
Mobile Access to Grid Infrastructure

Technical Report
Draft 2.1

Authors:

Imran Ahmad Rao

Umar Kalim

Ali Hassan

Hassan Jameel

{imran, umar, ali, hassan}@oslab.khu.ac.kr

 November 2005

mailto:hassan%7D@oslab.khu.ac.kr

Table of contents
EXECUTIVE SUMMARY .. 4

CHAPTER 1: INTRODUCTION TO MOBILE GRID MIDDLEWARE 5
1.1 OVERVIEW .. 5
1.2 PROBLEM DEFINITION ... 5
1.3 ORGANIZATION OF THE PAPER .. 6

CHAPTER 2: MAGI ARCHITECTURE .. 8
2.1 ARCHITECTURE DETAILS .. 8

CHAPTER 3: APPLICATION AWARE ADAPTATION 9
3.1 DISCOVERY SERVICE ... 9

3.1.1 How does it work? ... 10
3.2 COMMUNICATION INTERFACE WITH THE CLIENT APPLICATION 13

3.2.1 Adaptation to disconnected operations ... 13
3.2.1.1 Application Aware Adaptation .. 14

3.2.1.1.1 Floating objects and their characteristics ... 15
3.2.1.1.2 Classification of the references of objects 16
3.2.1.1.3 Disconnection/Reconnection management 17
3.2.1.1.4 Working .. 18
3.2.1.1.5 Prototype Implementation .. 19
3.2.1.1.6 Related Work .. 21

CHAPTER 4: KNOWLEDGE MANAGEMENT FOR AUTONOMIC
MIDDLEWARE ... 23

4.1 STRUCTURE OF AUTONOMIC COMPONENTS IN MAGI 오류! 책갈피가
정의되어 있지 않습니다.

4.2 ARCHITECTURE OF THE KNOWLEDGE MANAGEMENT COMPONENT 오류!
책갈피가 정의되어 있지 않습니다.

4.2.1 User/Device Profile Manager 오류! 책갈피가 정의되어 있지
않습니다.

4.2.2 Job Information Manager 오류! 책갈피가 정의되어 있지 않습니다.
4.2.3 Representation Manager 오류! 책갈피가 정의되어 있지 않습니다.
4.2.4 Policy Manager 오류! 책갈피가 정의되어 있지 않습니다.
4.2.5 System Repository 오류! 책갈피가 정의되어 있지 않습니다.

4.3 IMPLEMENTATION OVERVIEW 오류! 책갈피가 정의되어 있지 않습니다.
4.3.1 Conflict Handling 오류! 책갈피가 정의되어 있지 않습니다.
4.3.2 Priority Handling 오류! 책갈피가 정의되어 있지 않습니다.
4.3.3 Policy Mappings 오류! 책갈피가 정의되어 있지 않습니다.
4.3.4 Knowledge based Execution 오류! 책갈피가 정의되어 있지 않습니다.

CHAPTER 5: SECURITY .. 35
5.1 INTRODUCTION .. 35
5.2 AUTHENTICATION AND PRIVACY SERVICE .. 37

5.2.1 Authentication ... 38
5.2.2 Data Confidentiality and Integrity .. 39

5.3 KEY AND DATA SAFEGUARDING ... 39
5.3.1 Background on Secret Sharing Schemes ... 40
5.3.2 Proposed Scheme .. 41

5.3.2.1 Secret Generation Phase .. 43
5.3.2.2 Secret Recovery Phase .. 44

5.3.3 Security Analysis ... 45
5.3.4 The Key Safeguarding Protocol .. 46

5.4 AUTHORIZATION SERVICE ... 46
5.5 DELEGATION SERVICE ... 47
5.6 TRUST MANAGER .. 48
5.7 INFORMATION PRIVACY MANAGER ... 48
5.8 PERFORMANCE COMPARISON OF THE MODELS .. 50

CHAPTER 6: GRID RESOURCE SCHEDULING ... 51
6.1 INTRODUCTION .. 51

6.1.1 The Grid .. 51
6.1.2 Globus ... 52

6.1.2.1 GRAM (Globus Resource Allocation Manager) ... 52
6.1.2.2 MDS (Metacomputing and Directory Service) .. 52

6.2 INSTALLING SUPPORT SOFTWARE ... 53
6.2.1 Java SDK... 53
6.2.2 Ant ... 54
6.2.3 Junit ... 55
6.2.4 C compiler ... 55
6.2.5 YACC (or Bison) ... 55
6.2.6 GNU Tar ... 55
6.2.7 Jakarta Tomcat ... 56
6.2.8 Java Database Connectivity (JDBC) compliant Database 56

6.2.8.1 Installing a JDBC compliant database: .. 56
6.2.9 Installing Globus toolkit .. 57

6.2.9.1 Installing the Globus Toolkit 3.2 - Binary Installers 57
6.3 CONFIGURING GLOBUS TOOLKIT .. 58

CHAPTER 7: RELATED WORK ... 67
7.1 MOBILE-TO-GRID MIDDLEWARE ... 67

CHAPTER 8: CONCLUSION .. 69

REFERENCES ... 70

Executive summary

Currently, access to Grid services is limited to resourceful devices such
as desktop PCs but most mobile devices (with wireless network con-
nections) cannot access the Grid network directly because of their re-
source limitations. Yet, extending the potential of the Grid to a wider
audience promises increase in flexible usage and productivity. In this
technical report we present a middleware architecture that addresses the
issues of job delegation to a Grid service, support for offline processing,
secure communication, interaction with heterogeneous mobile devices
and presentation of results formatted in accordance with the device
specification. This is achieved by outsourcing the resource intensive
tasks from the mobile device to the middleware. We also demonstrate
through formal modeling using Petri nets that the addition of such a
middleware causes minimum overhead and the benefits obtained out-
weigh this overhead.

Chapter 1: Introduction to Mobile Grid Middleware

1.1 Overview

Grid [18] computing permits participating entities connected via networks to dy-
namically share their resources. Extending this potential of the Grid to a wider au-
dience, promises increase in flexibility and productivity, particularly for the users of
mobile devices who are the prospective consumers of this technology.

Consider a teacher who wants to augment his lecture with a heavy simulation test.

He uses his PDA to access a Grid service and submit the request. The service after
executing the request compiles the results which are then distributed to the mobile
devices of the registered students of that course. Similarly a doctor on the way to see
his patient, requests a Grid medical service to analyze the MRI or CT scans of the
patient from his mobile device. By the time he meets his patient; the results would be
compiled and presented on his mobile device to facilitate the treatment.

The clients that interact with the Grid middleware to accomplish a task are re-

quired to use client end libraries. These libraries are relatively resource intensive
considering the limitations of mobile devices. Conceiving a distributed system that
uses these libraries directly will not be a practical mobile system because of the re-
source demands.

Moreover, most of the conventional distributed applications are developed with the

assumption that the end-systems possess sufficient resources for the task at hand and
the communication infrastructure is reliable. For the same reason, the middleware
technologies for such distributed systems usually deal with issues such as heterogene-
ity and distribution (hence allowing the developer to focus his efforts on the function-
ality rather than the distribution).

1.2 Problem Definition

The issues that primarily affect the design of a middleware for mobile systems are:
mobile devices, network connection, and mobility. Firstly, due to the tremendous
progress in development of mobile devices, a wide variety of devices are available

which vary from one to another in terms of resource availability. On one hand, lap-
tops offer relatively powerful CPUs and sufficient primary and secondary storage. On
the other hand devices like cell phones have scare resources and supplementing these
resources is either expensive or impossible altogether. Secondly, in mobile systems,
network connections generally have limited bandwidth, high error rate and frequent
disconnections due to power limitations, available communication spectrum and user
mobility. Lastly, mobile clients usually interact with various networks, services, and
security policies as they move from one place to another.

Considering the assumptions and characteristics of conventional middleware tech-

nologies it is quite evident that they are not designed to support mobile systems ade-
quately. Instead, they aim at a static execution platform (where the host location is
fixed) and the network bandwidth does not vary. Hence, given the highly variable
computing environment of mobile systems, it is mandatory that modern middleware
systems are designed that can support the requirements of mobile systems such as
dynamic reconfiguration and asynchronous communication. As the environment of a
mobile device changes, the application behaviour needs to be adjusted to adapt itself
to the environment. Hence dynamic reconfiguration is an important building block of
an adaptive system. Note that middleware that provides the facility of dynamic recon-
figuration needs to identify the changes in the environment and consequently inform
the application to adapt itself or initiate reallocation of resources accordingly. Also,
the interaction approach between the mobile client and the host dictates the effective-
ness and efficiency of a mobile system. Asynchronous interaction deals with prob-
lems of high latency and disconnected operations that may arise with other interaction
models. A client using asynchronous communication can issue a request and continue
with its local operations and collect the output later. Hence the client and server mod-
ules are not required to execute concurrently to communicate with each other. Such
an interaction permits reduction in bandwidth usage, decouples the client and server
modules and improves the scalability of a system.

1.3 Organization of the Paper

In this paper:
• We present an architecture for a middleware (Section 2) enabling heterogene-

ous mobile devices access to Grid services and implement an application tool-
kit that acts as a gateway to the Grid. This middleware provides support for
delegation of jobs to the Grid, secure communication between the client and
the Grid, offline processing, adaptation to network connectivity issues and
presentation of results in a form that is in keeping with the resources available
at the client device.

• Next four sections explain three main components of our framework. Section
3, explain the adaptive middleware. Section 4 is about autonomous knowledge
mangment and section 5 is about security module. Section 6 explains the inte-
raction of middleware with Grid.

• We demonstrate (Section 7) compares our work with existing efforts and we
discuss how addition of such a middleware causes minimum overhead and the
benefits obtained by it outweigh this overhead.

• Last section, namely Section 8, gives summary of our work and describes the

future work.

Chapter 2: MAGi Architecture

2.1 Architecture details

The middleware service is exposed as a web service to the client applications. The
components of the middleware service (as shown in Figure 1) are discussed suc-
cinctly as follows:

Grid network

Client-end libraries

User Interface

Wrapper - Grid’s client end libraries

Job
Broker

UDDI
Registry

Client Communication Interface

Prototype -
Grid

service

Grid
services

Knowledge Management component

User/Device
Profile

Manager

Job Information
Manager

Trans-
Representation

Manager
Policy Manager

Security
Service

Ontology /
Policy /
Profile /

Rule Base
Repository

Adaptive Communication (client-end)

Adaptive Communication (server-end)

Figure 2.1. Architecture

 Chapter 3: Application Aware Adaptation

The software systems for hand-held devices operating in wireless environments re-
quire adaptation to the variations in the environment (such as fluctuating bandwidth).
This translates to maintenance of service availability in preferably all circumstances.
Particularly when considering Quality of Service, maintaining service availability for
hand-held devices in the face of varying network conditions and disconnections is of
utmost importance. In this research endeavour we propose that systems operating on
hand-held devices and in wireless environments should be based on the mechanisms
of reflection and code mobility in order to be able to adapt to the varying network
conditions. This not only allows the application to continue executing in varying
circumstances, but also in entirely disconnected modes.

We present a framework and discuss the implementation as well as the evaluation of
the infrastructure that allows developers to design disconnection-aware applications
which automatically redeploy essential components to appropriate locations to main-
tain service availability

3.1 Discovery service

The discovery of the middleware by mobile devices is managed by employing a
UDDI registry [6], [7]. Once the middleware service is deployed and registered, other
applications/devices would be able to discover and invoke it using the API in the
UDDI specification [7] which is defined in XML, wrapped in a SOAP envelop and
sent over HTTP.

...

Miscellaneous
resources

Grid network

MAGI

Mobile
devices

`

Workstations

Wi-Fi
network

User
Interface

Grid
Middleware

Grid
Services

Virtual
platform -

middleware

Interface to
the

middleware

Wrappers
(for the
Grid API)
used by the
surrogate

Stub
accessing

the
middleware

interface

Interface to
the GridApplication

Logic
Figure 3.1. Deployment model and the architecture

3.1.1 How does it work?

For the client the first step is establishing a connection with the registry. However

this is possible only if we have access to the registry. Since we are using the Java
WSDP Registry Server [19] for the prototype version, we configure it accordingly
and in order to access the registry and execute queries we create a JAXR client for the
mobile device.

A client creates a connection from a connection factory. A JAXR provider may

supply one or more preconfigured connection factories that clients can obtain by
looking them up using the Java Naming and Directory Interface (JNDI) API.

At the moment JAXR does not supply preconfigured connection factories. Instead,

a client creates an instance of the abstract class ConnectionFactory:

 import javax.xml.registry.*;
 ...
 ConnectionFactory connFactory =
 ConnectionFactory.newInstance();

To create a connection, the client first creates a set of properties that specify the
URL or URLs of the registry or registries being accessed. For example, the following

code provides the URLs of the query service and publishing service for the test regis-
try. (There should be no line break in the strings.)

Properties props = new Properties();
props.setProperty("javax.xml.registry.queryManagerURL",
 "http://uddi.ibm.com/testregistry/inquiryapi");
props.setProperty("javax.xml.registry.lifeCycleManagerURL
",
 "https://
uddi.ibm.com/testregistry/protect/publishapi");

With the Java WSDP implementation of JAXR, if the client is accessing a registry
that is outside a firewall, it must also specify proxy host and port information for the
network on which it is running. For queries it may need to specify only the HTTP
proxy host and port; for updates it must specify the HTTPS proxy host and port.

props.setProperty("com.sun.xml.registry.http.proxyHost",
 "myhost.mydomain");
props.setProperty("com.sun.xml.registry.http.proxyPort",
 "8080");
props.setProperty("com.sun.xml.registry.https.proxyHost",
 "myhost.mydomain");
props.setProperty("com.sun.xml.registry.https.proxyPort",
 "8080");

The client then sets the properties for the connection factory and creates the con-
nection:

connFactory.setProperties(props);
Connection connection = connFactory.createConnection();

The makeConnection method in the code (JAXRQuery.java) shows the

steps used to create a JAXR connection.

The implementation of JAXR in the Java WSDP allows you to set a number of

properties on a JAXR connection. Some of these are standard properties defined [20]
in the JAXR specification. Other properties are specific to the implementation of
JAXR in the Java WSDP.

• Most of these properties must be set in a JAXR client program. For example:

 Properties props = new Properties();
 props.setProperty("javax.xml.registry.queryManagerURL",
 "http://uddi.ibm.com/testregistry/inquiryapi");

props.setProperty("javax.xml.registry.lifeCycleManagerURL
",

 "https://
uddi.ibm.com/testregistry/protect/publishapi");
 ConnectionFactory factory = ConnectionFac-
tory.newInstance();
 factory.setProperties(props);
 connection = factory.createConnection();

• The postalAddressScheme, useCache, and useSOAP properties may be
set in a <sysproperty> tag in a build.xml file for the Ant tool. For example:
 <sysproperty key="useSOAP" value="true"/>

These properties may also be set with the -D option on the java command line.

