedures to try to cover the higher 
dynamics and complexity of contextual information compared to static profiles. 
 
An example of this approach is the Comprehensive Structured Context Profiles (CSCP) 
by Held et al. [23]. Unlike CC/PP, CSCP does not define any fixed hierarchy. It 
rather supports the full flexibility of RDF/S to express natural structures of 
profile information as required for contextual information. Attribute names are 
interpreted context sensitively according to their position in the profile structure. 



 

Hence, unambiguous attribute naming across the whole profile as necessary with 
CC/PP is not required. Another drawback of CC/PP, the restricted overriding 
mechanism of default values only, replaced by a more flexible overriding and 
merging mechanism, allowing for instance to override and/or merge a whole 
profile subtree. See figure below for a CSCP profile example. 
 

<?xml version="1.0" encoding="UTF-8"?> 
<rdf:RDF 
xmlns:rdf="http://www.w3.org/1999/02/22-
rdf-syntax-ns#" 
xmlns:cscp="context-
aware.org/CSCP/CSCPProfileSyntax#" 
xmlns:dev="context-
aware.org/CSCP/DeviceProfileSyntax#" 
xmlns:net="context-
aware.org/CSCP/NetworkProfileSyntax#" 
xmlns="context-
aware.org/CSCP/SessionProfileSyntax#" 
<SessionProfile rdf:ID="Session"> 
<cscp:defaults rdf:resource= 
"http://localContext/CSCPProfile/previous#
Session"/> 
<device><dev:DeviceProfile> 
<dev:hardware><dev:Hardware> 
<dev:memory>9216</dev:memory> 
</dev:Hardware></dev:hardware></dev:Device
Profile> 
</device> 
</SessionProfile> 
</rdf:RDF> 

 
CSCP profile example 

 
A similar approach to CSCP is the CC/PP Context Extension by Indulska et al. [27]. 
They extended the basic CC/PP and UAProf vocabulary by a number of 
component-attribute trees related to some aspects of context, e.g. concerning 
location, network characteristics, application requirements, session information as 
well as certain types of relations and dependencies. 
 
The authors concluded that their approach is capable of enabling context-
awareness to applications and other parts of ubiquitous computing infrastructure. 
They already realized that it is difficult and non-intuitive to capture complex 
contextual relationships and constraints due to the underlying CC/PP. 
 



 

Another context modeling approach in the markup scheme category – which 
does not bear towards CC/PP – is the Pervasive Profile Description Language (PPDL) 
[14]. This XML-based language allows to account for contextual information and 
dependencies when defining interaction patterns on a limited scale. The number 
of valuable contextual aspects and the comprehensiveness of the language itself 
seem to be relatively limited. Due to the fact that no design criteria and only parts 
of the language are available to the public, the actual appropriateness of this 
context modeling approach remains unknown. 
 
There are several other context modeling approaches in the markup scheme 
category. They are often either proprietary or limited to a small set of contextual 
aspects, or both. 
 
Examples affected by these limitations are, among others, the context configuration 
of Capra et al.’s reflective middleware [9] the Centaurus Capability Markup Language 
(CCML) [28], ConteXtML [33] or the note-tags of the stick-e notes system [7]. 
 
A.3.3 Graphical Models 
A very well known general purpose modeling instrument is the Unified Modeling 
Language (UML) which has a strong graphical component (UML diagrams). Due 
to its generic structure, UML is also appropriate to model the context. This is 
shown for instance by Bauer in [5], where contextual aspects relevant to air traffic 
management are modeled as UML extensions. Another example is the nicely 
designed graphics oriented context model introduced in [26] by Henricksen et al., 
which is a context extension to the Object-Role Modeling (ORM) approach [22] 
according some contextual classification and description properties [25]. In ORM, 
the basic modeling concept is the fact, and the modeling of a domain using ORM 
involves identifying appropriate fact types and the roles that entity types play in 
these. Henricksen extended ORM to allow fact types to be categorised, according 
to their persistence and source, either as static (facts that remain unchanged as 
long as the entities they describe persist) or as dynamic. 
 
The latter ones are further distinguished depending on the source of the facts as 
either profiled, sensed or derived types. Another quality indicator introduced by 
Henricksen is a history fact type to cover a time-aspect of the context.  
 
The last extension to ORM made by Henricksen for context modeling purposes 
are fact dependencies, which represent a special type of relationship between facts, 
where a change in one fact leads automatically to a change in another fact: the 
dependsOn relation. See figure 3 on the right for an example of Henricksen’s 
notation. 
 



