
TRUST-BASED SECURITY
INFRASTRUCTURE FOR

UBIQUITOUS
COMPUTING SYSTEMS

by

u-Security Team1

Technical Report V.1.1

RTMM, Kyung Hee University

28 Feb. 2006

Approved by ___
Project Supervisor

__

Date : 28 Feb 2006

1 Hassan Jameel, Le Xuan Hung, Nguyen Ngoc Diep, Pho Duc Giang, Riaz Ahmed Shaikh, Sungyoung Lee,

Tran Van Phuong, Young-Koo Lee, and Yuan Weiwei,. (Note: All in alphabetical order)

Ubiquitous Computing Lab, Kyung Hee University

ABSTRACT

TRUST-BASED SECURITY
INFRASTRUCTURE FOR UBIQUITOUS

COMPUTING ENVIRONMENTS

by u-Security Team

Project Supervisor: Professor Sungyoung Lee
 Department of Computer Engineering

Ubiquitous Computing (Ubicomp) is a revolution of computing paradigm that promise to have a
profound affect on the way we interact with computers, devices, physical spaces and other people.
This new technology envisions a world where embedded processors, computers, sensors, and digital
communications are inexpensive commodities that are available everywhere. This eliminates time and
place barriers by making services available to users anytime and anywhere. Ubicomp will surround
users with a comfortable and convenient information environment that merges physical and
computational infrastructures into an integrated habitat. This habitat will feature a proliferation of
hundreds or thousands of computing devices and sensors that will provide new functionality, offer
specialized services, and boost productivity and interaction. Context-awareness will allow this habitat
to take on the responsibility of serving users, by tailoring itself to their preferences as well as
performing tasks and group activities according to the nature of the physical space. We term this
dynamic, information-rich habitat a “smart space”. Within this space, individuals may interact with
flexible applications that may follow the user, define and control the function of the space, or
collaborate with remote users and applications.

Ubicomp imposes peculiar constraints compared with other systems, for example in terms of
connectivity, computational power and energy budget, which make this case significantly different
from those contemplated by the canonical doctrine of security in distributed systems. A well-
established taxonomy subdivides computer security threats into three categories, according to
whether they threaten confidentiality, integrity or availability.

Confidentiality is the property that is violated whenever information is disclosed to unauthorized
principals. Everyone realizes that wireless networking is more vulnerable to passive eavesdropping
attacks than a solution based on cables: by construction, information is radiated to anyone within
range. It is natural to expect that the security requirements of a wireless system will include
addressing this concern.

Integrity is violated whenever information is altered in an unauthorized way. This applies both to
information within a host and to information in transit between hosts. Imagine a wireless
temperature sensor on your roof that relays its measurements to a display inside your house. If an
attacker modifies either the sensor’s firmware or the transmitted messages so that the displayed
temperature is off by 10 degrees then, if you are sufficiently gullible, you may be cheated into wearing
the wrong type of clothes for that day’s weather.

 2

Availability is the property of a system which always honors any legitimate requests by authorized
principals. It is violated when an attacker succeeds in denying service to legitimate users, typically by
using up all the available resources. As we remarked about integrity, the fact that Ubicomp implies
unattended devices opens the door to many abuses. If we envisage that these ubiquitous hosts might
accept mobile code that roams from one of them to another, then denial of service might also be
caused by malicious programs that lock up the host device

In order to fulfill such security requirements for Ubiquitous Environments, we have proposed USEC
architecture with seven major components (Entity Recognition, Trust/Risk Management, Trust-
based Access Control, Privacy Control, Intrusion Detection, and Home Firewall) along with Policy
Database and Lightweight Cryptography Library.