After creating the connection, the client uses the connection to obtain a Registry-
Service object and then the interface or interfaces it will use:

RegistryService rs = connection.getRegistryService();
BusinessQueryManager bqm = rs.getBusinessQueryManager();
BusinessLifeCycleManager blcm =
 rs.getBusinessLifeCycleManager();

Typically, a client obtains both a BusinessQueryManager object and a Busi-
nessLifeCycleManager object from the RegistryService object. If it is
using the registry for simple queries only, it may need to obtain only a Busi-
nessQueryManager object.

The simplest way for a client to use a registry is to query it for information about the
organizations that have submitted data to it. The BusinessQueryManager inter-
face supports a number of find methods that allow clients to search for data using the
JAXR information model. Many of these methods return a BulkResponse (a col-
lection of objects) that meets a set of criteria specified in the method arguments. The
most useful of these methods are:

• findOrganizations, which returns a list of organizations that meet the
specified criteria--often a name pattern or a classification within a classifica-
tion scheme

• findServices, which returns a set of services offered by a specified or-
ganization

• findServiceBindings, which returns the service bindings (informa-
tion about how to access the service) that are supported by a specified ser-
vice

The JAXRQuery program illustrates how to query a registry by organization
name and display the data returned. The JAXRQueryByNAICSClassification

and JAXRQueryByWSDLClassification programs illustrate how to query a
registry using classifications.

3.2 Communication Interface with the Client Application

The interface advertised to the client application is the communication layer between
the mobile device and the middleware. This layer enables the middleware to operate
as a web service and communicate via the SOAP framework [8].

3.2.1 Adaptation to disconnected operations

The advertisement of the mobile-to-Grid middleware as a web service permits the
development of the architecture in a manner that does not make it mandatory for the
client application to remain connected to the middleware at all times while the request
is being served.

We focus on providing software support for offline processing at the client device.

We propose that a mobile computing system for handheld devices must be based on
the combination of reflection [21] and code mobility [22]. Reflection is a fundamental
technique that supports both introspection and adaptation. In order to maintain service
availability in a distributed system (i.e. offline processing), in case of varying cir-
cumstances (such as fluctuating bandwidth or disconnection), the middleware can
utilize this mechanism along with code mobility to automatically redeploy essential
components to appropriate locations. This way, the services that need to be executed
at a platform residing in a portion of the network reachable only through an unreliable
link (at that particular instance) could be relocated temporarily and hence maintain
the desired level of Quality of Service by maintaining service availability.

To introduce the capability of dynamic reconfiguration to achieve the above men-

tioned objectives, the system must posses certain characteristics, such as, it should be
based on a distributed object framework, the system must be able to redeploy/replace
components, it should be able to recover gracefully in the case of faults etc. We em-
ploy Java [23] as the technology to validate our hypothesis by providing the follow-
ing mechanisms.

Code mobility Java allows for code mobility and portability as the runtime
environment (JVM) is an interpreter. The compiled code is maintained as
byte code and converted to machine code by interpretation at runtime. Java
also provides an object; class loader which can dynamically load classes at
runtime from a variety of sources such as disk or network. The class loader
is invoked by the runtime environment to translate a class name into the class

reference. This is done by loading the class (if it is not loaded already) and
instantiating a reference.

Dynamic binding An essential element for code mobility is dynamic bind-
ing. This allows the system to determine what code to execute, at runtime.
Java provides this support by postponing the binding of code until an invoca-
tion has been made, after which the class may be loaded and executed.

Serialization and Deserialization A crucial aspect of code mobility is to
transfer the execution state along with the code. Java provides support for
this via object serialization. This allows the translation of a graph of objects
to a stream of bytes which may be sent over a network. Each object to be se-
rialized is required to implement the Serializable interface. Java also pro-
vides the facility to customize the process of serialization. Similarly, the re-
verse process of conversion from the stream of bytes to an object graph (de-
serialization) is also supported.

However, the ability of the components in a system to redeploy themselves is not

sufficient. There is a requirement for appropriate policies to determine when, how
and which components to redeploy. In this regard, we suggest that the application
developer be involved in the process of implementing an adaptive system, hence the
name application aware adaptation. The middleware provides the means for adapta-
tion, whereas the developer decides when to use which facility. This would not only
allow different application domains to use the middleware, but would also result in
one of the most optimized implementations as the domain expert would be involved
in the process of adaptation.

3.2.1.1 Application Aware Adaptation
In order to narrow down the scope of the problem, we distinguish between voluntary
and involuntary disconnection. The former refers to a user-initiated event that enables
the system to prepare for disconnection, and the latter to an unplanned disconnection
(e.g., due to network failure). With involuntary disconnection the system needs to
detect the disconnection (and reconnection), requires to be pessimistically prepared
for it at any moment and pro-actively prepare a response. In order to predict a discon-
nection various efficient and accurate techniques [24] have been developed which
may be employed. Here we are only focusing on voluntary disconnections and (for
the time being) consider the prediction sub-system as a black-box which employs
prediction algorithms as proposed by [24]. However note that whether the disconnec-
tion is voluntary or involuntary, the steps for the remedy will always be the same.

The fundamental notion is that under normal circumstances, the system would con-
tinue to operate according to the remote evaluation paradigm. However if the network
bandwidth is predicted to drop below a certain threshold, the framework must allow
the system to adapt to this change (before it happens). The adaptation mechanism
could facilitate the relocation of certain objects (with their state) to the clients plat-
form in order to allow the client to continue his operations. Relocation of these ob-

jects is subject to the policy defined by the application developer while considering
the classification discussed in the following sections. These objects may posses the
same or partial functionality as compared to the implementation present at the server
end. Once the network bandwidth becomes available, the objects will be moved back
to the server (along with their state) to resume normal operations. The relocation from
the client to the server is also subject to the policy exercised by the classification of
objects, discussed in the following sections.

3.2.1.1.1 Floating objects and their characteristics

The objects dealing with the process of adaptation to disconnected operations must
posses certain characteristics in order to be considered disconnection-aware. We refer
to such objects as floating objects. These floating objects are the corner-stone for the
process of adaptation whenever a change in the network environment occurs.

DisconnectionManagement Interface Each floating object must implement
the DisconnectionManagement interface. The DisconnectionManagement in-
terface advertises two primary methods; disconnect and reconnect. These
methods are invoked by the framework upon disconnection and reconnection
respectively. The use of disconnect is to compile the object state and later
transfer it in marshalled form over the network. Similarly reconnect is used
to perform the process of reconciliation among the objects upon reconnec-
tion. Details of the working are explained in the section Disconnection and
Reconnection Management.

Implementation for local execution The classes intended to be used locally
may advertise their interface in the form of Application Logic. The instances
of the implementation classes would be disconnection aware and would im-
plement the application logic. However this implementation may be partial
unlike the remote implementations. This is because these implementations
will be used in the face of a disconnection, when the resources at the server
are unavailable.

Implementation for remote execution This interface would extend the Ap-
plication Logic interface. Under normal circumstances the implementation
classes for these interfaces Remote Application Logic would be used re-
motely. They would extend the interface of their counterpart implementa-
tions; the class for local implementation, and would also be disconnection
aware. These implementations would be fully functional in all aspects.

As the primary components required to participate in the process of adaptation are
supposed to posses these characteristics, from programming point of view, the devel-
opers are forced to identify which components are disconnection-aware and thus are
the only ones that need to be notified in case of a disconnection.

3.2.1.1.2 Classification of the references of objects

Here we provide a set of possible reference types for the components classified as
disconnection aware. This classification has been inspired by [25]. Some of these
types apply only to disconnection, some only to reconnection, and some to both. This
set of reference types is by no means intended to be complete. We intend to add other
classifications as practical need for them arises. Here we focus on the semantics and
defer technical aspects of the implementation of these references to section Discon-
nection and Reconnection Management.

Classification w.r.t. disconnection There are three types of disconnection-aware
references that determine the behaviour of referencing and the referenced components
upon disconnection. This classification is with respect to the transfer of components,
their state and the management of references at the disconnecting client.

Log After disconnection, the invocations that are made on this reference are
logged locally. These invocations are then executed upon reconnection. Such
references pose a constraint that all invocations must not require return pa-
rameters, in order to ensure non-blocking invocations.

Substitute This type suggests that upon disconnection a temporary but local
reference should be used to replace the remote reference. The local reference
must have the same interface as the remote reference, however it may have a
different (or limited) functionality. Such references will be used, primarily
when the remote references cannot be migrated to the client for local execu-
tion (as such references might be dependent on non-transferable resources
such as databases).

Replica This type suggests that the reference should be replicated and trans-
ferred (with its state, as per the policy) to the client (before the disconnec-
tion) for local execution to maintain service availability. This local reference
is then used in the same manner as the remote reference was used. On the
other hand the original reference continues to exist at the server end. The
replicated reference possesses the same state as the original reference, before
the disconnection. Also these references are transitive in nature. If they com-
prise of replica references, they are also duplicated and transferred (recur-
sively) in the same manner. Using this classification the designer can deter-
mine which components are essential for the application and hence must be
replicated.

Classification w.r.t. reconnection There are four types of disconnection-aware ref-
erences that determine the behaviour of referencing and the referenced components
upon reconnection, with respect to transfer of components, their state and the man-
agement of references at the reconnecting client.

Latest This type suggests that while comparing the original reference at the
server end and the temporary reference at the client end, the state of the ref-
erence with latest time-stamp is maintained while the other is discarded.
Such types pose a constraint that the clocks of the client and the server must
be synchronized.

Revoke This type suggests that the entire changes made on the replicated or
substituted reference are dropped in favour of the state of the original refer-
ence. The notion is similar to changing the state of a variable, passed by
value. The reference is used to make invocations, however the changes in the
state of the concerned reference are discarded.

Prime Prime references are contrary to revoke references. The state of the
original reference is discarded in favour of the Prime reference. Thus effec-
tively overwriting the original reference.

Merge Neither the replicated/substituted reference nor the original reference
is clearly identified to be maintained and there is a need for conflict detection
and resolution techniques which are elaborated below.

Conflict resolution while merging Without the knowledge of the
application domain, it is impractical to suggest a mechanism which
resolves conflicts among the components being merged. Therefore,
continuing with the notion of application-aware solutions we sug-
gest the use of callback methods. All disconnection-aware refer-
ences may implement the Merge Interface. This interface advertises
a merge callback method that the application developer must im-
plement. This merge method would be invoked on the replicated
reference and would accept the original reference as a parameter.
Whenever a reconnection occurs (or whenever required) the system
would invoke the merge method for reconciliation.

3.2.1.1.3 Disconnection/Reconnection management

Generally, in a distributed object system, an object interface specification is used to
generate a server implementation of a class of objects, an interface between the object
implementation and the object manager (called an object skeleton) and a client inter-
face for the class of objects (called an object stub). The skeleton is used by the server
to create new instances of the class of objects and to route remote method calls to the
object implementation. The stub is used by the client to route transactions (method
invocations, mostly) to the object on the server. On the server side, the class imple-
mentation is passed through a registration service, which registers the new class with
a naming service and an object manager, and then stores the class in the server’s
storage for object skeletons. However when it comes to maintaining service availabil-
ity in the face of a disconnection, there is a need to relocate the required server code

(with partial or complete functionality) to the client, in order to make local processing
possible.

Connected

Disconnected

Reconnection
triggered

Traversing reference
graph

Transferring state
(as per policy)

Swapping local
references with

remote references

Disconnection
triggered

Traversing reference
graph

Downloading reference
implementation

(.class files)

Creating local
references

Transferring state
(as per policy)

Swapping remote
references with local

references

Reconnecting

Disconnecting

disconnect identify
references for

relocation

download
references

create
instances

transfer state

reconfigure

disconnection
complete

reconnect

identify
references for
relocation

transfer
state

reconfigure
reconnection

complete

initialize

finalize
[off=true]

Figure 3.2. State-transition diagram

3.2.1.1.4 Working

The state-transition diagram in the figure 3.2 summarizes the working of the

framework. Once a disconnection event is fired, the framework propagates the event
to all disconnection-aware references by invoking the disconnect method. This
method prepares the reference for the disconnection. Once the implementation class
of the object is transferred, using Java Serialization techniques the object state is
transferred to the client’s platform. The local implementation class is then instantiated
appropriately and the object state is assigned to the new (local) instance, which pos-
sesses the same interface. It may be noted that the framework maintains a sufficient
state of each reference in order to restore the system to the state before disconnection.
From here on the client application utilizes the local functionality instead of accessing
the server implementation.

Similarly, when the network bandwidth is available again, the framework fires the
reconnection event and invokes the reconnect method. The state of the object is pre-
pared and transferred via Java Serialization methods. The process of reconciliation is
done at the server with reference to the reconnection type of the reference, as dis-
cussed earlier.

It may be noted that the behaviour of the reference after disconnection and reconnec-
tion is subject to its classification as discussed earlier.

Pre-installation The performance of the framework may be drastically im-
proved if the implementation of the objects that are to be relocated is already
present at the client. If so, the transfer of state will be the only major obstacle
before a disconnection occurs.

Once a disconnection is predicted by the framework, intuitively, the avail-
able bandwidth will not be sufficient to relocate the code as well as the state.
It may be noted that in such circumstances the bandwidth would be continu-
ously dropping. Thus if the object state is the only data to be relocated, the
systems efficiency would increase dramatically. Therefore we are more in-
clined towards the notion that the implementation code of the objects which
might be relocated should preferably be present with the client. It may be
noted that these implementations may be partial or the same as the remote
implementations. Each object may then be instantiated as per the require-
ments.

Figure 3.3. Module layout for the disconnected operations framework

With reference to the framework, the objects are notified about disconnection or
reconnection via event-notification mechanism. The resource monitor determines the
status of the network bandwidth, which is used to determine whether the application
should switch from connected mode to disconnected mode. However this information
is utilized when the framework is actively monitoring the resources (particularly for
involuntary disconnection) and predicts the status, to allow the application to prepare
for the adverse circumstances. For the time being we are focusing our efforts on the
remedies for disconnections. We plan to consider prediction of involuntary discon-
nections as our future research work.

3.2.1.1.5 Prototype Implementation

We are implementing a prototype application for patient monitoring and diagnosis
service (which executes in a Grid environment) along with the framework libraries in
order to verify the feasibility of our proposal. An illustration diagram is shown in
figure 3.4. This implementation is based on [26]. The module layout of the frame-
work along with the application is shown in figure 3.3. The component relocator
deals with downloading the implementation (.class) files at the client, from the server.
Where as the reference manager maintains the instantiated references after discon-
nection so that the system may return to its original state upon reconnection. It is also

responsible for swapping the references (remote and local) in order to maintain ser-
vice availability. The event manager (a wrapper of the support provided by JVM)
deals with triggering events in the framework. Where as the resource monitor deter-
mines the state of the network. It is this module which will facilitate the process of
predicting a disconnection. It may be noted that the framework comprises of two sub-
systems; one operating at the server end and the other at the client end.