 

This kind of approach is particularly applicable to derive an ER-model [12] from 
it, which is very useful as structuring instrument for a relational database in 
information system based context management architecture such as the one 
described in [27]. 
 

 
 
A.3.4 Logic Based Models 
A logic defines the conditions on which a concluding expression or fact may be 
derived (a process known as reasoning or inference) from a set of other 
expressions or facts. To describe these conditions in a set of rules a formal system 
is applied. In a logic based context model, the context is consequently defined as 
facts, expressions and rules. Usually contextual information is added to, updated 
in and deleted from a logic based system in terms of facts or inferred from the 
rules in the system respectively. Common to all logic based models is a high 
degree of formality. 
 
One of the first logic based context modeling approaches has been researched 
and published as Formalizing Context in early 1993 by McCarthy and his group at 
Stanford [29, 30]. McCarthy introduced contexts as abstract mathematical entities 
with properties useful in artificial intelligence. 
 
He prevented emphatically to give a definition what context is. Instead he tried to 
give a formalization recipe which allows for simple axioms for common sense 
phenomena, e.g. axioms for static blocks worlds situations, to be lifted to context 
involving fewer assumptions, e.g. contexts in which situations change. Thus 



 

lifting rules, which relate the truth in one context to the truth in another context, 
are an important part of the model itself. The basic relation in this approach is 
ist(c, p), which asserts that the it proposition p is true in the context c. This allows 
for formulas such as c0: ist(contextof(“ Sherlock Holmes stories”), “Holmes is a 
detective”), where c0 is considered to be an outer context. McCarthy’s model 
already supports the concept of inheritance. The main focus of Giunchiglia’s 
approach, sometimes referred to as Multicontext Systems, is less on context 
modeling than on context reasoning [18, 17]. He take a context to be that specific 
subset of the complete state of an individual entity that is used for reasoning 
about a given goal; it is seen as a (partial) theory of the world which encodes an 
individual’s subjective perspective about it. 
 
Another early representative of this kind of approach is the Extended Situation 
Theory by Akman and Surav [2]. As the name implies it extends the Situation 
Theory which has been proposed by Barwise and Perry [4]. Barwise and Perry 
tried to cover model-theoretic semantics of natural language in a formal logic 
system. Akman and Surav used and extended this system to model the context 
with situation types which are ordinary situations and thus first-class objects of 
situation theory. The variety of different contexts is addressed in form of rules 
and presuppositions related to a particular point of view. They represent the facts 
related to a particular context with parameter-free expressions supported by the 
situation type which corresponds to the context. The figure below shows a short 
example of how the rules of a context are represented as constraints in their 
approach. 
 

 
 
A similar approach is the Sensed Context Model proposed by Gray and Salber 
[19]. They use first-order predicate logic as a formal representation of contextual 
propositions and relations. 
 
Another approach within this category is the multimedia system by Bacon et al. 
[3]. In this system the location as one aspect of the context is expressed as facts in 
a rule based system. The system itself is implemented in Prolog. 
 
A.3.5 Object Oriented Models 



 

Common to object oriented context modeling approaches is the intention to employ 
the main benefits of any object oriented approach - namely encapsulation and reusability – to 
cover parts of the problems arising from the dynamics of the context in 
ubiquitous environments. The details of context processing is encapsulated on an 
object level and hence hidden to other components. Access to contextual 
information is provided through specified interfaces only. 
 
A representative for this kind of approach is the cues [37] developed within the 
TEA project [1, 38]. The concept of cues provides an abstraction from physical 
and logical sensors. 
 
A cue is regarded as a function taking the value of a single physical or logical 
sensor up to a certain time as input and providing a symbolic or sub-symbolic 
output. A finite or infinite set of possible values is defined for each cue. The 
output of each cue depends on a single sensor, but different cues may be based 
on the same sensors. The context is modeled as an abstraction level on top of the 
available cues. 
 
Thus the cues are objects providing contextual information through their 
interfaces, hiding the details of determining the output values. 
Another approach within the object category is the Active Object Model of the 
GUIDE project [13]. Again, the chosen approach has been primarily driven by 
the requirement of being able to manage a great variety of personal and 
environmental contextual information while maintaining scalability. All the details 
of data collection and fusing (e.g. the context adaptive composition of HTML 
fragments) are encapsulated within the active objects and thus hidden to other 
components of the system. 
 