Entity Recognition component supports flexibly various devices such as Smart Badges, iButtons,
Smart Watchs, PDAs. This component integrates different type of authentications, ranging from
conventional authentication approaches (Username/Password, PKI, Kerberos, etc) to emerging
identity recognition technology. The Resurrecting Duckling security policy model is an example of
entity recognition; ducklings know that their mother is the first entity who sent the imprinting key
when they were born. Trust/Risk Management supports Access Control. It provides trust
collaborations and interactions which usually occur among roaming entities. By modeling trust
relationships in smart spaces environments, unknown entities from different domains can interact
and request services and resources from a given domain in secure and privacy manner. Risk evaluator
and Trust value cooperate with each other to make decision of entity interaction. Trust-based Access
Control is critical to preserve confidentiality and integrity. Conventionally, the condition of
confidentiality requires that only authorized users can read information, and the condition of integrity
requires that only authorized users can alter information and in authorized ways. In USEC, Trust-
based Access Control extends scopes of users by using Trust/Risk Management. By doing this, it
supports not only pre-registered users but also not pre-registered users. Privacy Control is integral
part in this convenience but obtrusive environment. It provides location privacy, anonymous
connections and confidentiality of information to users. USEC infrastructure also provides Home
Firewall to defend against outsider potential attackers.

 3

T a b l e o f C o n t e n t s

1 Introduction to Security for Ubiquitous Computing ... 7
1.1 Ubiquitous Computing: A Revolution of Computing Paradigm .. 7
1.2 And Its Security Problems .. 7

1.2.1 Confidentiality .. 8
1.2.2 Integrity ... 8
1.2.3 Availability .. 8

1.3 References .. 8
2 Security Challenges and Requirements ... 10

2.1 Challenges ..10
2.1.1 The Extended Computing Boundary ...10
2.1.2 Privacy Issues ...10
2.1.3 User Interaction Issues ...10
2.1.4 Security Policies ...11
2.1.5 Information Operation ...11

2.2 Security Requirements ...11
2.2.1 Transparency and unobtrusiveness ..11
2.2.2 Multilevel ..12
2.2.3 Context-Awareness ...12
2.2.4 Flexibility and customizability ...12
2.2.5 Interoperability ...12
2.2.6 Extended boundaries ..12
2.2.7 Scalability ..12

2.3 References ..12
3 Related work .. 14

3.1 SHAD – A Lightweight Security Scheme. ..14
3.2 Cerberus - A Security Architecture for Context-Aware Middleware GAIA15
3.3 SECURE-Secure Environments for Collaboration among Ubiquitous Roaming Entities 16
3.4 References ..17

4 USEC Security Infrastructure: Components and Activities 18
4.1 Motivation ...18
4.2 USEC Overview ...19

5 Hybrid Access Control ... 21
5.1 Introduction ..21
5.2 Access Control Approaches for Ubicomp Systems ..22

5.2.1 Role-Based Access Control (RBAC) ..22
5.2.2 Policy-based Access Control (PBAC) ..23
5.2.3 Context-based Access Control (CBAC) ..23
5.2.4 Trust-based Access Control (TBAC) ...24
5.2.5 Summarized Shortcomings of Existing Approaches ...25

5.3 Hybrid Access Control (HAC) Architecture ..25
5.3.1 HAC Overview ..25
5.3.2 HAC Workflow ...27

5.4 Discussion ..29
5.5 Conclusion and Future Work ...29
5.6 Reference ...29

6 Pluggable Recognition Module (PRM) ... 31
6.1 Introduction ..31
6.2 Pluggable Recognition Module (PRM) ...31

 4

6.3 References ..32
7 Trust Management ... 33

7.1 Introduction ..33
7.2 Related work ..33
7.3 Example scenario ...34
7.4 Our Trust Model ..35

7.4.1 The factors Considered in Our Trust Model ..35
7.4.2 Trust Evaluation Metric ...36

7.5 Conclusion ...36
7.6 References ..37

8 Light weight Security Framework for Sensor Networks Layer 38
8.1 Introduction ..38
8.2 Light weight Security Framework (LSF) ...39

8.2.1 Assumptions ...40
8.2.2 Rules ..40
8.2.3 LSF Packet Format ...40
8.2.4 Procedure ..41

8.3 Simulation and Performance Analysis...42
8.3.1 Performance Analysis of Communication Overhead ..43
8.3.2 Performance Analysis of Power Computation ...43
8.3.3 Performance Analysis of Memory Consumption ...43
8.3.4 Performance Analysis of Energy Consumption ...44
8.3.5 Resilience against Node Compromise ..44