+disconnect()
+reconnect()

«interface»
Disconnection Management

+diagnose()
+calculateBMI()

«interface»
DiagnosisService

+fetchMedicalHistory()
+updateMedicalRecord()

«interface»
MedicalHistory

+diagnose()
+calculateBMI()

-...

«implementation class»
DiagnosisService

+fetchMedicalHistory()
+updateMedicalRecord()

-...

«implementation class»
MedicalHistory

+calculateBMI()

BMICalculator

+disconnect()
+reconnect()

«interface»
Disconnection Management

+diagnose()
+calculateBMI()

«interface»
DiagnosisService

+fetchMedicalHistory()
+updateMedicalRecord()

«interface»
MedicalHistory

+diagnose()
+calculateBMI()

-...

«implementation class»
DiagnosisService

+fetchMedicalHistory()
+updateMedicalRecord()

-...

«implementation class»
MedicalHistory

+calculateBMI()

BMICalculator

Figure 3.4. Prototype Implementation

nlike [27], our approach being simple and discreet avoids the computational over-

head required to determine the component distribution in different circumstances.
U

This is primarily due to the application aware approach, which allows the developer
to determine the application policies.

3.2.1.1.6 Related Work

l deb [28], which extends AFS [29]. The authors were
among t rst to demonstrate that client resources could be effectively used to insu-

pired by Coda [28], proposed the concept of application-aware
daptation. The essence of this approach is to have a collaborative partnership be-

ons. They
tilize an optimistic replication scheme which permits the update of local copies and

ware toolkit for developing mobile aware applications. The toolkit
resents two primary abstractions; the relocatable dynamic objects (RDOs) and

A substantia t is owed to Coda

he fi
late users and applications from the hurdles of mobile information access. Coda treats
disconnection as a special case of network partitioning. The client may continue to
use the data present in its cache, even if its disconnected. However it is the user pro-
file that determines which files are to be maintained in the cache. In disconnected
mode, the client accesses files from the cache only. The cache-misses are considered
as failures (such as file not found error). However when the client reconnects, the
cache is updated.

Odyssey [30], ins
a
tween the application and the system, with a clear separation of concerns. Functional-
ity that is implemented monolithically must be split between the operating system and
the individual applications. Odyssey encourages the operating system to sense exter-
nal events and to monitor and allocate resources. Whereas the role of the application,
is to adapt to the changing conditions, by using the information and resources pro-
vided by the operating system. We extend this notion by suggesting that the middle-
ware/framework must provide the means for adaptation as well. Whereas the applica-
tion is left with the sole task of sharing the application policy; which components of
the application are to participate in the process of adaptation (and any application
specific processing that might be required before and after the adaptation).

Ficus [31] is a distributed file system that deals with disconnected operati
u
determines conflicts at reconnection. The primary focus of this project is on high
degree of data availability in the face of an involuntary disconnection. FarGo-DA
[25], an extension of FarGo, a mobile component framework for distributed applica-
tions proposes a programming model with support for designing the behaviour of
applications under frequent disconnection conditions. The programming model en-
ables designers to augment their applications with disconnection-aware semantics that
are tightly coupled with the architecture, and are automatically carried out upon dis-
connection.

Rover [32] is a soft
p
queued remote procedure call (QRPC). The RDO allows dynamic loading at the cli-
ent from the server. The QRPC presents a communication scheme that allows applica-
tions to make non-blocking remote procedure calls, even in the face of a disconnec-
tion. Such requests are queued and transferred upon reconnection. Rover utilizes a

caching mechanism to deal with disconnections. This might be expensive when con-
sidering resource constrained devices.

Other efforts such as [33] have also proposed middleware frameworks for dealing

ith disconnected operations. Such efforts suggest that techniques of caching, hoard-

e authors suggest that the critical difficulty in
chieving the task (of distribution of software components) lies in the fact that deter-

w
ing, queuing remote interactions, replicating may prove beneficial in resolving the
problems of disconnected operations. However these endeavours either sacrifice their
accuracy or the service delivery time.

In another research endeavour [27] th
a
mining a software system’s deployment that will maximize its availability is an expo-
nentially complex problem. They propose an approximation algorithm for this prob-
lem. Their study is guided by the observation that, in these environments, a key de-
terminant of the system’s ability to effectively deal with network disconnections is
finding the appropriate deployment architecture. While the redeployment problem has
been identified in their literature, its inherent complexity has either been ignored, thus
making it infeasible for any realistic system, or highly restricted, thus reducing the
solution’s usefulness. We resolve this problem by suggesting an approach of applica-
tion aware adaptation, which allows the designer to determine the application policies
and thus avoid the constraints all together.

Chapter 4: Knowledge Management for Autonomic
Middleware

The key concept to introduce autonomic knowledge management in the MAGI
middleware architecture is an autonomic component. The knowledge management
component is itself composed of autonomic components or elements [56] which are
responsible for managing their own behavior in keeping with the relevant policies,
and also for cooperating with other autonomic components and elements to achieve
their objectives.

4.1 Structure of Autonomic Components in MAGI

As stated in the previous section, the autonomic component in the MAGI middle-
ware are responsible for both local self-management i.e., managing their own beha-
vior in keeping with the relevant policies and cross-component collaboration i.e.,
cooperating with other autonomic components to achieve their objectives. The basic
structural elements of a typical autonomic element in MAGI middleware are depicted
in the Figure 4.1.

Fig. 1. Structure of an Autonomic Component in MAGI

The autonomic component model consists of following layers:-

 Resources: A resource can be anything, from a physical or hardware asset
like a CPU, memory etc. to a virtual or software or logical asset like an
application or service. The resource model is of central importance in
representing what is being managed by the autonomic component.

 Events: The event signifies a change in the state of a resource, policy or
component, which can be either minor or major depending upon the na-
ture and goals of a particular component.

 Decisional Mechanisms: Decision rules are used for deducing a problem
based on the information received from various events. The problems can
be deduced using a single event or inferring from a group of events, based
on a single occurrence or based on a history of occurrences. The compo-
nent then makes plans to rectify this problem or optimize some function-
al/behavioral aspects, depending upon the policies and internal and exter-
nal knowledge of the component.

 Action Mechanisms: Action rules are used to carry out execution me-
chanisms to bring about these changes in line with the desired goal of the
component, e.g., running dedicated algorithms for problem solving etc.

This manner of structure facilitates in building up a control loop by employing the
monitor, analyze, plan and execute cycle, which is of key significance for autonomic

behavior [57]. This facilitate in the compartmentalization of the management proce-
dure, by breaking the functionalities into gathering the knowledge, analyzing it, mak-
ing a plan of action and the executing that plan.

The type of model requires the presence of a common knowledge base that con-
tains the knowledge about a problem space that is shared among the four elements of
the model. This shared knowledge includes such features as network information,
system logs, performance metrics, and policies that are relevant to the problems.

4.2 Architecture of the Knowledge Management component

The knowledge management component’s job is to manage & analyze information
regarding all its constituent components, make plans based on that information and
then execute them. It accomplishes this takes by making use of intelligent decision-
making, taking inferences from client’s and the mobile device’s profile, the type and
nature of the submitted job and the type and nature of the Grid service etc. and also
takes into account the policies that rule the undertaking of the whole operation. It
then uses the results for the self-management of various factors of the operation of the
middleware, like QoS, fault-tolerance and work-load etc.

Fig. 2. Detailed architecture of the MAGI middleware

Figure 16 shows the detailed architecture of the complete MAGI middleware, but

the scope of this dissertation is only focused on the Knowledge Management compo-

nent. The description of various constituent components facilitating the working of
knowledge management is as follows:-

4.2.1 User/Device Profile Manager

As evident from the name, it manages the profiles of both the users or clients of the
middleware service and also the profiles of the mobile devices that they use to access
the Grid services through the middleware.

It gets the user/device profile from the client if it’s already not present in the sys-
tem repository. This transfer of profile is handled in cooperation with the security
mechanisms in place in the middleware, to manage the issues of privacy and authenti-
cation.

The client may or may not send the contextual information regarding the job that it
wants to submit to the Grid embedded in the profile. If such information is present in
the profile, the policy manager will execute the job keeping in view the requirements
described in the profile regarding that job. If there is some conflict as a result of the
client’s requirements, e.g., authorization issues, then the Autonomic Manger will try
to resolve that conflict taking guidance from relevant policies present in the reposito-
ry for this purpose. In case of the absence of any requirement for the operation of the
execution of a particular job, it will follow the default policy associated with the par-
ticular category of the job or request.

4.2.2 Job Information Manager

The job of this manager is to handle the different states of a job submitted by
clients. Again, the management of different states of a job depends upon their pres-
ence in a well-define manner in the profiles sent by the clients. The MAGI middle-
ware cannot assign the job states on its own. So clients have to send the different
states of the job in their profile, e.g., the client might send a job whose results they
want back in certain intermediate states of completion. So the middleware can send
its requests to the Grid in intermediate steps as requested in the job’s states if the
nature of the job and Grid service permits that, otherwise it may submit the complete
job to the Grid service and just send back the received results to the clients in accor-
dance to the specifications of the states.

The job information manager also monitors the performance metrics associated
with a job e.g., time taken to provide a service or result back to the client i.e., perfor-
mance analysis, scheduling, collections of logs or system statistics and fault detection
and fault handling mechanisms in case of some problems occurring with the jobs that
have been submitted to the middleware. Also, the clients can be given an estimated
time of completion and resource estimation etc. based on predictions from historical
data, logs and statistics collected by the manager.

4.2.3 Representation Manager

The job of this manager is to handle the formatting of job results according to de-
vice profile and sending it to the device. Different mobile and wireless devices have
different display options. Devices like notebook computers have almost no limitation
on the types of visual representational schemes that can be utilized for them, but for
devices like PDA’s and cell phones, the display options are heterogeneous and usual-
ly constrained. For example, if mobile device is a cell phone, we can automatically
generate a WML (Wireless Markup Language) page with the results and their brief
description and send it to the device.

For this purpose, UIML is utilized (User Interface Markup Language) [58], a mar-
kup language extension of XML that promotes the creation of Web pages that can be
viewed on any kind of interface device, from PC monitors to smart phones to PDAs.
Using UIML style sheets, Web content can be created once without knowing specifi-
cally which devices it will be viewed on. A developer uses UIML to describe ele-
ments of the user interface -- such as menus, buttons and input boxes. A programmer
then can write applications that rely on UIML to get the content to different devices.

The skeleton of a UIML document is shown in Figure 17.

<?xml version="1.0">

<!DOCTYPE uiml ... "uiml2_0g.dtd">
<uiml>
 <interface>
 <structure> ...</structure>
 <style> ...</style>
 <content> ...</content>
 <behavior> ...</behavior>
 </interface>
 <peers>
 <logic> ...</logic>
 <presentation>...</presentation>
 </peers>
</uiml>

Fig. 3. Skeleton of a UIML document

By making use of this technology, we can rid ourselves of the need to have mul-
tiple source code families in order to deploy interfaces on multiple devices, and re-
lieve ourselves from the burden of having to manage interface content depending on
what devices the content will be viewed on, and eliminates the risk of developing
device-specific interfaces for a device that may not be on the market in the future.

4.2.4 Policy Manager

The Policy Manager is the core component that incorporates the autonomic beha-
vior in the middleware by facilitating the working of Knowledge Management
processes and tasks.

The foundation of its autonomic management is based upon the Autonomic Man-
ager sub-component. It makes policy decisions based on a set of policies created by
the domain experts to influence a particular component or run-time entity. When a
managed entity requests some assistance, the Autonomic Manager evaluates all rele-
vant policies and returns a decision. These decisions are usually in the form of a re-
sult (value) but can also be a configuration profile (property). This action can also be
initiated from the Autonomic Manager without a request from the managed resource.
These decisions can be in the form of an action (a sequence of executions) or a confi-
guration profile (setting properties). It also deals with the issues of job states, client
have to send a policy with along with the job requests that will instruct the middle-
ware how to deal with job related issues like defining states, whether to initiate asking
for intermediate results from the Grid or job status from the Grid, etc.

The common format used for writing policies is XML. Policies that conform to this
language include the following key attributes: scope (the domain of the policy), con-
dition (policy trigger) and decision (result, action, configuration profile). A policy
describes the guidance that influences the behavior of a managed module or entity. Its
scope of influence is often a particular instance of a job. The Policy Editor sub-
component deals with the dynamic insertion, search, modification, access, storage,
versioning and removal of the policies in the Knowledge Management component.

The Event Monitor sub-component has a monitoring and even notification role. It
can also initiate communication with the AM in case of a fault or problem i.e., it
utilizes both periodic and polling-based approaches towards even notification.

The Resource Framework is a model for identification of all the resources that the
Event Monitor will be observing.

The Autonomic Manager sub-component also incorporates predictive autonomicity
for fault-tolerance and self-healing in the middleware, using historical contextual
knowledge. In the later sections various prediction approaches will be discussed like
Step-Wise Regression, Rule Induction and Artificial Neural Networks and it will be
discussed which is the most suitable for the optimum performance and look-ahead
trade-offs. Maintaining the historical contextual knowledge is useful also because if a
fault or problem happens repeatedly, or if a certain classification of jobs is submitted
frequently by a client, instead of doing all the calculations again, the Autonomic
Manager just takes the results from the system repository.

4.2.5 System Repository

The System Repository is basically a Policy/Profile/Ontology/Context database. It
is a system-wide repository for handling policies, user and device profiles, historical
and contextual information of the working of the system as well as configuration
profiles for various jobs, components etc. It maintains policies defined by clients,
middleware developer or Grid services. If origin of a policy is a client or Grid service,
then it is subject to the middleware authorization regulations (part of the security
infrastructure), in other words, MAGI’s policy supersedes the client policy.

4.3 Implementation Overview

The main purpose of using the Policy Manager and its Autonomic Manager is to
provide the guidance to the functional behavior of components by extracting and
externalizing functional logic into sets of rules. Modification in the policies does not
affect the associated data and applications, resulting in a higher level of maintainabili-
ty, variability and manageability. Most current policy systems are domain and envi-
ronment specific, and therefore require domain and environment specific information
to execute the policies. The Policy Manger of the Knowledge Management compo-
nent provides a flexible and usable system by utilizing component technologies and
separates the process of executing a policy into various sub-processes or components.
Each sub-process or component can be developed independently, configured inde-
pendently, and reused. Some of these are discussed below.

4.3.1 Conflict Handling

In any system hosting more than one policy for achieving a set of goals, some am-
biguousness or conflict of interest may arise. The logic used for conflict resolution is
a set of instructions which can resolve conflict among various outcomes of executing
a policy by determining the condition and action attributes of the policies, verifying
that the actions specified do not conflict and checking to find redundant policy rules
within the system.

4.3.2 Priority Handling

The logic used for priority handling is a set of instructions which determines the
priority of each individual policy rule in the policy, and the priority ranking of differ-
ent policies if the usage of more than one policy is required in the outcome of a job or
request.