The approach of Bouzy and Cazenave [6] followed a similar intention: They 
propose to use general object oriented mechanisms to represent contextual 
knowledge about temporal, goal, spatial and global contexts in computer Go (a 
4000 years old game that is very famous in Japan, China and Korea). They 
justified their object oriented context modeling approach with its inheritance and 
reutilization capabilities, allowing “defining the smallest number of properties, 
functions and rules in order to simplify knowledge representation in very 
complex domains and systems”. 
 



 

 
 
A.3.6 Ontology Based Models 
Ontologies are a promising instrument to specify concepts and interrelations [43, 
20]. They are particularly suitable to project parts of the information describing 
and being used in our daily life onto a data structure utilizable by computers. 
 
One of the first approaches of modeling the context with ontologies has been 
proposed by ¨ Otzt¨urk and Aamodt [31]. They analysed psychological studies on 
the difference between recall and recognition of several issues in combination with 
contextual information. From this examination they derived the necessity of 
normalizing and combining the knowledge from different domains. They 
proposed a context model based on ontologies due to their strengths in the field 
of normalization and formality. 
 
Another approach within the ontology category has been proposed as the Aspect-
Scale-ContextInformation (ASC) model [39]. Using ontologies provides an uniform 
way for specifying the model’s core concepts as well as an arbitrary amount of 
subconcepts and facts, altogether enabling contextual knowledge sharing and 
reuse in an ubiquitous computing system [15]. This contextual knowledge is 
evaluated using ontology reasoners. The model has been implemented applying 
selected ontology languages. These implementations build up the core of a non 
monolithic Context Ontology Language (CoOL), which is supplemented by 
integration elements such as scheme extensions for Web Services and others [41, 
40]. Beyond determination of service interoperability in terms of contextual 
compatibility and substitutability, this language is used to support context-
awareness in distributed service frameworks for various applications. For instance 
a contextual motivated non-carrier service handover is presented as one of the 
applications [42]. 
 



 

 
 
The CONON context modeling approach by Wang et al. [21, 45] is based on the 
same idea of the ASC/CoOL approach, namely to develop a context model 
based on ontologies because of its knowledge sharing, logic inferencing and 
knowledge reuse capabilities. Wang et al. created an upper ontology which 
captures general features of basic contextual entities and a collection of domain 
specific ontologies and their features in each subdomain. The CONON 
ontologies are serialized in OWL-DL which has a semantic equivalence to well 
researched description logics. This allows for consistency checking and contextual 
reasoning using inference engines developed for description languages. 
 

 
The CONON Ontology Model 

 
A promising emerging context modeling approach based on ontologies is the 
CoBrA system [11]. This system provides a set of ontological concepts to 
characterize entities such as persons, places or several other kinds of objects 
within their contexts. The CoBrA system uses a broker-centric agent architecture 



 

to provide runtime support for context-aware systems, particularly in Intelligent 
Meeting Rooms, a prevalent scenario of an ubiquitous computing environment. 
 
A.4. Evaluation and Comparison 
Beside inefficiencies in describing complex contextual information as mentioned 
in 3.1, it is common to all key-value models, that they are weak on the 
requirements 1 to 5. Distributed composition and the handling of incompleteness 
is possible on the instance level only. There is no scheme or at least range 
definitions available to check against, making partial validation a difficult task and 
any kind of matching algorithm error-prone at runtime. The simplicity of key-
value pairs is an advance from the management and error risk perspective, but it 
is a drawback if quality meta-information or ambiguity shall be considered. Solely 
the applicability to existing ubiquitous computing environments is strength of this 
kind of context modeling approach. 
 
Modeling 
Approach

Standard 
Retrieval 
Method 

Level of 
formality

Distribute
d 

Composit
ion 

Partial 
Validation

Quality 
of 

Informat
ion 

Incomplet
e-ness & 

Uncertain
ty 

Applic-
ability

Key-
Value 
Models 

Linear  
Search 

– – – – – + 

Markup 
Scheme 
Models 

Markup  
Query 
Language 

+ + ++ – – ++ 

Graphical 
Models 

Transform
-ation 

+ – – + – + 

Logic 
Based 
Models 

Inference ++ ++ – – – – 

Object 
Oriented 
Models 

Algorithm + ++ + + + + 

Ontology 
Based 
Models 

Reasoning ++ ++ ++ + + + 

 
Markup scheme models (section A.3.2) are strong concerning the partial 
validation requirement. There usually exists a scheme definition and a set of 
validation tools which can be used for type checking, even for complex types. 
Range checking is also possible to some degree for numerical values. But 
incompleteness and ambiguity have to be handled proprietary on the application 
level. If and how far the distributed composition requirement is met depends on 
the single approach. 
 