8.4 Comparison of LSF with Other Security Solutions ..45
8.5 Conclusion and Future Directions ..46
8.6 References ..47

9 Intrusion Detection System ... 48
9.1 Introduction ..48
9.2 Related work ..49
9.3 Proposed architecture ..49

9.3.1 ID Agents ...50
9.3.2 IDS Server ..51

9.4 Proposed anomaly detection algorithm ..51
9.4.1 Background ..51
9.4.2 Proposed Algorithm ..52

9.5 Conclusion ...54
9.6 References ..54

10 Home Firewall ... 55
10.1 Introduction ..55
10.2 A Smart Home Scenario ..56
10.3 Proposed Methodology ...57

10.3.1 Threats to the Central Server ..57
10.3.2 Firewall Background ..58
10.3.3 Our Approach ...58

10.4 Discussions ..63
10.5 Related Works ...64
10.6 Conclusions and Future Work ...64
10.7 References ..64

11 Privacy Control ... 66
11.1 Introduction ..66
11.2 Related work ..66

 5

11.3 Description ..68
11.3.1 Mechanisms for Privacy Protection ..68
11.3.2 Guiding Principles ..68

11.4 Summary ..69
11.5 References ..70

12 Security Policy .. 71
12.1 Introduction ..71

12.1.1 Definitions ...71
12.2 Background and related work ...72

12.2.1 Security Policy Overview ..72
12.2.2 Related work ..73

12.3 Description ..76
12.3.1 Issues and challenges of security policy in ubiquitous computing76
12.3.2 Proposals ..76

12.4 Summary ..76
12.5 References ..76

 6

C h a p t e r 1

INTRODUCTION TO SECURITY FOR UBIQUITOUS COMPUTING

1 Introduction to Security for Ubiquitous Computing

1.1 Ubiquitous Computing: A Revolution of Computing Paradigm
In the year 1991, Mark Weise originally introduced the term 'Ubiquitous computing' ('Ubicomp') [1.1].
Since then, Ubicomp technology has been growing rapidly. Many researchers have spent a lot of
effort to bring this technology to reality in order to facilitate the human-life. In this chapter, we
briefly introduce Ubicomp, we point out principal security concerns that we shall facing (more on
this in next chapter), and we give some guideline that motivates us to build up our security
infrastructure.

Ubicomp is a revolution of computing paradigm that promise to have a profound affect on the way
we interact with computers, devices, physical spaces and other people. This new technology
envisions a world where embedded processors, computers, sensors, and digital communications are
inexpensive commodities that are available everywhere. This eliminates time and place barriers by
making services available to users anytime and anywhere [1.1]. Ubicomp will surround users with a
comfortable and convenient information environment that merges physical and computational
infrastructures into an integrated habitat. This habitat will feature a proliferation of hundreds or
thousands of computing devices and sensors that will provide new functionality, offer specialized
services, and boost productivity and interaction. Context-awareness will allow this habitat to take on
the responsibility of serving users, by tailoring itself to their preferences as well as performing tasks
and group activities according to the nature of the physical space. We term this dynamic,
information-rich habitat a “smart space” Within this space, individuals may interact with flexible
applications that may follow the user, define and control the function of the space, or collaborate
with remote users and applications.

Smart Spaces (Smart Home, Smart Office) have been the first targets of Ubicomp technology. A lot
of Ubicomp systems have been proposed and built up so far such as CAMUS (Context-Aware
Middleware for Ubicomp Systems) [1.2], SOCAM (Service-oriented Context-Aware Middleware)
[1.3], CASS (Context-awareness sub-structure) [1.4], CoBrA (Context Broker Architecture) [1.5],
CORTEX (Context-Aware Middleware for Pervasive and Ad Hoc Environments) [1.6], GAIA (A
Middleware Infrastructure to Enable Active Spaces) [1.7], etc. Security and Privacy are crucial and
indispensable parts of an Ubicomp system, but among these, a few takes those aspects into account.
In next section, we’ll point out some principal security problems in such smart environments.