Fig. 4. The Autonomic Manger is influenced by various Policy-related
processes which are dynamically re-configurable

4.3.3 Policy Mappings

Policy mapping is a very essential aspect of this operation, as it is used to connect
the conditions and actions specified in a policy to the actual data or functions which
will provide the new data or execute the relevant actions.

if (observedValue(“pmdo1”, “throughput”,
“minutes”, 10) < 95% of
expectedValue(“pmdo1”, “throughput”))
then (createAlert(“logEntry”, “pmdo1
throughput is below 95% of specified value…”))

Fig. 5. Example of execution logic created from a policy

Policies in the MAGI middleware do not embody executable code, so the mapping
process involves converting the semantics of the policy into execution constructs like
execution logic and database entries and other resources etc. A policy for a different
job classification may require different mapping; while its logic expressed as policy
may be the same, the data, class objects or device resource model may be different.

4.3.4 Knowledge based Execution

The knowledge required for the execution of the actions required for achieving the
difference objectives defined in the policies is stored in the system repository, as

discussed earlier. Depending upon that, the Autonomic Manger uses the sets of in-
structions, rules and execution algorithms available there to control the way the poli-
cy is carried out.

A typical execution begins by taking a policy document associated with the partic-
ular job or request, from the system repository if it is already present there; otherwise
it is supplied by the client along with the job or request. A set of resource mapping
definitions expressed in XML are then used to map the policy. The output of the
mapping is an executable rule-set or operational logic which is then executed by the
Autonomic Manager to carry out the task.

4.4 Related Work

Not much work has been done in the area of integration of mobile computing and
Grid computing domain in the past years, and among the notable projects, much of
them are only concerned with one or more aspects in an ad hoc manner. Following is
a summary of the most prominent projects in this research field.

4.4.1 GridBlocks

GridBlocks [59] builds a Grid application framework with standardized interfaces
facilitating the creation of end user services. A portal based gateway, GBPortal, pro-
vides a web interface for Grid resources, using the Java Servlet and Java Server Pages
(JSP) technology. Because of this approach, this solution provides a web-interface for
interaction with the Grid services just like accessing a dynamic website. The user can
submit jobs to grid without any local software installations. As a consequence of this
approach, only one-way communication is possible, i.e. from the client-end to the
server-end, where it the client who initiates the request.

Figure 4.6. Portal-based Architecture of GridBlocks
For security, they are inclined towards the MIDP specification version 2 which in-

cludes security features on Transport layer. They advocate the use of propriety proto-
col communication protocol and state that performance of SOAP (Simple Object

Access Protocol) on mobile devices maybe 2-3 times slower as compared to a pro-
prietary protocol. But in my view, proprietary interfaces limit interoperability and
extensibility, especially to such a heterogeneous domain like personal mobile devices.
Furthermore, open standards is a salient feature of the autonomic computing para-
digm.

For knowledge management, they use StorageBox [60], an open source Personal
Database System that features an information management system running on top of
MySQL RDBMS.

4.4.2 Mobile Agent based Platform

This project [61] uses the mobile agent paradigm to take care of all the details to
allow mobile users to access distributed resources in a effective way. It focuses on
providing this access transparently and keeping the mobile host connected to the
service. Though they have to improve upon the system’s security, fault tolerance and
QoS, their architecture is sufficiently scalable.

Figure 4.7. Mobile Agent based approach

However, this approach results in the requirement of a mobile agent platform in the
Grid network, for the mobile agents to execute on. This approach has not been sup-
ported by the Grid community and hence this addition is not compliant with the Grid
standard. Also, the authors acknowledge the fact that communication overhead is
incurred as the mobile agent will have to move (back and forth) between the client
and the Grid for intermediate interactions with the client-side.

For the purpose of knowledge management, the authors don’t follow any particular
methodology as each agent carries the relevant information regarding its operation
with it. This procedure can be very cumbersome for applications and requests that
demand a large amount of data transfer.

4.4.4 Signal

Signal [62] proposes a mobile proxy-based architecture that can execute jobs submit-
ted to mobile devices, so in-effect making a grid of mobile devices. A proxy interacts
with the Globus Toolkit's MDS (Monitoring and Discovery System) to communicate
resource availability in the nodes it represents. The proxy server and mobile device
communicate via SOAP and authenticate each other via the Generic Security Service
(GSS) API. The proxy server analyzes code and checks for resource allocation
through the MDS. After the proxy server determines resource availability, the adapta-
tion middleware layer component in the server sends the job request to remote loca-
tions. Because of this distributed execution, the mobile device consumes little power
and uses bandwidth effectively. Also their efforts are more inclined towards QoS
issues such as management of allocated resources, support for QoS guarantees at
application, middleware and network layer and support of resource and service disco-
veries based on QoS properties.

Figure 4.8. A Proxy-based approach

However, the authors here propose that the client platforms should be part of the
Grid. Consequently the applications will be using an API compliant with the Grid
standard. If the Grid community doesn’t provide a light-weight interface for the ap-
plications (to be run on mobile devices) we will be back to square one; communica-
tion overhead or even impossibility for the client devices as a result of adhering to the
standard. Also, the authors claim that the client application doesn’t interact with the
Grid service directly; a proxy/gateway is elected among the devices to act as a virtual
platform for the rest of the application proxies. This again arises contentions for the
selection criteria and the effect of load on the effected device and the rate of transfer
of this responsibility.

For knowledge management, they use Service Data Elements (SDEs) [63] of
OGSA (Open Grid Services Architecture) to define information parameters. This is a
mechanism of publicly expressing the available state information of a service through
a known schema. This concept is not limited to Grid services. Any stateful Web ser-
vice can declare its publicly available state information through service data concepts.

Furthermore, the SDE declaration is similar to the xsd:element declaration, but the
SDE declaration is a restriction to the xml schema xsd:element that uses only six
properties of the xsd:element declaration (annotation, name, type, occurs(minOccurs,
maxOccurs), nillable, and the open attribute model) and adds two new attributes "mu-
tability" and "modifiable" using the open attribute model.

All of these research efforts don’t envision the incorporation of self-management
and the capabilities of autonomic computing paradigm in their systems.

Chapter 5: Security

5.1 Introduction

The Mobile-to-Grid Middleware Environment can be visualized as in Figure 2.
Mobile device users use different mobile devices to interact with the MAGI using
security protocols as defined by the MAGI middleware. MAGI in turn communicates
with the grid using the standard GSI protocols. In what follows, we will use

 for the mobile clients, as the MAGI instances and as
any generic grid service, with the subscripts omitted if a general instance of that cate-
gory is under discussion.

1 2, ,A A K 1 2, ,M M K 1 2, ,G G K

Alice

B

ob

GSI

Proto-

cols

MAGI Proto-

cols MAG

I

The

Grid

Figure 1. The Mobile-to-Grid Middleware Environment

The mobile client (A) and MAGI (M) contain Client Security Manager and
MAGI Security Manager respectively. As the name indicates, these two managers
will be responsible for secure communication and security decisions. We will abuse
the notation for A and M and use it interchangeably for both the mobile device and
MAGI, and the security managers. Figure 3 and 4, show the modular diagrams of the
security managers A and M .

Both the managers have some core services and some additional optional packages
for added security. The main service is the Authentication and the Privacy Service
which provides authentication through digital certificates and data integrity and con-
fidentiality through encryption. This service is present both in A and M . The Autho-
rization and the Delegation services are not part of the Client Security Manager as
they are intended for authorizing the client and job delegation purposes respectively.
The trust manager helps A and M to calculate the trust they can put on each other
based on their

MAGI Security Manager

Figure 2. MAGI Security Manager

past experiences as well as the opinion of the other peers. This module is useful in a
very large scale system and hence is only optional for normal sized networks. The
Information Privacy Manager helps to keep the results obtained from the grid services
in encrypted format on MAGI and enables MAGI to search on this encrypted data
with some feed back from the mobile client without decrypting the data. This module
like the previous one is also optional and is meant for very high security requirements.

Authoriza-

tion Service

Authentica-

tion and Priva-

cy Service

Certificates

Manager
Cer-

tificate

Delegation

Service

Proxy Cer-

tificates Man-

ager

Interface to

Policy Manager Pol-

icy

DB

Trust

Values

Trust Man-

ager

Info Privacy

Manager IBE

System

Params

Proxy

 Certifi-

cates

Core
Services

Op-
tional

Services

We will introduce and explain each one of these modules in the next sections by
giving a detailed account of the underlying protocols, algorithms and mechanisms
employed.

Authentica-

tion and Priva-

cy Service

Certificates

Manager

Cer-

tificate

Client Security Manager

Trust

Values
Trust Man-

ager

Info Privacy

Manager IBE

System

Params

Core
Services

 Op-
tional

Services

Figure 3. Client Security Manager

5.2 Authentication and Privacy Service

The responsibility of the Authentication and Privacy Service can be divided into
two main objectives:

1. To ensure secure communication (authenticated and perhaps confiden-
tial) between A and M .

2. Safeguarding the data residing on the mobile device under potential
threat of the device been stolen.

The Grid Security Infrastructure is based on public key cryptography mainly dep-
loyed using the RSA public key cryptosystem [8]. However key sizes in the RSA
scheme are large and thus computationally heavy on handheld devices such as PDA’s,
mobile phone’s, smart phones etc [9]. The Elliptic Curve Cryptography (ECC) [13]
based public key scheme can be used in conjunction with a symmetric key system
such as, Rijndael’s Advanced Encryption Standard(AES)[14], for mobile access to
Grid which provide the same level of security as RSA and yet the key sizes are a lot
smaller [9]. In what follows and pubA denote the private and public key of privA

Alice A . The private and pu keys oblic f M and G are defined likewise. The En-
crypti Algorithm and Decryption Algorith wil e denoted by on m l b ().E and ().D

respectively, with the key specified as a subscript.

5.2.1 Authentication

e is a CA that issu Elliptic
as th

We assume that ther es Curves based certificates, known
e Elliptic Curve Digital Signature Algorithm (ECDSA) [15] certificates. Both

A and M have these certificates and they use these certificates to authenticate with
each other. M on the other hand, also has a RSA based X.509 certificate that can be
used to communicate with the Grid Services. This may give rise to compatibility
issues during job delegation. We deal with this problem in the section 2.3. The proto-
col to authenticate A to M is described as follows:

Protocol 1: (),Authenticate A M
INPUT: A and M ’s ECC certificates
OUTPUT: accept or reject

1. A sends a request for connection to M .

2. M acknowledges and asks A for its ECDSA certificate.

3. A sends the certificate to M and M checks its validity.

4. M sends a challenge cyphertext to A .

5. A decrypts the message using its private key and sends the

 Response to M .
6. M decrypts usi Ang ’s publ . ic key

7. If the response is right than accept otherwise reject.

Table 1. The Authentication Protocol

W easily enable ove with the
ro

Protocol 2:

e can
les in

mutual authentication by running the ab protocol
terchanged. So the mutual authentication protocol is:

(),MutualAuthentic A ate M
INPUT: A and M ’s ECC certificates
OUTPUT: accept or reject

1. (),Authenticate A M

If (),Authenticate A M2. =reject than halt, else continue

3. (),uthenticate M A A

4. If (),Authenticate M A =reject than return reject other-
e wis

 accept

Table 2. Mutual Authentication Protocol.

5.2.2 Data Confidentiality and Integrity

ryption. After authentication MData integrity can be provided by using enc generates
a secret key of Rijndael’s Advanced Encryption Standard algorithm (AES) [14] and
sends it to A by encrypting it with the latter’s public key. A and M can then use this
key to encrypt and/or decrypt any further messages between the two parties. This key
can be destroyed when a session is over.

The protocol is as follows:

(),teSessionKey A M Protocol 3: Genera
INPUT: A ’s Public Key

: eOUTPUT AES Session K y sessK
1. M generates an AES se kcret ey sessK .
2. M computes ()

pubA sessE K and sends it to A .

3. A computes ()()D E K K= .
priv pubA A sess sess

Table ion Proto3. Session Key Generat col.

Our choice of using R faster computation

5.3 Key and Data Safeguarding

ijndael’s AES is due to its ability to provide
with low memory requirements [14]. Alternatively we can use the Elliptic Curve
Diffie Hellman Key Exchange protocol to exchange the AES key. Data integrity can
be provided by using standard Message Digest Algorithms like SHA-1 [16].

A 's private key is stored in a file in the mobile's storage which is encrypted via a
password. To use this key, the user must enter the pass phrase required to decrypt the
file containing their private key. If a device is stolen, the data residing in the mobile
device can be compromised. Even if the key is protected by the password, the adver-

sary has access to the disk containing all the data. The adversary would still have
access to the data and the file containing the key. To protect this situation, we require
A to encrypt the data on it using a newly generated AES key and then apply the

tion of secret sharing schemes to produce two or three shares of this key. One is
sent to
no

M , the second is kept by A in the same device and the third on another of
Alice’s device. Now the adversary nnot decrypt the data since it does not have the
other share of the key without which it cannot learn anything about the key. It would
also not risk to communicate with

ca

M , which would certainly yield his location. In
the next section we give a detailed account of secret sharing schemes and propose a
construction that is suitable for the low-end mobile devices. Readers not interested in
the detailed mathematical construction can jump to section 2.2.7 after reading the
next section.