 

Standard CC/PP and UAProf have only restricted overriding and merging 
mechanisms which are required for distributed composition. This weakness is 
addressed within the CSCP approach by providing more flexible overriding and 
merging mechanisms. It is worth mentioning that Indulska et al. [27] as well as 
Butler [8] made negative experiences with CC/PP and UAProf based context 
models because of the constraints imposed by the XML serialization respectively 
the representation in RDF. Furthermore, they identified flaws in the design of 
CC/PP itself, for instance pertaining to the method of updating values or 
regarding the absence of relational constraints. 
 
Another drawback concerning distributed composition has to be tackled if 
Document Type Definitions (DTDs) are used on the markup structuring level - 
they do not provide overriding or merging. Quality meta-information may be 
added to contextual information at any level of the markup data. As far as visible, 
this is done to some degree in the CSCP approach, the CC/PP Context 
Extension approach as well as the PPDL approach. A comprehensive scheme 
definition is a step towards a high level formality and thus may 
be used to determine interoperability. Applicability to existing markup-centric 
infrastructures of an ubiquitous computing environment (e.g. Web Services) is a 
strength of this kind of context modeling approach. 
 
The strengths of graphical models as described in A.3.3 are definitely on the 
structure level. They are mainly used to describe the structure of contextual 
knowledge and derive some code (Bauer’s approach) or an ER-model 
(Henricksen’s approach) from the model, which is valuable in the sense of the 
applicability requirement. The distributed composition requirement has some 
constraints on the structure level, because the merging of model fragments is less 
efficient than the merging of instance data. Partial validation is possible. 
Incompleteness and ambiguity seem to be unconsidered by Bauer, but are 
addressed by Henricksen in a revised version of their model [24]. Most of the 
extensions made by Henricksen to ORM are quality labels so that quality meta-
information may be considered to be intrinsic to that approach. The level of 
computer evaluable formality is usually relatively low for any graphical model. It 
is mainly used for human structuring purposes. 
 
Object oriented context modeling approaches (section A.3.4) are strong regarding 
the distributed composition requirement. New types of contextual information 
(classes) as well as new or updated instances (objects) may be handled in the 
system in a distributed fashion. Partial validation is possible, typically using a 
compiler on the structure level and a runtime environment on the instance level. 
The TEA approach is safe concerning the quality of information requirement, 
because the concept of cues contains a parameter describing the quality of the 



 

cue’s output symbol. This is useful to handle incompleteness and ambiguity 
correctly. A higher level of formality is reached through the use of well-defined 
interfaces to access the object’s content, but the invisibility as consequence of 
encapsulation is a little drawback concerning the formality requirement. 
Applicability to existing object oriented ubiquitous computing runtime 
environments is given, but has usually strong additional requirements on the 
resources of the computing devices – requirements which often cannot be 
fulfilled in ubiquitous computing systems. 
 
Logic based context models (see A.3.5) may be composed distributed, but partial 
validation is difficult to maintain. Their level of formality is extremely high, but 
without partial validation the specification of contextual knowledge within a logic 
based context model is very error-prone. None of the logic based models within 
our survey seem to fulfill the quality of information requirement, even if it should 
be easy to add quality meta-information. Incompleteness and ambiguity seem to 
be addressed neither. Applicability to existing ubiquitous computing 
environments seems to be a major issue, because full logic reasoners are usually 
not available on ubiquitous computing devices. 
 
Due to the similarities between the modeling instruments of ontologies (concepts, 
facts) and objects (classes, instances), ontology based context modeling 
approaches described in A.3.6 are also strong regarding the distributed 
composition requirement. Partial validation is possible, and a comprehensive set 
of validation tools do exist. The ASC model seems to be the only model of the 
survey enabling not only data type validation, but also full data content validation 
by specifying ranges for the contextual information called scales. 
 
All ontology based context models inherit the strengths in the field of 
normalization and formality from ontologies. The ASC model and the CONON 
model inherently support quality meta-information and ambiguity, whereas the 
CoBrA approach seems not to do so, but could be easily extended in that way. 
Incompleteness is covered by all approaches in a similar way. Applicability to 
different existing ubiquitous computing environments is reached in the ASC 
model approach adopting integration elements of CoOL such as scheme 
extensions. The applicability of the CONON ontologies is without any further 
integration elements restricted to environments capable of handling OWL-DL 
for knowledge representation purposes. Due to its broker-centric agent 
architecture the CoBrA approach is particularly applicable to agent systems. 
 