1.2 And Its Security Problems
Ubicomp imposes peculiar constraints compared with other systems, for example in terms of
connectivity, computational power and energy budget, which make this case significantly different
from those contemplated by the canonical doctrine of security in distributed systems. A well-
established taxonomy subdivides computer security threats into three categories, according to
whether they threaten confidentiality, integrity or availability.

We briefly summarize these three fundamental security properties given the preconditions of
Ubicomp that has been mentioned in [1.8].

 7

1.2.1 Confidentiality
Confidentiality is the property that is violated whenever information is disclosed to unauthorized
principals. Everyone realizes that wireless networking is more vulnerable to passive eavesdropping
attacks than a solution based on cables: by construction, information is radiated to anyone within
range. It is natural to expect that the security requirements of a wireless system will include
addressing this concern.

1.2.2 Integrity
Integrity is violated whenever information is altered in an unauthorized way. This applies both to
information within a host and to information in transit between hosts. Imagine a wireless
temperature sensor on your roof that relays its measurements to a display inside your house. If an
attacker modifies either the sensor’s firmware or the transmitted messages so that the displayed
temperature is off by 10 degrees then, if you are sufficiently gullible, you may be cheated into wearing
the wrong type of clothes for that day’s weather. If this does not look like a terribly dramatic security
violation, imagine instead that the sensor is monitoring a patient’s temperature in a clinic or, even
better, that it is part of an alarm system for a nuclear power plant.

As happens with confidentiality, the wireless nature of communications increases the vulnerability of
the system to integrity violations: if the receiver listens to the strongest signal that “looks right”, an
attacker wishing to substitute forged messages for the original ones only needs to shout loudly
enough, without having to splice any cables. As for the integrity of hosts, as opposed to that of
messages in transit, the Ubicomp vision of unattended devices ready to communicate with whoever
comes in range clearly makes it likely that an attacker will sooner or later tamper with such
unattended devices if this can bring her any benefits.

1.2.3 Availability
Availability is the property of a system which always honors any legitimate requests by authorized
principals. It is violated when an attacker succeeds in denying service to legitimate users, typically by
using up all the available resources. As we remarked about integrity, the fact that Ubicomp implies
unattended devices opens the door to many abuses. If we envisage that these ubiquitous hosts might
accept mobile code that roams from one of them to another, then denial of service might also be
caused by malicious programs that lock up the host device.

While illustrating the three fundamental security properties of confidentiality, integrity and availability
we have repeatedly referred to “authorized principals”. It follows that a fundamental prerequisite of a
secure system is the ability to establish whether any given principal is or is not authorized to perform
the action it is requesting. To define “who is authorized to do what” is the duty of the security policy,
a concise specification of the security goals of the system. In order to ascertain whether the policy
authorizes a principal to perform an action, there is also a need for identification (finding out who
the principal claims to be) and particularly authentication (establishing the validity of this claim).
Authentication is one of the foundations of security: it is easy to come up with examples that
demonstrate that, in its absence, the three fundamental properties can be trivially violated.

1.3 References
[1.1] M. Weiser: Scientifc America. The Computer for the 21st Century. (Sept. 1991) 94-104; reprinted in IEEE

Pervasive Computing. (Jan.-Mar. 2002) 19-25.
[1.2] Hung Quoc Ngo, Anjum Shehzad, Kim Anh Pham Ngoc, Sungyoung Lee, and Manwoo Jeon, "Research Issues in

the Development of Context-aware Middleware Architectures," The 11th IEEE International Conference on
Embedded and Real-time Computing Systems and Applications (RTCSA 2005), 17-19 August 05,
HongKong, http://www.comp.hkbu.edu.hk/~rtcsa2005/

[1.3] T. Gu, H.K. Pung, and D.Q. Zhang, "A service-oriented middleware for building context-aware services," Journal
of Network and Computer Applications, Vol. 28, No. 1, 2005, pp. 1-18.