5.3.1 Background on Secret Sharing Schemes

Sham r[17] and Blakeley[18] i ly proposed the notion of a secret shar-i ndependent
ing scheme. A (),k n secret sharing scheme (threshold scheme) is a method of divid-

ing a secret s in hares , , ,s s sK and giving a unique share to a set of n

participants {
to n s 1 2 n

}1 2, ,
ly com

, n hat

put

P P PΡ = K the knowledge of any k or more shares

makes the se able but knowledge of 1k
such t

cret s easi − or less shares does not
reveal any information about the secret s . Here, k is called the threshold of the
scheme. The secret s is chosen by a Dealer D∉Ρ and gives the share s to the

participant P over a secure channel.

i

i

An nt feature of Sham e is that it is unconditionally secure. A con-elega ir’s Schem
sequence of this property is that the size of shares per participant be at least the size
of the original secret [19]. This poses a fundamental limit on unconditionally secure
secret sharing schemes. Against resource bounded adversaries this lower limit can be
relaxed by introducing computational security. Krawczyk [20] was the first to discuss
computationally secure secret sharing schemes by reducing the size of shares to ap-
proximately s k . However our discussion will be limited to unconditionally secure

schemes. Alt h Shamir’s secret sharing scheme is perfectly secure, however it is
not free of cheating. Tompa and Woll[21] presented a possible scenario in which a
participant or a group of participants can send a false share and hence get the correct
secret whereas the honest participants will be deceived with the wrong secret. This
situation will go undetected in Shamir’s scheme described above. Tompa and
Woll[21] first showed how to prevent this form of cheating keeping in mind the un-
conditional security assumption. An outcome of their scheme is that the size of shares
should grow with the probability of cheating detection. This was shown to be undeni-
able in [22] where the authors gave lower bound on the size of shares. This bound
was improved by Kurosawa et al in [23]. Another undesirable property of cheating

houg

detection schemes is that even though cheating is detected (or in some other schemes
cheaters are identified) the cheaters still recover the secret whereas the honest partici-
pants don’t get the correct secret. Tompa and Woll showed how to prevent this situa-
tion. They encoded the secret as a sequence, where only one element of the sequence
is assigned the actual secret and the other elements a dummy value. These elements
are then divided into shares and given to each participant. There are a couple of dis-
advantages in their method. Firstly, each participant has t shares to keep (equal to the
length of the sequence). Secondly the probability of the cheaters to get the secret is

1 t≈ which can be made less by making the number of shares large, where each
is at least the size of the original secret. The goal of this paper is to increase this

probability without considerably increasing the size of shares. For a detailed account
of the related work, see [24].

share

W scheme to prevent cheating with high probability using

5.3.2 Proposed Scheme

efore going on to the proposed scheme, we revi he notion of permutations
wh

e propose a secret sharing
individual shares whose total size is roughly the same as the size of the secret. The
basic theme is to divide the shares into parts, introduce random numbers and shuffle
them with the shared pieces in such a way that the participants don’t know the exact
construction of the shares unless at least k of them pool their shares together. The
participants pool the individual parts one b one and the notion of hash functions as
in [25] is used to detect cheating at every stage. The resulting scheme prevents cheat-
ing against any set of 1k − cheaters. Introduction of a one way hash function of
course takes away the unconditionally secure property of the Shamir Secret Sharing
Scheme, however it can help in reducing the size of the shares per participants. The
scheme can successfully detect cheating provided there exists a collision free one way
hash function. The main contribution of our work is not to detect the cheaters but to
prevent them from attaining the secret under our communication model.

y

B se t
ich will be needed to describe our scheme. For a positive integer t , let

[] { }1, 2, ,t t= K . A permutation σ of []t is a one-to-one correspondence from

[]t to[]t . Let tR denot perme the set of al ions ofl utat []t . The identity of tR denoted

by ι is a permutation defined by the rule () [],x x x tι = ∀ ∈ . The com on of positi

two permutations σ and τ is defined as () ()() [],x x x tστ σ τ= ∀ ∈ . The inverse
1

tRσ ∈ of the − permut on ati tRσ ∈ is defined by 1 1σσ σ− − σ ι= = . A ranking

function assigns a unique integer in the range []1, !t utations in to each of the !t perm

tR . The corresponding unranking function is the inverse, which given an integer in

the range []1, !t returns the permutation with this rank.

Next we define a few functions which will be required in our scheme. Let p de-

note a positive integer and let px +∈Z . Let p denote the number of bits in the bi-

nary representation of p .

Definition 1 The concatenation of the positive integers x and is a number ob-

tained by appending the binary representation of after the binary representation

of

y
y

. We denote it by . (),con x yx

This definition can be extended to more than two arguments in a natural way.

Definition 2 For a positive integer t , the function (), ,split x t p is an ordered t -

tuple defined by,
() ()1 2, , , , , tsplit x t p x x x= K

Such that,

ix p t⎡ ⎤= ⎢ ⎥ for 1 1i t≤ ≤ − ,

()1tx p p t t⎡ ⎤= − −⎢ ⎥ ,

and ()1 2, , , tcon x x x x=K .

Definition 3 Given an ordered t -tuple of elements ()1 2, , , tx x x x= K

()

, we say

that the ordered t -tuple () () ()(),
ti

xσ1 2
, ,x i iO x xσ σσ K= is a reordering of x

according to the permutation σ , if

() () ()1 21 ti i iσ σ σ= < < <K t=

where []1 2, ,i i K, ti t∈ distinct from each other and not necessarily in ascending

order.

We denote the initial ordered t -tuple ()1 2, , , tx x x x= K by ()xO ι .

Now we are set to describe our scheme. Continuing with our previous notation, let
be the set of n participants{ }1 2, , , nP P PK , let {0,1,2, , 1}SΡ s= −K be the set

of possible values of the secret and let k be the threshold of the scheme. The scheme
will be shown in two steps: Secret Generation Phase and Secret Recovery Phase. We

assume an honest Dealer D and a secure channel between the Dealer and each par-
ticipant in the Secret Generation Phase.

5.3.2.1 Secret Generation Phase

This phase is carried out by the Dealer . It is assumed that for a given integer t ,

the set of all permutations
D

tR is ranked according to a ranking function.

1. Choose a prime ()max , , !p s n t . ≥
2. Select the secret S from the set of non negative integers{0 . ,1, 2, , 1}s −K

3. Select random integers from the integers 1 2, , , na a aK ()0, p to construct

the 1k − degree polynomial:

() 2 1
1 1 2

k
kf 1x S a x a x a x −
−= + + + +K

4. Compute ()i=is f for1 i n≤ ≤ .

5. Select a positive integer t , and compute b p t⎡ ⎤= ⎢ ⎥ .

6. For1 , i n≤ ≤
split 6.1 Compute . If (), ,is t p p t p⎡ ⎤ ≠⎢ ⎥ t , then select a random

positive integer such that q q p t t⎡ ⎤ p= −⎢ ⎥ and compute

. Now concatenate the first (,it its con s=)q 1t − - pieces as

. ()()1, , i ts s −1 2i iS con s= ,i K

its 6.2Let e and select 1i = 1t − random positive integers

such that each one is of size

2 3, , ,i i ie e eK t

p t⎡ ⎤⎢ ⎥ . Create the t -tuple

())
i

(1 2, , ,s i iO e e itι = eK .

7. Choose a one way function ().h with the condition that

and a positive constant such that1
().h p<

c c p≤ < .

8. For 1 j t

1 2, , ,T t

≤ ≤

T K

T h

, compute .

Let O T .

() ()
1

2 1 2 1

1 1

n n
i i

j ij
i i

T h e p cp
−

− −

= =

= +∑ ∑
() ()ι = T

9. Compute () ()
1

2 1 2 1

1 1

n n
i i

i
i i

S p cp
−

− −

= =

= +∑ ∑ .

10. Randomly select a permutation xσ from tR , where 1 !x t≤ ≤ and

compute its inverse permutation 1
y xσ σ −= .

11. Use Shamir’s secret sharing to evaluate a polynomial modulo a prime
 (max , !)p n t′ ≥ and p b′ = with shadows and constant

term .
1 2, , , nd d dK

y
12. For 1 , Compute: i n≤ ≤
 12.1. and store in a public directory. 1 2i i i itc e e e d= ⊕ ⊕ ⊕ ⊕K i

13. For , compute 1 i n≤ ≤ ()
is xO σ and send to the participant

along with over a secure channel.
iP

iS
14. Compute (T xO)σ and store it along with p and T in the public directory.

Notice that the inverse permutation yσ is hidden in the second polynomial and

hence the exact position of in the t -tuple is not known to any participant as they

don’t know
its

xσ either, unless they pool all their shares together to evaluate the second
polynomial.

5.3.2.2 Secret Recovery Phase

Without loss of generality assume that participants decide to pool

their shares.
1 2, , , kP P PK

1. Participants submit their first share iS .

1.1. For participant iP , compute () ()2 1

1

n
i

i
i

T h S p −

=

′ =∑ .

1.2. For each iP , check whether

1 mod 0i

T T p
p −

′⎢ ⎥−
=⎢ ⎥

⎣ ⎦

 If the above equation does not hold, then is a cheater. iP
1.3. If at least one cheater has been detected and identified then terminate

the phase here.
2. For 1 j t≤ ≤ :

2.1. Participants submit their j th element of ()
is xO σ .

2.2. For participant iP , compute () ()2 1

1

n
i

ij
i

T h s p −

=

′ ′=∑ .

2.3. For each iP , check whether

1 mod 0j
i

T T
p

p −

′−⎢ ⎥
=⎢ ⎥

⎣ ⎦

 If the above equation does not hold, then is a cheater. iP
2.4. If at least one cheater has been detected and identified then terminate

the phase here.
3. For 1 i k≤ ≤ :

3.1. Compute id e . 1 2i i i ite e c= ⊕ ⊕ ⊕ ⊕K

4. Use Langrange’s polynomial interpolation to find x from these id ’s and re-

trieve the permutation yσ from tR through the unranking function.

5. For 1 i k≤ ≤ :
5.1. Apply the inverse permutation 1

xyσ σ −= to obtain

() ()1
i is x x sO Oσ σ ι− = .

5.2. If p t p t≠ , remove ⎡ ⎤⎢ ⎥ p t t p⎡ ⎤ −⎢ ⎥ last bits from the first

element of ()
isO ι .

5.3. Compute () ()1,i i icon S e s f i= = .

6. Reconstruct the polynomial ()f x from these k shares using Langrange’s

polynomial interpolation.
7. Recover the secret as ()0 . S f=

At any stage of the recovery phase, if the cheaters change their elements in the t -

tuples, the procedure will be terminated. And no one will submit the remaining ele-
ments of the t -tuples. It will be shown in the next section that the probability of suc-
cessful cheating in this scheme depends upon the parameter t which can be adjusted
to decrease this probability.

5.3.3 Security Analysis

The above scheme acts both as a cheating detection and prevention scheme. It can
be shown that it prevents cheating with a probability of ()1t − t . For a detailed secu-
rity and complexity analysis, see [24].

5.3.4 The Key Safeguarding Protocol

With the Secret Sharing Scheme in our hand we can now illustrate our protocol.
We use the notation (), ,SecretShareGenerate S k n

k
), kSK

to denote the generation of
shares of the secret S with being the threshold. Similarly,

represents secret recovery from the k shares. Our se-
cret sharing scheme as described above will automatically deal with false shares dur-
ing the recovery. The Key safeguarding protocol is as follows:

n
Se (1 2, ,cretRecovery S S

Protocol 4: (),KeySafeGuard A M
INPUT: A PseudoRandom Number Generator
OUTPUT: Shares and 1 2,S S 3S

1. A generates an AES Key saf eK
2. A encrypts the important data using this key
3. A compute (), 2,3safeSecretShareGenerate K to generate three

shares 1 2,S S and 3S .
4. A sends ()1pubME S to M and stores one of the shares in the

same device and the other in another device.

Table 4. Key Safeguarding Protocol.

After some time, A might need to read the data on its mobile device. It can do so
by applying or ()1 2,Secre ecovery S StR ()2 3,SecretRecovery S S . However in the
first case it has to authenticate with M again before it can recover the key.

5.4 Authorization Service

The Authorization Service is only the part of M and not A . This decides whether
A is allowed to use M ’s services and if yes then which of M ’s services can it util-

ize. These access control decisions will be based on A and M ’s policies and are
handled by the Knowledge Management service in MAGI. This is indicated in the
deployment diagram as an interface to the Knowledge Management Policy Manager.
The authorization service makes decisions based on the feedback from the Policy
Manager. Furthermore, if the Trust Manager is used, the Authorization Service can
communicate with it to make stronger access control decisions.

5.5 Delegation Service

This service has the primary objective of securely delegating the job to grid services
and ensuring “single sign on” as offered by GSI. The use of Elliptic Curve Crypto-
graphy (ECC) between A and M produces a severe limitation in the straight forward
usage of RSA based X.509 certificates. If the grid services are capable of computing
elliptic curve operations then the elliptic curves based proxy certificates can be easily
used. However, most deployments of Grids use RSA based X.509 certificates. Thus
the grid services cannot validate the ECDSA certificates. We solve this problem by
using dual certificates. The CA issues two certificates to A . One is the RSA certifi-
cate and the other is the ECDSA certificate. After authenticating with M , A sends
its RSA certificate along with the key pair to M . M can then use this certificate to
interact with the grid services. However, after completing the job, M should no long-
er keep it with itself; the reason being that a failure or an attack on M may result in
the loss of the key-pair along with the certificate. Furthermore A should also not keep
this key in its mobile device due to fears of the device being stolen.

We again use the notion of secret sharing schemes to overcome this problem. After
completing the job, M computes a fixed number of shares and sends them to the
other instances of MAGI and destroys the original copy of the key. A destroys its
copy as well. When A wants to send a job request later, it generates an ECC proxy
certificate which shows that A has given 1M the authority of doing the job on its
behalf. 1M can show this proxy certificate to any 1k − instances of MAGI and recon-
struct the RSA private key. In this way we can ensure job delegation without using
expensive RSA operations on the client side. The Delegation Protocol thus consists of
an initial phase in which A sends both its RSA certificate and its key and then the
consequent sessions can take place with A sending the proxy certificate to enable
M to complete the job. After job completion, M destroys its copy of A ’s RSA key.
The two protocols are described below:

Protocol 5: ()1DelegationInit M
INPUT: ’s RSA Private Key A RSAA , and k n
OUTPUT: shares of n 1 2, , , nS S SK RSAA

1. A sends its RSA certificate and RSAA to 1M .
2. 1M computes (), ,RSASecretShareGenerate A k n to generate n shares

, , , nSK . 1 2S S

3. 1M sends these shares to 2 3, , , nM M MK and keeps 1S
4. 1M destroys 2 , , nS SK and RSAA .

Table 5. Delegation Initialization Protocol.

Protocol 6: ()1,DelegationReq A M

1. A generates an ECC proxy certificate ECCP
2. A sends ECCP to 1M .
3. 1M uses ECCP to validate with any 1k − MAGI instances

 2 3, , , kM M MK
4. M computes ()1 2, , , kSecretRecovery S S SK to recover A ’s RSA

secret key.
5. M uses this key and A ’s RSA certificate to communicate

with the grid

Table 6. Delegation Protocol

5.6 Trust Manager

MAGI (M) will have to interact between large number of different mobile devices.
Sometimes the users of these devices belong to different network domains governed
by different security policies. At other times a new mobile device may want to inte-
ract without any prior history of interaction. MAGI would like to grant access privi-
leges to these devices or allow a requested action based on some notion of trust. It
would like to evaluate the requesting client on the basis of its past interactions with
other Grid services and/or with other instances of MAGI. A global trust evaluation
model becomes necessary in this situation enabling the communicating parties to
determine the trust for each other. Even though the client is an authenticated user, it
still might not cooperate well with MAGI and vice versa. We describe a trust model
in the next section and describe a trust evaluation mechanism. Both A and M main-
tain the trust values about their past interactions.