Due to our analysis we arrived at the conclusion that the most promising assets 
for context modeling for ubiquitous computing environments with respect to the 



 

requirements listed in section 2 can be found in the ontology category. The 
representatives of this category met the requirements best. 
However, this does not mean that the other approaches are unsuitable for 
ubiquitous computing environments. 
As with all surveys, the list of context modeling approaches is comprehensive but 
incomplete. Further emerging approaches should be considered and evaluated in 
a similar way. 
 
REFERENCES 
[1] Esprit project 26900: Technology for enabled awareness (tea), 1998. 
[2] AKMAN, V., AND SURAV, M. The use of situation theory in context 
modeling. Computational Intelligence 13, 3 (1997), 427–438. 
[3] BACON, J., BATES, J., AND HALLS, D. Location-oriented multimedia. 
IEEE Personal Communications 4, 5 (1997). 
[4] BARWISE, J., AND PERRY, J. Situations and Attitudes. MIT Press, 1983. 
[5] BAUER, J. Identification and Modeling of Contexts for Different 
Information Scenarios in Air Traffic, 
Mar. 2003. Diplomarbeit. 
[6] BOUZY, B., AND CAZENAVE, T. Using the Object Oriented Paradigm to 
Model Context in Computer Go. 
In Proceedings of Context’97 (Rio, Brazil, 1997). 
[7] BROWN, P. J., BOVEY, J. D., AND CHEN, X. Context-aware Applications: 
from the Laboratory to 
the Marketplace. IEEE Personal Communications 4, 5 (October 1997), 58–64. 
[8] BUTLER, M. H. CC/PP and UAProf: Issues, improvements and future 
directions. In Proceedings of 
W3C Delivery Context Workshop (DIWS 2002) (Sophia-Antipolis/France, March 
2002). 
[9] CAPRA, L., EMMERICH, W., AND MASCOLO, C. Reflective middleware 
solutions for context-aware applications, 2001. 
[10] CHEN, G., AND KOTZ, D. A survey of context-aware mobile computing 
research. Tech. Rep. TR2000-381, Dartmouth, November 2000. 
[11] CHEN, H., FININ, T., AND JOSHI, A. Using OWL in a Pervasive 
Computing Broker. In Proceedings of Workshop on Ontologies in Open Agent Systems 
(AAMAS 2003) (2003). 
[12] CHEN, P.-S. The entity-relationship model - toward a unified view of data. 
ACM Transaction on Database Systems 1, 1 (March 1976), 9–36. 
[13] CHEVERST, K., MITCHELL, K., AND DAVIES, N. Design of an object 
model for a context sensitive tourist GUIDE. Computers and Graphics 23, 6 (1999), 
883–891. 



 

[14] CHTCHERBINA, E., AND FRANZ, M. Peer-to-peer coordination 
framework (p2pc): Enabler of mobile ad-hoc networking for medicine, business, 
and entertainment. In Proceedings of International 
Conference on Advances in Infrastructure for Electronic Business, Education, Science, Medicine, 
and Mobile Technologies on the Internet (SSGRR2003w) (L’Aquila/Italy, January 2003). 
[15] DE BRUIJN, J. Using Ontologies – Enabling Knowledge Sharing and Reuse 
on the Semantic Web. 
Tech. Rep. Technical Report DERI-2003-10-29, Digital Enterprise Research 
Institute (DERI), Austria, 
October 2003. 
[16] DEY, A. K. Understanding and using context. Personal and Ubiquitous 
Computing, Special issue on 
Situated Interaction and Ubiquitous Computing 5, 1 (2001). 
[17] GHIDINI, C., AND GIUNCHIGLIA, F. Local models semantics, or 
contextual reasoning locality compatibility. Artificial Intelligence 127, 2 (2001), 221–
259. 
[18] GIUNCHIGLIA, F. Contextual reasoning Epistemologica - Special Issue on I 
Linguaggi e le 
Macchine 16 (1993), 345–364. Also IRST-Technical Report 9211-20, IRST, Trento, 
Italy. 
[19] GRAY, P., AND SALBER, D. Modelling and Using Sensed Context 
Information in the design of 
Interactive Applications. In LNCS 2254: Proceedings of 8th IFIP International 
Conference on Engineering 
for Human-Computer Interaction (EHCI 2001) (Toronto/Canada, May 2001), M. R. 
Little and 
L. Nigay, Eds., Lecture Notes in Computer Science (LNCS), Springer, p. 317 ff. 
[20] GRUBER, T. G. A translation approach to portable ontologies. Knowledge 
Acquisition 5, 2 (1993), 
199–220. 
[21] GU, T., WANG, X. H., PUNG, H. K., AND ZHANG, D. Q. Ontology 
Based Context Modeling and 
Reasoning using OWL. In Proceedings of the 2004 Communication Networks and 
Distributed Systems 
Modeling and Simulation Conference (CNDS2004) (San Diego, CA, USA, January 
2004). 
[22] HALPIN, T. A. Information Modeling and Relational Databases: From Conceptual 
Analysis to Logical Design. Morgan Kaufman Publishers, San Francisco, 2001. 
[23] HELD, A., BUCHHOLZ, S., AND SCHILL, A. Modeling of context 
information for pervasive computing applications. In Proceedings of SCI 
2002/ISAS 2002 (2002). 



 

[24] HENRICKSEN, K., AND INDULSKA, J. Modelling and Using Imperfect 
Context Information. In Workshop Proceedings of the 2nd IEEE Conference on Pervasive 
Computing and Communications (PerCom2004) (Orlando, FL, USA, March 2004), pp. 
33–37. 
[25] HENRICKSEN, K., INDULSKA, J., AND RAKOTONIRAINY, A. 
Modeling context information in pervasive computing systems. In LNCS 2414: 
Proceedings of 1st International Conference on Pervasive Computing (Zurich, Switzerland, 
2002), F. Mattern and M. Naghshineh, Eds., Lecture Notes in Computer Science 
(LNCS), Springer, pp. 167–180.  
[26] HENRICKSEN, K., INDULSKA, J., AND RAKOTONIRAINY, A. 
Generating Context Management Infrastructure from High-Level Context 
Models. In Industrial Track Proceedings of the 4th International Conference on Mobile Data 
Management (MDM2003) (Melbourne/Australia, January 2003), pp. 1–6. 
[27] INDULSKA, J., ROBINSONA, R., RAKOTONIRAINY, A., AND 
HENRICKSEN, K. Experiences in using cc/pp in context-aware systems. In 
LNCS 2574: Proceedings of the 4th International Conference on 
Mobile Data Management (MDM2003) (Melbourne/Australia, January 2003), M.-S. 
Chen, P. K. Chrysanthis, M. Sloman, and A. Zaslavsky, Eds., Lecture Notes in 
Computer Science (LNCS), Springer, 
pp. 247–261. 
[28] KAGAL, L., KOROLEV, V., CHEN, H., JOSHI, A., AND FININ, T. 
Project centaurus: A framework for indoor mobile services.  
[29] MCCARTHY, J. Notes on formalizing contexts. In Proceedings of the Thirteenth 
International Joint 
Conference on Artificial Intelligence (San Mateo, California, 1993), R. Bajcsy, Ed., 
Morgan Kaufmann, 
pp. 555–560. 
[30] MCCARTHY, J., AND BUVA ˇC. Formalizing context (expanded notes). In 
Working Papers of the AAAI Fall Symposium on Context in Knowledge Representation and 
Natural Language (Menlo Park, California, 1997), S. Buvaˇc and Ł. Iwa´nska, Eds., 
American Association for Artificial Intelligence, American Association for 
Artificial Intelligence, pp. 99–135. 
[31] ¨OTZT ¨U RK, P., AND AAMODT, A. Towards a model of context for 
case-based diagnostic problem solving. In Context-97; Proceedings of the 
interdisciplinary conference on modeling and using context (Rio de Janeiro, February 1997), 
pp. 198–208. 
[32] PASCOE, J. Adding Generic Contextual Capabilities to Wearable 
Computers. In 2nd International 
Symposium on Wearable Computers (ISWC 1998) (1998), pp. 92–99. 
[33] RYAN, N. ConteXtML: Exchanging Contextual Information between a 
Mobile Client and the 
FieldNote Server, August 1999. 



 