5.7 Information Privacy Manager

To understand the role of the Information Privacy Manager, let us consider a sce-
nario: There runs a medical diagnosis and information service on a Grid (say GMS),
deployed to help the hospital(s) staff to pervasively carry out their duties. The medi-
cal service, upon request, processes and retrieves certain information about patients,
analyzes it and returns some results. Suppose Dr. Alice has some mobile devices such
as a laptop and a PDA. She would like to get some information about her patient by
checking his medical history and getting a diagnosis from the GMS. She sends the
request through her laptop to the middleware which delegates the job to GMS. After

job request she disconnects and continues on with her daily routine work. At a later
time, she would like to get the information about her patient on her PDA. In particular
she would be concerned only with some certain information (such as the Blood Pres-
sure) of the patient and not all information returned by the medical service. The mid-
dleware has already retrieved the information from GMS and has temporarily stored it
in its repository, waiting for the client to reconnect. Upon searching for the keyword
“Blood Pressure”, the middleware will return only the data categorized under this
keyword and remove the remaining data from its repository. The data regarding the
patient’s medical history and his diagnosis is highly sensitive and the security policy
of the hospital maintains that the data should not be accessible or presented to some-
one not related. The middleware is an access point to all the community in the hospit-
al. Different doctors and other hospital staff request different jobs for different pa-
tients through it. Ideally the data residing on the intermediary (middleware) should be
kept secret so that no one else should get the knowledge about the data. The key is
that data should be private and searchable at the same time. The only parties who
should know the data are Alice and the GMS. This naturally brings us to the notion of
Public Key Encryption with Keyword Search (PEKS) discovered by Boneh et al [48].
They originally proposed the scheme in the scenario of an email gateway routing
emails to user’s different devices depending on the keywords in the email.

Suppose Dr. Alice has a PDA through which she would like to get some informa-
tion about her patient by checking his medical history and getting a diagnosis from
the GMS. She sends the request through her PDA to MAGI which delegates the job
to GMS. After job request she disconnects and continues her other work. At a later
time, she would like to get the information about her patient on her PDA. In particular
she would be concerned only with some certain information and not all information
returned by GMS to MAGI, such as the Blood Pressure of the patient. MAGI has
already retrieved the information from GMS and has temporarily stored it in its repo-
sitory. The information stored in MAGI is in the form of keywords and data, both of
which are kept secret from MAGI. Our goal is to let Alice retrieve the information
she desires without leaking any more information than necessary to MAGI. As MAGI
is a gateway for access to the Grid, a number of different clients with different devic-
es have access to it. Therefore sensitive unencrypted data is highly vulnerable to
outside intruders.

Although this feature seems pretty important for the privacy of user’s information
residing on MAGI for a temporary period of time, the implementation of it, as we
shall see, requires implementation of an IBE like system. If the grid side security has
full support of this feature then it can be easily deployed. The current deployment of
Grid does not support this mechanism. Hence we only describe it as an optional ex-
tension.

5.8 Performance Comparison of the Models

In the next simulation we calculated the time to completion of the job request, with
Authentication and then with Encryption. Due to the lack of space we will not go into
the details of the firing times of the transitions used in these two models. Figure 3,
shows the difference in times to completion. As expected, even with the security
features, the time to completion takes just a little more time. This shows the benefit of
using Elliptic Curve Cryptography with AES. Both of them are fast and suitable for
mobile devices.

0

2

4

6

8

10

12

14

16

18

20

10 20 50 100 200 500 1000

Throughput Kbit/sec

Ti
m

e
to

 C
om

pl
et

io
n

(t)
 s

ec

Without Security

With Authentication

With Encryption

Figure 4. Time to Completion (t) of the three Petri Nets against changing wireless

throughput

However, the relative difference between the times to completion, though being
subtle at lower bandwidths, increases with increasing bandwidth, almost being two
times at bandwidths of about 1000 Kbit/sec. This is due to the fact that at higher
bandwidths the transmission costs are minimized and the performance difference is
mostly due to the computational overhead.

Chapter 6: Grid Resource Scheduling

6.1 Introduction

This chapter introduces the Grid and related terms and explains the development of
prototype Grid services. We also explain the tools and technologies used along with
the required basic configuration steps.

6.1.1 The Grid

‘The Grid’ as a term in computing world, was formulated in the last decade. It re-
ferred to an envisioned advanced distributed computing paradigm with capabilities to
ultimately assist in solving complex science and engineering problems beyond the
scope of existing computing infrastructures [BLUEPRINT]. The concept has evolved
considerably over these years. The growing popularity has also resulted in various
kinds of ‘grids’, common ones being known as Data grids, Computational grids, Bio
grids, Cluster grids, Science grids, among many others [FOSTERARTICLE]. Effort
is in progress to converge the concepts related to the architecture, protocols, and
applications of these grids to formulate a single paradigm – the Grid.

The article in [FOSTERARTICLE] lists various characteristics that may be signifi-
cant in determining whether a distributed computing system meets the requirements
to be a grid. According to [FOSTERARTICLE], such a system qualifies to be a grid,
which:

a. coordinates resources that are not under centralized control.

b. utilizes standard, open, general-purpose protocols and interfaces.

c. promises to deliver non-trivial qualities of service.

Furthermore, these grids – if they follow common inter-grid protocols for authenti-
cation, authorization, access control, resource discovery, resource access, and re-
source sharing – will attempt to congregate into the Grid.

The grid community is working towards this goal, and standardized protocols are
expected in near future, that may revolutionize the computing world; as Internet Pro-
tocol (IP) did with the Internet.

6.1.2 Globus

The Globus grid-middleware is provided by the Globus project [GLOBUS-PAGE]
bundled as a set of tools called Globus Toolkit. The toolkit has 3 components known
as pillars. These are:

• Resource Management

• Information Services

• Data Management

The Globus Toolkit uses the GSI (Globus Security Infrastructure) to provide a
common security protocol for each of the pillars. GSI is based on public key encryp-
tion, X.509 certificates and Secure Socket layer (SSL) protocol.

6.1.2.1 GRAM (Globus Resource Allocation Manager)
The Globus Resource Allocation Manager provides a standard interface to all the

local resource management tools a site uses. The Globus resource management has
the high-level global resource management services layered on top of local resource-
allocation services [GLOBUS-PAGE]. The GRAM service is provided by a combina-
tion of the gatekeeper and the jobmanager. The gatekeeper performs the task of au-
thenticating an inbound request using GSI, and mapping the user’s global ID on the
grid to a local username. The incoming request specifies a specific local service to be
launched, the latter usually being a jobmanager. The user needs to compose the re-
quest in a Resource Specification Language (RSL) that is handed over to the jobma-
nager by the gatekeeper. After parsing the RSL, the jobmanager translates it into the
local scheduler’s language. The GRAM also provides the capability to stage in execu-
tables or data files, using Global Access to Secondary Storage (GASS). The jobma-
nager contacts the client before the job submission for retrieval of the staged in files.

6.1.2.2 MDS (Metacomputing and Directory Service)
The Globus Metacomputing and Directory Service provides an LDAP based in-

formation infrastructure, suited for grid environments. There are 2 components of
MDS implementation – GRIS and GIIS. The Grid Resource Information Service
(GRIS) implements a uniform means to query resources on a grid for current status

and configuration. The Grid Index Information Service (GIIS) component of MDS
provides a framework to form an index over various GRIS’s or other GIIS’s. This
combines the information of an entire system, thereby giving a method to explore a
coherent system image. Both these components [GLOBUS-PAGE] are currently
implemented using the slapd server provided by OpenLDAP and follow the
Lightweight Directory Access Protocol (LDAP). MDS utilizes the concept of infor-
mation providers – software programs that act as probe utilities or sensors to the
smaller components of a grid. Since it is based on LDAP, MDS needs a schema to be
built in that represents the hierarchy and rules of the information to be retrieved from
the components of a grid. Caching mechanisms are used to make the retention of data
more efficient, based on the time-sensitivity of a piece of information.

6.2 Installing Support Software

This topic lets you know which support software you must download as well as
other software you may want.

• Java SDK

• Ant

• Junit

• C compiler

• YACC (or Bison)

• GNU tar

• Tomcat

• .NET

• JDBC-compliant Database (RFT, RLS)

6.2.1 Java SDK

Since the underlying code of GT3 is written in Java, you must install the Java plat-
form on any machines running the Toolkit.

Required for: GT3 Webservices components

Recommended Versions: 1.3.1 through 1.4.x (1.3.1 may be incompatible with cer-
tain services - see Important Notes)

Download Link: http://java.sun.com/j2se

JAAS library is required as a separate download if you are using JDK 1.3.1. Some
higher level services like the Index Service and Execution Services use Xindice,
which is not compatible with version 1.3.1 on some platforms. Please see the Xindice
FAQ for more details.

JDK 3.2.0 has bug 1596 that restricts the Java GRAM to using version 1.4.x. This
will be fixed in an update package. If you don't need to build any source, you may use
JRE instead.

If you are using Sun's JDK, the safest version to use is JDK 1.4.2. Version 1.4.1
sometimes hangs during compilation for unknown reasons.The MMJFS component
(part of GRAM) might not properly work with the IBM JDK on Linux.

Follow either Sun or IBM's instructions for installing JDK. The current distribution
as of this writing is 1.4.2.

Make sure to set the JAVA_HOME environment to the installation directory and
add $JAVA_HOME/bin to your PATH environment.

6.2.2 Ant

Ant is a Java-based build tool required for the GT3 installation. The toolkit is com-
posed of many Java classes that need to be combined or built to form a functioning
program. Ant is used to execute an Ant-based build script that automates the build
process (if the toolkit needs to be re-buit at any point, Ant can skip actions that have
already been completed.)

Required for: Webservices installation

Recommended Version: 1.6.1

Download Link: http://jakarta.apache.org/ant

You can continue to use Jakarta Ant 1.4.1 if you replace crimson.jar in your
$ANT_HOME/lib directory with the xerces.jar that comes with our distribution.

Follow Jakarta's instructions for installing Ant 1.6.x. The current distribution as of
this writing is 1.6.1.

Make sure to set the ANT_HOME environment to the installation directory and
add $ANT_HOME/bin to your PATH environment.

6.2.3 Junit

Junit is a Java-based testing framework that facilitates regression tests. If you run
tests from source, the junit.jar class must be included with Ant for the GT3 installa-
tion.

Required for: Gridservices (however it is optional if you are only installing the
GT3 Core component)

Recommended Version: 3.8.1

Download Link: http://www.junit.org

Follow Junit's instructions for installing Junit 3.8.1. Copy junit.jar to the
$ANT_HOME/lib or put it on the $CLASSPATH.

6.2.4 C compiler

Required for: Any C code. The only components that do not require this are the
GT3 core component and the Higher-level GARs.

Recommended Version: Anything except gcc 3.2 (the RedHat 8 default compiler).
Gcc 3.2 triggers bug 488, our most-reported bug.

Download Link: http://www.gnu.org/software/gcc/ for GCC. Vendor compilers al-
so work.

6.2.5 YACC (or Bison)

Required for: building C bindings and the ogsi-find-service-data client from source.

Recommended Version: the latest version

Download Link: http://www.gnu.org/software/bison/bison.html

Your compiler probably already has this installed. Otherwise, you can download the
GNU version. For installing YACC (or Bison), follow the instructions from the web-
site.

6.2.6 GNU Tar

Required for: Unpackaging software

Recommended Version: The latest version

Download Link: http://mirrors.kernel.org/gnu/tar/

If you are running Linux, your system comes with GNU Tar. If you are running so-
laris, /usr/bin/tar is not GNU Tar and you will need to install it. For installing GNU
Tar, follow the instructions from the INSTALL file inside the file download.

6.2.7 Jakarta Tomcat

Used for: your web service container. This is optional because the GT3 installation
provides a standalone web service container for testing purposes.

Recommended Version: 4.1.24 (4.0.6 has also been tested to work)

Download Link: http://jakarta.apache.org/tomcat

For installing Tomcat, follow the instructions from the website.

6.2.8 Java Database Connectivity (JDBC) compliant Database

JDBC is an API for Java that allows access to a wide range of SQL databases.
JDBC is similar to the open standard API Open Database Connectivity (ODBC),
which is aligned with The Open Group.

Used for: the Reliable File Transfer (RFT) service and Replica Location Service
(RLS), which require a database backend. For licensing reasons, we ship the Post-
greSQL JDBC driver, but other JDBC compliant databases should be compatible.

Recommended Version: not applicable

Download Link: http://www.postgresql.org

6.2.8.1 Installing a JDBC compliant database:
In our prototype, we'll use PostgreSQL. PostgreSQL consists of 11 RPMs, but only
three of them are required to install a functioning database. This procedure installs all
of the RPMs and edits two configuration files: (Note: This installation creates the user
postgres. This user will be used during the creation of the database.)

Download Postgresql from http://www.postgresql.org/ and install RPMs.

Allow clients to connect via TCP/IP-based connections:

a) As root, edit /etc/init.d/postgresql.

b) Find the line that starts with the postmaster command.

c) Add the -i flag after the -o flag.

d) Remove -p ${PGPORT}.

Tell the database to listen for requests on the host machine by modifying the host-
based authentication file, pg_hba.conf.

a) As root, edit /var/lib/pgsql/data/pg_hba.conf.

b) Find the host stanza (or record) and enter it with the IP address for any users
from any machines that should have access to the database (the default value is
127.0.0.1)

c) Remove the # character from the beginning of the line.

After saving the file, start the database by running:

/etc/init.d/postgresql start

6.2.9 Installing Globus toolkit

As a security precaution, we recommend installing GT3 as a non-root user. GT3 is
designed to run as few components at elevated privileges as possible. As you will see
in the Configuration section, there are two files that will be made setuid. One of these
needs to be setuid root in order to run a User Hosting Environment as another user.
The other needs to be setuid to an account which owns the host certificate. That can
either be a separate non-root user, or you could choose to have that be root also. You
don't need to make the certificate owner choice right now; it will be covered in the
Configuration section.

6.2.9.1 Installing the Globus Toolkit 3.2 - Binary Installers
a) If you plan to run the WS GRAM service we recommend that you install as the

user that will run the WS GRAM service. Go to the Download page and choose
the binary installer you want to install. You will have to choose between the
all/base/preogsi. For the linux installers, run rpm -q glibc to choose between the
glibc2.2/glibc2.3 choices. If the first two digits are "2.3", like "glibc-2.3.2-27.9",
then you would use the glibc-2.3 installer. If the first two digits are "2.2", like
"glibc-2.2.93-5", then you would use the glibc-2.2 installer.

These binaries are only known to work on the distribution used to generate them
(RH7.3 for the glibc2.2, and Fedora Core 1 for glibc2.3). We have had bug reports
even on machines which report the same Major.Minor.Point release of glibc, but are
from a different distribution. If you experience GridFTP errors with the binary instal-
lation, please rebuild from source.

b) As globus, untar the binary installer.

c) Make sure that ANT_HOME and JAVA_HOME are set, and that ant and java
are on your PATH. If you are using JDK 1.3.1, make sure JAAS is in your
CLASSPATH before you run the installer.

d) Run:

./install-gt3-bin /path/to/install

Some of the resource management configuration can use the packages under the
schedulers/ directory. You may not want to delete the installer directory until after
you are done configuring.

6.3 Configuring Globus Toolkit

Step 1:

As globus, set GLOBUS_LOCATION to where you installed the Globus Toolkit.

This will either be

export GLOBUS_LOCATION=/path/to/install

or

setenv GLOBUS_LOCATION /path/to/install.

Step 2:

Source $GLOBUS_LOCATION/etc/globus-user-env.{sh,csh} depending on shell.