[34] SAMULOWITZ, M., MICHAHELLES, F., AND LINNHOFF-POPIEN, 
C. Capeus: An architecture for context-aware selection and execution of services. 
In New developments in distributed applications and 
interoperable systems (Krakow, Poland, September 17-19 2001), Kluwer Academic 
Publishers, pp. 23–39. 
[35] SCHILIT, B. N., ADAMS, N. L., AND WANT, R. Context-aware 
computing applications. In IEEE 
Workshop on Mobile Computing Systems and Applications (Santa Cruz, CA, US, 1994). 
[36] SCHILIT, W. N. A System Architecture for Context-Aware Mobile Computing. PhD 
thesis, 
Columbia University, 1995. 
[37] SCHMIDT, A., BEIGL, M., AND GELLERSEN, H.-W. There is more to 
context than location. Computers and Graphics 23, 6 (1999), 893–901. 
[38] SCHMIDT, A., AND LAERHOVEN, K. V. How to Build Smart 
Appliances. IEEE Personal 
Communications (August 2001). 
[39] STRANG, T. Service Interoperability in Ubiquitous Computing Environments. PhD 
thesis, Ludwig-Maximilians-University Munich, Oct. 2003. 
[40] STRANG, T., LINNHOFF-POPIEN, C., AND FRANK, K. Applications 
of a Context Ontology Language. In Proceedings of International Conference on Software, 
Telecommunications and Computer Networks (SoftCom2003) (Split/Croatia, Venice/Italy, 
Ancona/Italy, Dubrovnik/Croatia, October 2003), D. Begusic and N. Rozic, 
Eds., Faculty of Electrical Engineering, Mechanical Engineering and Naval 
Architecture, University of Split, Croatia, pp. 14–18. 
[41] STRANG, T., LINNHOFF-POPIEN, C., AND FRANK, K. CoOL: A 
Context Ontology Language to enable Contextual Interoperability. In LNCS 
2893: Proceedings of 4th IFIP WG 6.1 International 
Conference on Distributed Applications and Interoperable Systems (DAIS2003) 
(Paris/France, 
November 2003), J.-B. Stefani, I. Dameure, and D. Hagimont, Eds., vol. 2893 of 
Lecture Notes in Computer Science (LNCS), Springer Verlag, pp. 236–247. 
[42] STRANG, T., LINNHOFF-POPIEN, C., AND ROECKL, M. Highlevel 
Service Handover through a Contextual Framework. In Proceedings of 8th 
International Workshop on Mobile Multimedia Communications (MoMuC2003) 
(Munich/Germany, October 2003), J. Kaefer and M. Zuendt, Eds., vol. 1, Center 
for Digital Technology and Management (CDTM), pp. 405–410. 
[43] USCHOLD, M., AND GR ¨UNINGER, M. Ontologies: Principles, 
methods, and applications. Knowledge Engineering Review 11, 2 (1996), 93–155. 
[44] W3C. Composite Capabilities / Preferences Profile (CC/PP). 
http://www.w3.org/Mo- bile/CCPP. 



 

[45] WANG, X. H., ZHANG, D. Q., GU, T., AND PUNG, H. K. Ontology 
Based Context Modeling and Reasoning using OWL. In Workshop Proceedings of the 
2nd IEEE Conference on Pervasive Computing 
and Communications (PerCom2004) (Orlando, FL, USA, March 2004), pp. 18–22. 
[46] WAPFORUM. User Agent Profile (UAProf). http://www.wapforum.org. 
 



 

A p p e n d i x  B  

SOME SAMPLE REASONING MECHANISMS 

B.1. Context Reasoning using Description Logic (DL) [1] 
Description Logic (DL) allows specifying a terminological hierarchy using a 
restricted set of FOL (first order logic) formulas. The equivalence of OWL and 
description logics allows OWL to exploit the considerable existing body of DL 
reasoning including class consistency and consumption, and other ontological 
reasoning. The formal semantics entailed by description logic can be used to 
automatically reason about the context knowledge to fulfill important logical 
requirements. These requirements include concept satisfiability (whether concept 
can exist), class subsumption (whether class C is a sub-class of class D), class 
consistency (whether all the definitions of classes, properties, and relations in a 
context ontology are satisfiable), and instance checking (whether a context 
instance is satisfied to the context ontology). 
 
The following is an example for Description Logic Rules to infer user location. If 
we have the rules that locatedIn has a transitiveProperty, and isPartOf  is subPropertyOf 
locatedIn,  
 

<owl:ObjectProperty rdf:ID="locatedIn">  
<rdf:type rdf:resource="&owl;TransitiveProperty" />  
</owl:ObjectProperty>  
<owl:ObjectProperty rdf:ID="isPartOf">  
<rdfs:subPropertyOf rdf:resource="#locatedIn" />  
</owl:ObjectProperty>  

 
And if we have the location of a user Bilbo is in bedRoom 

<Room rdf:ID="bedRoom"> 
<isPartOf rdf:resource="#home"/> 
</Room> 
<Agent rdf:ID="Bilbo"> 
<locatedIn  rdf:resource="#bedRoom"/> 
</Agent> 

 
Then we can can infer bedRoom is in home:  

<Room rdf:ID="bedRoom"> 
<locatedIn rdf:resource="#home"/> 
</Room> 



 

 
And we can can also infer Bilbo is at home, 

<Agent rdf:ID="Bilbo"> 
<locatedIn  rdf:resource="#home"/> 
</Agent> 

 
B.2. Context Reasoning using First-Order Logic (FOL) 
The user-centric design rationale of context aware systems requires more flexible 
logic reasoning mechanisms than description logic reasoning. By customizing 
reasoning rules within the entailment of first-order logic (actually a subset of first 
order logic, as OWL is less expressive than FOL), a wide range of high-level, 
conceptual context such as “what the user is doing” can be deduced from low-
level context. 
 