.sh for Bourne shell

.csh for C shell

Certificate Authority (CA) options

Your best option is to use an already existing CA. You may have access to one
from the company you work for, or an organization you are affiliated with. Some
universities provide certificates for their members and affiliates. Contact your support
organization for details about how to acquire a certificate. You may find your CA
listed in the TERENA Repository.

If you do not have an existing CA, you can set up a CA for your own use with the
Globus SimpleCA package. SimpleCA provides a wrapper around the openssl CA
functionality and is sufficient for simple Grid services. Alternatively, you can use

openssl's CA.sh

command on its own.

You can also use an online certificate service. However, this option should only be
used as a last resort because it does not fulfill some of the duties of a real Certificate
Authority.

If you must use this option, please see the following link for instructions:

http://gcs.globus.org:8080/gcs.

If you do not have access to an existing CA and want to use SimpleCA, continue with
step 3. If you already have a CA, you will need to follow their configuration direc-
tions. If they include a CA setup package, you may continue to step 11 directly. If
they do not, you will need to create an /etc/grid-security/certificates directory and
include the CA cert and signing policy in that directory. See Configuring a Trusted
CA for more details. Then proceed to step 11.

SimpleCA:

Creating users

Step 3:

Make sure you have the following users on your machine:

Your user account, which will be used to run the client programs.A generic globus
account, which will be used to perform administrative tasks such as starting and stop-
ping the container, deploying services, etc. This user will also be in charge of manag-
ing the SimpleCA. To do this, make sure this account has read and write permissions
in the $GLOBUS_LOCATION directory.

SimpleCA: Running the setup script

A script was installed to set up a new SimpleCA. You only need to run this script
once per grid.

Step 4:

Run the setup script:

$GLOBUS_LOCATION/setup/globus/setup-simple-ca

Subject name: This script prompts you for information about the CA you wish to
create:

The unique subject name for this CA is:

cn=Globus Simple CA, ou=simpleCA-mayed.mcs.anl.gov, ou=GlobusTest, o=Grid

Do you want to keep this as the CA subject (y/n) [y]:

The common name (cn) is Globus Simple CA , which identifies this particular certifi-
cateas the CA certificate within the GloubusTest/simpleCA-hostname domain. The
organizational unit (ou) is GlobusTest , and the second ou is specific to your host-
name. That identifies this CA from other CAs created by SimpleCA by other people.

The organization is Grid.

Step 5:

Press y to keep the default subject name (recommended).

Email: The next prompt looks like:

Enter the email of the CA (this is the email where certificate

requests will be sent to be signed by the CA):

Step 6:

Enter the email address where you intend to receive certificate requests. It should
be your real email address that you check, not the address of the globus user.

Expiration: Then you'll see:

The CA certificate has an expiration date. Keep in mind that once the CA certificate
has expired, all the certificates signed by that CA become invalid. A CA should rege-
nerate the CA certificate and start re-issuing ca-setup packages before the actual CA
certificate expires. This can be done by re-running this setup script. Enter the number
of DAYS the CA certificate should last before it expires. [default: 5 years (1825
days)]:

This is the number of days for which the CA certificate is valid. Once this time ex-
pires, the CA certificate will have to be recreated, and all of its certificates regranted.

Step 7:

Accept the default (recommended).

Passphrase:

Generating a 1024 bit RSA private key

........++++++

................++++++

writing new private key to '/home/globus/.globus/simpleCA//private/cakey.pem'

Enter PEM pass phrase:

The passphrase of the CA certificate will be used only when signing certificates
(with grid-cert-sign). It should be hard to guess, as its compromise may compromise
all the certificates signed by the CA.

Step 8:

Enter your passphrase.

Important: Your passphrase must not contain any spaces.

Finally you'll see the following:

A self-signed certificate has been generated for the Certificate Authority with the
subject:

/O=Grid/OU=GlobusTest/OU=simpleCA-mayed.mcs.anl.gov/CN=Globus Simple
CA

If this is invalid, rerun this script

setup/globus/setup-simple-ca

and enter the appropriate fields.

The private key of the CA is stored in /home/globus/.globus/simpleCA//private/cak

ey.pem

The public CA certificate is stored in /home/globus/.globus/simpleCA//cacert.pem

The distribution package built for this CA is stored in
/home/globus/.globus/simpleCA//globus_simple_ca_68ea3306_setup-0.17.tar.gz

This information will be important for setting up other machines in your grid. The
number 68ea3306 in the last line is known as your CA hash. It will be some 8 hex-
adecimal digit string.

Step 9:

Press any key to acknowledge this screen.

Your CA setup package finishes installing and ends the procedure with the follow-
ing reminder:

**

Note: To complete setup of the GSI software you need to run the

following script as root to configure your security configuration

directory:

/opt/gt3/setup/globus_simple_ca_68ea3306_setup/setup-gsi

For further information on using the setup-gsi script, use the -help

option. The -default option sets this security configuration to be

the default, and -nonroot can be used on systems where root access is

not available.

**

setup-ssl-utils: Complete

We'll cover this last step in the next section. For now, just notice that it refers to
your $GLOBUS_LOCATION and the CA Hash from the last message.

Step 10:

 To finish the setup of GSI, run as root (or, if no root privileges are available, add
the -

nonroot option to the command line):

$GLOBUS_LOCATION/setup/globus_simple_ca_CA_Hash_setup/setup-gsi -
default

The output should look like:

setup-gsi: Configuring GSI security

Installing /etc/grid-security/certificates//grid-security.conf.CA_Hash...

Running grid-security-config...

Installing Globus CA certificate into trusted CA certificate directory...

Installing Globus CA signing policy into trusted CA certificate directory...

setup-gsi: Complete

Requesting and signing host certificates

You must request and sign a host certificate and then copy it into the appropriate
directory for secure services. The certificate must be for a machine which has a con-
sistent name in DNS; you should not run it on a computer using DHCP where a dif-
ferent name could be assigned to your computer.

Step 11:

 Request a host certificate: As root, run:

grid-cert-request -host 'hostname'

This creates the following files:

/etc/grid-security/hostkey.pem

/etc/grid-security/hostcert_request.pem

(an empty) /etc/grid-security/hostcert.pem

Note: If you are using your own CA, follow their instructions about creating a
hostcert (one which has a commonName (CN) of your hostname), then place the cert
and key in the /etc/grid-security/ location. You may then proceed to user certificates.

Step 12:

Sign the host certificate: as globus, run:

grid-ca-sign -in hostcert_request.pem -out hostsigned.pem

A signed host certificate, named hostsigned.pem is written to the current directory.

When prompted for a passphrase, enter the one you specified in step 8 (for the pri-
vate key of the CA certificate.)

Step 13:

 As root, move the signed host certificate to /etc/grid-security/hostcert.pem. The
certificate should be owned by root, and read-only for other users. The key should be
read-only by root. Requesting and signing user certificates

Users also must request user certificates, which you will sign using the globus user.

Step 14:

Request a user certificate: As your normal user account (not globus), run:

grid-cert-request

After you enter a passphrase, this creates

~$USER/.globus/usercert.pem (empty)

~$USER/.globus/userkey.pem

~$USER/.globus/usercert_request.pem

Email the usercert_request.pem file to the SimpleCA maintainer.

Note: If you are using your own CA, follow their instructions about creating a
usercert (one which has a commonName (CN) of your real name), then place the cert
and key in the ~USER/.globus/ location. You may then proceed to verifying proxy
creation.

Step 15:

Sign the user certificate: as the SimpleCA owner globus, run:

grid-ca-sign -in usercert_request.pem -out signed.pem

When prompted for a password, enter the one you specified in step 8 (for the pri-
vate key of the CA certificate.)

Now send the signed copy (signed.pem) back to the user who requested the certifi-
cate.

Step 16:

As your normal user account (not globus), copy the signed user certificate into

~/.globus/ and rename it as usercert.pem, thus replacing the empty file.

The certificate should be owned by the user, and read-only for other users.

The key should be read-only by the owner

Step 17:

 To test that the SimpleCA certificate is installed in /etc/grid-security/certificates
and that your certificate is in place with the correct permissions, run:

user$ grid-proxy-init -debug -verify

After entering your passphrase, successful output looks like:

[bacon@mayed schedulers]$ grid-proxy-init -debug -verify

User Cert File: /home/user/.globus/usercert.pem

User Key File: /home/user/.globus/userkey.pem

Trusted CA Cert Dir: /etc/grid-security/certificates

Output File: /tmp/x509up_u1817

Your identity: /O=Grid/OU=GlobusTest/OU=simpleCAmayed.

mcs.anl.gov/OU=mcs.anl.gov/CN=User Name

Enter GRID pass phrase for this identity:

Creating proxy++++++++++++

...............++++++++++++

Done

Proxy Verify OK

Your proxy is valid until: Sat Mar 20 03:01:46 2004

Change the ownership and access permissions

Run the setperms.sh script to change the ownership of some Globus files under the

$GLOBUS_LOCATION/bin directory. This step allows resource management
tools to run as root.

Step 18:

As root, run:

$GLOBUS_LOCATION/bin/setperms.sh

Add Authorization

Add authorizations for users:

Step 19:

Create /etc/grid-security/grid-mapfile as root.

You need two pieces of information - the subject name of a user, and the account
name it should map to.

The syntax is one line per user, with the certificate subject followed by the user ac-
count name.

Run grid-cert-info to get your subject name, and whoami to get the account name:

bacon$ grid-cert-info -subject

/O=Grid/OU=GlobusTest/OU=simpleCAmayed.

mcs.anl.gov/OU=mcs.anl.gov/CN=Charles Bacon

bacon$ whoami

bacon

The corresponding line in the grid-mapfile:

"/O=Grid/OU=GlobusTest/OU=simpleCAmayed.

mcs.anl.gov/OU=mcs.anl.gov/CN=Charles Bacon" bacon

The quotes around the subject name are important, because it contains spaces.

Step 20:

At this step, you have a single machine configured. Recall that in Step 8 a CA se-
tup package was created in .globus/simpleCA//globus_simple_ca_HASH_setup-
0.17.tar.gz. If you want to use your certificates on another machine, you will have to
install that CA setup package on that machine. To install it, copy that package to the
second machine and

run:

$GLOBUS_LOCATION/sbin/gpt-build globus_simple_ca_HASH_setup-
0.17.tar.gz

gcc32dbg

Then you will have to perform the setup-gsi -default from step 10. If you are going
to run services on the second host, it will need a host certificate and a grid-mapfile
also. You may re-use your user certificates on the new host. You will need to copy
the requests to the host where the SimpleCA was first installed in order to sign them.

Now you are ready to use secure Grid services.

Chapter 7: Related Work

7.1 Mobile-to-Grid Middleware

Various efforts have been made to solve the problem of mobile-to-Grid middle-
ware. Signal [15] proposes a mobile proxy-based architecture that can execute jobs
submitted to mobile devices, so in-effect making a grid of mobile devices. A proxy
interacts with the Globus Toolkit’s Monitoring and Discovery Service to communi-
cate resource availability in the nodes it represents. The proxy server and mobile
device communicate via SOAP and authenticate each other via the generic security
service (GSS) API. The proxy server analyzes code and checks for resource alloca-
tion through the monitoring and discovery service (MDS). After the proxy server
determines resource availability, the adaptation middleware layer component in the
server sends the job request to remote locations. Because of this distributed and re-
mote execution, the mobile device consumes very little power and uses bandwidth
effectively. Also their efforts are more inclined towards QoS issues such as manage-
ment of allocated resources, support for QoS guarantees at application, middleware
and network layer and support of resource and service discoveries based on QoS
properties.

In [16] a mobile agent paradigm is used to develop a middleware to allow mobile
users’ access to the Grid and it focus’s on providing this access transparently and
keeping the mobile host connected to the service. Though they have to improve upon
the system’s security, fault tolerance and QoS, their architecture is sufficiently scala-
ble. GridBlocks [17] builds a Grid application framework with standardized interfac-
es facilitating the creation of end user services. They advocate the use of propriety
protocol communication protocol and state that SOAP usage on mobile devices may-
be 2-3 times slower as compared to a proprietary protocol. For security, they are
inclined towards the MIDP specification version 2 which includes security features
on Transport layer.

7.2 Trust Model

Since mid ‘90s the research community has outlined the key role of trust manage-
ment models to develop more complex and dependable computer systems. From this,
the importance of trust model was first highlighted by Blaze et al in their seminal
paper [3]. Subsequently, Josang [7] presented an interesting classification of trust
relationships and its implication to traditional security concepts.

Until now, several trust models have been proposed in the literature for different

distributed systems [8]. For the Grid scenario, X.509[9] and SPKI[10] seem adequate
which propose a central Certificate Authority (CA) based trust model. However, there
are a number of issues related to proxy/delegation certificates that are serious draw-
backs of these models. A two-level trust model for Grid based on graph topology was
proposed in [11]. They use different trust evaluation metrics for centralized grid do-
mains and distributed Virtual Organizations (VO). A peer recommended trust model
was proposed in [12] for ubiquitous computing systems. Their trust management
scheme through recommendation lacks certain aspects such as the weighted recom-
mendation of peers based on their prior interactions. In [13], a decentralized trust and
reputation model for multi agent systems has been proposed whereas a probabilistic
trust model is proposed in [14] for mobile agents. Both these models lack a funda-
mental requirement, i.e., very old recommendations should not be relevant in predict-
ing the behavior of an entity. Another probabilistic trust model called the Beta Repu-
tation System (BRS) [15] works by giving ratings about other users in the system. All
these trust models can be generally categorized into probabilistic models and others in
which the trust evaluation formulae are tuned to give the desired result.

In the fields of Ubiquitous Computing, research has paid much attention to build

autonomous trust management as fundamental building block to design the future
security framework. Up to now, research has focused mainly on the propagation and
composition of trust information [16,17,18,19] while paying less attention to how
direct trust information is actually built. Though focused on distributed trust compu-
tation, [20,21] face the problem of building trust from past experience. Michiardi et al
[22] proposed an organic reputation –based framework to enforce collaboration in ad-
hoc networks. Peer reputation is built by evaluation a mix of directly collected infor-
mation, undirected feedback, and eventually multiple interaction classes.

Chapter 8: Conclusion

In this paper we identified the potential of enabling mobile devices access to the Grid.
We focused on providing solutions related to distributed computing in wireless envi-
ronments, particularly when mobile devices intend to interact with grid services. An
architecture for a middleware layer is presented which facilitates implicit interaction
of mobile devices with grid services. This middleware is based on the web services
communication paradigm. It handles secure communication between the client and
the middleware service, provides software support for offline processing, manages
the presentation of results to heterogeneous devices (i.e. considering the device speci-
fication) and deals with the delegation of job requests from the client to the Grid. We
also demonstrated that the addition of such a middleware causes minimum overhead
and the benefits obtained by it outweigh this overhead.

In future we intend to provide multi-protocol support in order to extend the same
facilities to devices that are unable to process SOAP messages. Moreover, we will
continue to focus on handling security, improving support for offline processing and
presentation of results depending upon the device. Along with this implementation
we intend to continue validating our approach by experimental results.

References

1. A. Puliafito, S. Riccobene, M. Scarpa, “Which paradigm should I use?: An analytical
comparison of the client-server, remote evaluation and mobile agents paradigms'”,
IEEE Concurrency and Computation: Practice & Experience, vol. 13, pp. 71-94,
2001.

2. A. Bobbio, A. Puliafito, M. Telek, “A modeling framework to implement preemption
policies in non-Markovian SPNs”. IEEE Transactions on Software Engineering,
vol. 26, pp. 36-54, Jan. 2000.

3. M. Telek, A. Bobbio, “Markov regenerative stochastic Petri nets with age type gen-
eral transitions”. Application and Theory of Petri Nets, 16th International Confe-
rence (Lecture Notes in Computer Science 935). Springer-Verlag, pp. 471–489, 1995.

4. A. Bobbio, A. Puliafito, M. Scarpa, M. Telek, “WebSPN: A WEB-accessible Petri
Net Tool”. International Conference on WEB based Modeling and Simulation, San
Diego, California, pp. 137–142, 11–14 January 1998.

5. WebSPN 3.2: ing-inf.unime.it/webspn/
6. W. Hoschek, Web service discovery processing steps. http://www-

itg.lbl.gov/~hoschek/publications/icwi2002.pdf
7. UDDI specification, www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm
8. SOAP Framework: W3C Simple Object Access Protocol ver 1.1, World Wide Web

Consortium recommendation, 8 May 2000; www.w3.org/TR/SOAP/
9. GT3 GRAM Architecture, www-unix.globus.org/developer/gram-architecture.html
10. K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman. Grid Information Services for

Distributed Resource Sharing. Proceedings of the Tenth IEEE International Sympo-
sium on High-Performance Distributed Computing (HPDC-10), IEEE Press, August
2001

11. V. Welch, F. Siebenlist, I. Foster, et al., Security for grid services. HPDC, 2003.
12. Von Welch, Ian Foster, Carl Kesselman, et al., X.509 Proxy Certificates for dynamic

delegation. Proceedings of the 3rd Annual PKI R&D Workshop, 2004.
13. Vipul Gupta, Sumit Gupta, et al., Performance Analysis of Elliptic Curve Cryptogra-

phy for SSL. Proceedings of ACM Workshop on Wireless Security - WiSe 2002
pages 87-94, Atlanta, GA, USA, September 2002, ACM Press.

14. Della-Libera Giovanni, D.B., Hondo Maryann et al., Security in a Web Services
World; A Proposed Architecture and Roadmap, 2002, International Business Ma-
chines and Microsoft Corporation. A joint security whitepaper from IBM Corpora-
tion and Microsoft Corporation. April 7, 2002, Version 1.0

15. J. Hwang, P. Aravamudham Middleware Services for P2P Computing in Wireless
Grid Networks. IEEE Internet Computing vol. 8, no. 4, July/August 2004, pp. 40-46

16. D. Bruneo, M. Scarpa, A. Zaia, A. Puliafito, Communication Paradigms for Mobile
Grid Users. Proceedings 10th IEEE International Symposium in High-Performance
Distributed Computing, (2001)

17. Gridblocks project (CERN) http://gridblocks.sourceforge.net/docs.htm

18. I. Foster, C. Kesselman, and S. Tuecke, The Anatomy of the Grid: Enabling Scalable
Virtual Organizations, Int’l J. Supercomputer Applications, vol. 15, no. 3, 2001,
pp.200-222.

19. The Java WSDP Registry Server -
 http://java.sun.com/webservices/docs/1.0/tutorial/doc/RegistryServer.html

20. Java API for XML Registries -
 http://java.sun.com/webservices/docs/1.0/tutorial/doc/JAXR.html

21. P. Maes. Concepts and experiments in computational reflection. In 2nd Conference
on Object Oriented Programming Systems, Languages and Applications, pages 147–
156.

22. A. Fuggetta. Understanding code mobility. In Transactions on Software Engineering,
volume 24, pages 342–361. IEEE.

23. Sun-Microsystems. Java. http://java.sun.com/j2se/.
24. G. Shepperd, M. Kadoda. Comparing software prediction techniques using simula-

tion. In IEEE Transactions on Software Engineering, volume 27, pages 1014–1022.
IEEE, 2001.

25. H. Weinsberg, Y. Israel. A programming model and system support for disconnected-
aware applications on resource-constrained devices. In 24th International Conference
on Software Engineering, pages 374–384, 2002.

26. U. Kalim, H. Jameel, A. Sajjad, Mobile-to-grid middleware: An approach for breach-
ing the divide between mobile and grid environments. In 4th International Confer-
ence on Networking, pages 1–8. Springer Verlag, 2005.

27. M. Marija. Improving availability in large, distributed, component-based systems via
redeployment. Technical Report USC-CSE-2003-515, Center for Software Engineer-
ing, University of Southern California, 2003.

28. M. Kistler, J. Satyanarayanan. Disconnected operation in the coda file system. In
13th ACM symposium on Operating Systems Principles, pages 213–225. ACM,
1991.

29. J. Howard. An overview of the andrew file system. In USENIX Conference, pages
213–216, 1988.

30. M. Noble, B. Satyanarayanan. Agile application-aware adaptation for mobility. In
16th ACM Symposium on Operating Systems Principles. ACM, 1997.

31. R. P. T. Popek, G. Guy. The ficus distributed file system: Replication via stackable
layers. In Technical Report CSD- 900009. University of California, 1990.

32. A. Joseph. Rover: A toolkit for mobile information access. In 15th ACM Symposium
on Operating Systems Principles, pages 156–171. ACM, 1995.

33. S. B. G. Conan, D. Chabridon. Disconnected operations in mobile environments. In
16th International Parallel and Distributed Processing Symposium, page 118, 2002.

34. S.P. Marsh. Formalising Trust as Computational Concepts. Ph.D Thesis, University
of Stirling, 1994

35. C. English, P. Nixon, S. Terzis, A. McGettrick and H. Lowe. Dynamic Trust
Model for Ubiquitous Computing Environment. In Proceeding of the Work-
shop on Security in Ubiquitous Computing UBICOMP 2002.

36. M. Blaze, J. Feigenbaum, and J. Lacy: “Decentralized trust management”. In
Proceedings of the 1996 IEEE Symposium on Security and Privacy, pp.164-
173, May 1996.

37. M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis: “The KeyNote
Trust Management System - Version 2”. Internet Engineering Task Force,
September 1999. RFC 2704.

http://java.sun.com/webservices/docs/1.0/tutorial/doc/RegistryServer.html
http://java.sun.com/webservices/docs/1.0/tutorial/doc/JAXR.html
http://java.sun.com/j2se/

38. Y.-H. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and M. Strauss:
"REFEREE: Trust Management for Web Applications," World Wide Web
Journal, 2 (1997), pp. 706--734.

39. Hung Q. Ngo, Anjum Shehzad, Saad Liaquat Kiani, Maria Riaz, Kim Anh
Ngoc, Sungyoung Lee, “Developing Context-Aware Ubiquitous Computing
Systems with a Unified Middleware Framework”, The 2004 International
Conference on Embedded & Ubiquitous Computing (EUC2004), Springer-
Verlag Lecture Notes in Computer Science, Japen, August 26-28 2004.

A. Josang. The right type of trust for distributed systems. In New secu-
rity paradigms workshop, Lake Arrowhead (CA, USA), pages 119–
131, September 1996.

40. S.D. Ramchurn, D. Hunyh, and N.R. Jennings. “Trust in multi-agent sys-
tems”. Knowledge Engineering Review, 19(1), 2004.

41. Mendes, S. and Huitema. A new approach to the X.509 framework: Allow-
ing a global authentication infrastructure without a global trust model. In
Proceedings of NDSS’95

42. C Ellison et al. Spki certificate theory. September 1999. Internet Request for
Comments: 2693.

43. Tie-Yan Li, Huafei Zhu, Kwok-Yan Lam: A Novel Two-Level Trust Model
for Grid. ICICS 2003: 214-225.

44. M. Carbone, M. Nielsen and V. Sassone. A Formal Model for Trust in Dy-
namic Networks. Proceedings of IEEE International Conference on Software
Engineering and Formal Methods (SEFM '03), 2003.

45. D. Huynh, N. R. Jennings, and N. R. Shadbolt. Developing an Integrated
Trust and Reputation Model for Open Multi-Agent Systems. In Proceedings
of 7th International Workshopon Trust in Agent Societies, pages 66–74,
New York, July 2004. ACM Press.

46. Jigar Patel et al. “ A Probabilistic Trust Model for Handling Inaccurate Rep-
utation Sources”. AAMAS 2005.

47. R. Ismail and A. Josang. “The Beta Reputation System”. In Proceedings of
the 15th Bled Conference on Electronic Commerce, Bled, Slovenia, 2002.

48. M. Richardson, R. Agrawal, and P. Domingos. Trust management for the
semantic web. In International Semantic Web Conference, Sanibel Island
(FL, USA), pages 351–368, October 2003.

49. S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The eigentrust algo-
rithm for reputation management in p2p networks. In International Confe-
rence on World Wide Web, Budapest (Hungary), pages 640–651, May 2003.

50. G. Theodorakopoulos and J. S. Baras. Trust evaluation in ad-hoc networks.
In ACM Workshop on Wireless security, Philadelphia (PA, USA), pages 1–
10, October 2004.

51. R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust and
distrust. In International Conference on World Wide Web, New York (NY,
USA), pages 403–412, May 2004.

52. P. Michiardi and R. Molva. CORE: a collaborative reputation mechanism to
enforce node cooperation in mobile ad-hoc networks. In IFIP Communica-

tion and Multimedia Security Conference, Portoroz (Slovenia), pages 107–
121, September 2002.

53. S. Ganeriwal and M. B. Srivastava. Reputation-based framework for high in-
tegrity sensor networks. In ACM Workshop on Security of ad-hoc and sen-
sor networks,Washington (DC, USA), pages 66–77, October 2004.

54. P. Michiardi and R. Molva. CORE: a collaborative reputation mechanism to
enforce node cooperation in mobile ad-hoc networks. In IFIP Communica-
tion and Multimedia Security Conference, Portoroz (Slovenia), pages 107–
121,September 2002.

55. ITU-T Recommendation X.509 (2000 E). Information Technology. Open
systems interconnection-The Directory: Public-key and attribute certificate
frameworks.

56. S.R. White, J.E. Hanson, I. Whalley, D.M. Chess and J.O. Kephart. An Arc-
hitectural Approach to Autonomic Computing. Proc. of 1st International
Conference on Autonomic Computing, 2004

57. K. Herrmann, G. Mühl, and K. Geihs, "Self-Management: The Solution to
Complexity or Just Another Problem?" IEEE Distributed Systems Online,
vol. 6, no. 1, 2005

58. M. Abrams, C. Phanouriou, et. al., UIML: An Appliance-Independent XML
User Interface Language, WWW8 / Computer Networks, 1999,
http://www.oasis-open.org

59. GridBlocks: Helsinki Institute of Physics, (CERN).
http://gridblocks.sourceforge.net/docs.htm

60. F. Hupfeld. "Log-Structured Storage for Efficient Weakly-Connected Repli-
cation". In Proceedings of the 24th International Conference on Distributed
Computing Systems (ICDCS) Workshops, 2004

61. Bruneo, D., Scarpa, M., Zaia, A., Puliafito, A.: Communication Paradigms
for Mobile Grid Users. Proceedings 10th IEEE International Symposium in
High-Performance Distributed Computing (2001)

62. Hwang, J., Aravamudham, P.: Middleware Services for P2P Computing in
Wireless Grid Networks. IEEE Internet Computing vol. 8, no. 4 (2004) 40-
46

63. I Foster, C Kesselman, J Nick, S Tuecke, The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration, Open
Grid Service Infrastructure WG, Global Grid Forum, June, 2002

	Executive summary
	Chapter 1: Introduction to Mobile Grid Middleware
	1.1 Overview
	1.2 Problem Definition
	1.3 Organization of the Paper

	Chapter 2: MAGi Architecture
	2.1 Architecture details

	 Chapter 3: Application Aware Adaptation
	3.1 Discovery service
	3.1.1 How does it work?

	3.2 Communication Interface with the Client Application
	3.2.1 Adaptation to disconnected operations
	3.2.1.1 Application Aware Adaptation
	3.2.1.1.1 Floating objects and their characteristics
	3.2.1.1.2 Classification of the references of objects
	3.2.1.1.3 Disconnection/Reconnection management
	3.2.1.1.5 Prototype Implementation
	3.2.1.1.6 Related Work

	Chapter 4: Knowledge Management for Autonomic Middleware
	4.1 Structure of Autonomic Components in MAGI
	4.2 Architecture of the Knowledge Management component
	4.2.1 User/Device Profile Manager
	4.2.2 Job Information Manager
	4.2.3 Representation Manager
	4.2.4 Policy Manager
	4.2.5 System Repository

	4.3 Implementation Overview
	4.3.1 Conflict Handling
	4.3.2 Priority Handling
	4.3.3 Policy Mappings
	4.3.4 Knowledge based Execution

	4.4 Related Work
	4.4.1 GridBlocks
	4.4.2 Mobile Agent based Platform
	4.4.4 Signal

	Chapter 5: Security
	5.1 Introduction
	5.2 Authentication and Privacy Service
	5.2.1 Authentication
	5.2.2 Data Confidentiality and Integrity

	5.3 Key and Data Safeguarding
	5.3.1 Background on Secret Sharing Schemes
	5.3.2 Proposed Scheme
	5.3.2.1 Secret Generation Phase
	5.3.2.2 Secret Recovery Phase

	5.3.3 Security Analysis
	5.3.4 The Key Safeguarding Protocol

	5.4 Authorization Service
	5.5 Delegation Service
	5.6 Trust Manager
	5.7 Information Privacy Manager
	5.8 Performance Comparison of the Models

	Chapter 6: Grid Resource Scheduling
	6.1 Introduction
	6.1.1 The Grid
	6.1.2 Globus
	6.1.2.1 GRAM (Globus Resource Allocation Manager)
	6.1.2.2 MDS (Metacomputing and Directory Service)

	6.2 Installing Support Software
	6.2.1 Java SDK
	6.2.2 Ant
	6.2.3 Junit
	6.2.4 C compiler
	6.2.5 YACC (or Bison)
	6.2.6 GNU Tar
	6.2.7 Jakarta Tomcat
	6.2.8 Java Database Connectivity (JDBC) compliant Database
	6.2.8.1 Installing a JDBC compliant database:

	6.2.9 Installing Globus toolkit
	6.2.9.1 Installing the Globus Toolkit 3.2 - Binary Installers

	6.3 Configuring Globus Toolkit

	Chapter 7: Related Work
	7.1 Mobile-to-Grid Middleware

	Chapter 8: Conclusion
	References