The following is a sample rule that infer a user’s likely situation based on context, 
activity, location, and computing entity. 
 

type(?user, User), type(?event, Meeting), location(?event, ?room), 
locatedIn(?user, ?room), 
startDateTime(?event, ?t1), 
endDateTime(?event, ?t2), lessThan(?t1, currentDateTime()), 
greaterThan(?t2, currentDateTime()) 
=>situation(?user, AtMeeting) 

 
B.3. Context Reasoning using Probabilistic and Fuzzy Logic 
Probabilistic logic lets us write rules that reason about events’ probabilities in 
terms of the probabilities of other related events. An example rule (written in 
XSB) is 
 

prob(X, Y, union, P) :- prob(X, Q), prob(Y, R), disjoint(X, Y), (P is Q + R). 
 
This rule essentially says that Pr(X U Y) = Pr(X) + Pr(Y) if X and Y are disjoint 
events, that is, they never occur together. X and Y can be context predicates. For 
example, X could be location(Bob, in, Room 2401) and Y could be location(Bob, in, 
Room 3234). X and Y are disjoint events, since Bob can’t be in two different 
locations at the same time [2]. 
 
Fuzzy logic is somewhat similar to probabilistic logic. In fuzzy logic, confidence 
values represent degrees of membership rather than probability. Fuzzy logic is 
useful in capturing and representing imprecise notions such as “tall,” 
“trustworthy,” and “confidence” and reasoning about them. 
 



 

 
An example of Fuzzy Logic for audio feature [3] 

 
For example, in quantizing environment sound intensity, the quantization divides 
the processed feature into three quantities - Silent, Moderate, and Loud - 
corresponding to the three membership functions denoted as µL(x). Apply a fuzzy 
set for features, resulting in continuous valued fuzzy labeling (Figure above). For 
example, µL(x) = 0.7 / Silent + 0.3 / Moderate + 0 / Loud [3]. 
 
B.4. Context Reasoning using Bayesian Networks 
Bayesian networks are directed acyclic graphs, where the nodes are random variables 
representing various events and the arcs between nodes represent causal 
relationships. Bayesian networks are a powerful way of handling uncertainty in 
context data, especially when there are causal relationships between various 
events. They are useful for performing probabilistic sensor fusion and higher-
level context derivation. In general, root nodes in the Bayesian network represent 
the information to be deduced, while the leaves are sensed information. The 
intermediate nodes are important sub-goals that are helpful to the deduction 
process. 
 

 
An example of Bayesian Network to deduce the location (indoor/outdoor) 

 



 

Figure above introduces the formation of the higher level context Outdoors from 
the context atoms (or low level sensed contexts) using a naïve Bayesian network [3]. 
White rectangular boxes represent types and light tan boxes represent context 
values. Dark tan boxes contain the corresponding confidence instance values for 
the current situation. The naïve Bayesian network classifies the confidence 
instance values into one of the previously defined output classes, Indoors and 
Outdoors in this network. 
The naïve Bayes classifier works well for online context inference and sensor 
fusion mainly because 1) It has proven robust even with missing, uncertain, and 
incomplete information.5.  2) It is computationally efficient. Training and 
inference both have a linear complexity in input data size. And 3) It requires no 
background information modeling except for choosing the relevant network 
inputs. 
 
REFERENCES 
[1] Baadar, F., Horrocks, I., Sattler, U.: Description Logics. Handbook on 
Ontologies. (2004) 3-28 
[2] Anand Ranganathan, Roy H. Campbell: A Middleware for Context -Aware 
Agents in Ubiquitous Computing Environments. In ACM/IFIP/USENIX 
International Middleware Conference, Brazil, June, 2003. 
[3] Korpipaa, P.; Mantyjarvi, J.; Kela, J.; Keranen, H.; Malm, E.J. Managing 
context information in mobile devices.; Pervasive Computing, IEEE , Volume: 
2, Issue: 3 , July-Sept. 2003 Pages:42 – 51 
 