 8

http://www.comp.hkbu.edu.hk/%7Ertcsa2005/

[1.4] Patrick Fahy and Siobhán Clarke. Cass: Middleware for mobile, context aware applications. In Workshop on
Context Awareness at MobiSys 2004, June 2004.

[1.5] Chen, H.L., Finin, T., Joshi, A.: A context broker for building smart meeting rooms. In Schlenoff, C., Uschold, M.,
eds.: Proceedings of the Knowledge Representation and Ontology for Autonomous Systems Symposium, 2004
AAAI Spring Symposium, AAAI Press, Menlo Park, CA (2004) 53–60

[1.6] Thirunavukkarasu Sivaharan, Gordon S. Blair, Adrian Friday, Maomao Wu, Hector A. Duran-Limon, Paul
Okanda and Carl-Fredrik Sørensen. "Cooperating Sentient Vehicles for Next Generation Automobiles ".
ACM/USENIX MobiSys 2004 International Workshop on Applications of Mobile Embedded Systems, Boston,
USA. June 2004.

[1.7] M. Roman, C. K. Hess, R. Cerqueira, A. Ranganat, R. H. Campbell, and K. Nahrstedt. Gaia: A middleware
infrastructure to enable active spaces. IEEE Pervasive Com puting,vol.1,pp.74-82,2002, 2002..

[1.8] F. Stajano: Security for Ubiquitous Computing, John Wiley & Sons, Chichester, UK, 2002.

 9

C h a p t e r 2

SECURITY CHALLENGES AND REQUIREMENTS

2 Security Challenges and Requirements

In this section, we briefly mention about the major challenges and requirements for securing
pervasive computing environments which Roy C. et al outlined in their paper [2.1]

2.1 Challenges
As mentioned before, the additional features and the extended functionality that pervasive
computing offers make it prone to additional vulnerabilities and exposures. Below, we mention these
features that add extra burden to the security subsystem.

2.1.1 The Extended Computing Boundary
Traditional computing is confined to the virtual computing world where data and programs reside.
Current distributed computing research tends to abstract away physical locations of users and
resources. Pervasive computing, however, extends its reach beyond the computational infrastructure
and attempts to encompass the surrounding physical spaces as well. Pervasive computing
applications often exploit physical location and other context information about users and resources
to enhance the user experience. Under such scenarios, information and physical security become
interdependent. As a result, such environments become prone to more severe security threats that
can threaten people and equipment in the physical world as much as they can threaten their data and
programs in the virtual world. Therefore, traditional mechanisms that focus merely on digital security
become inadequate.

2.1.2 Privacy Issues
The physical outreach of pervasive computing makes preserving users’ privacy a much more difficult
task. Augmenting active spaces with active sensors and actuators enables the construction of more
intelligent spaces and computing capabilities that are truly omnipresent. Through various sensors and
embedded devices, active spaces can automatically be tailored to users’ preferences and can capture
and utilize context information fully. Unfortunately, this very feature could threaten the privacy of
users severely. For instance, this capability can be exploited by intruders, malicious insiders, or even
curious system administrators to track or electronically stalk particular users. The entire system now
becomes a distributed surveillance system that can capture too much information about users. In
some environments, like homes and clinics, there is usually an abundance of sensitive and personal
information that must be secured. Moreover, there are certain situations when people do not want to
be tracked.

2.1.3 User Interaction Issues
One of the main characteristics of pervasive applications is a richer user-interface for interaction
between users and the space. A variety of multimedia mechanisms are used for input and output, and
to control the physical aspects of the space. At any point of time, the set of users in the space affects
the security properties of the space. Because of the nature of these interactions, users in the space
cannot easily be prevented from seeing and hearing things happening in it, so this has to be taken
into account while designing access control mechanisms. We believe that the access control
mechanisms should allow groups of users and devices to use the space in a manner that facilitates
collaboration, while enforcing the appropriate access control policies and preventing unauthorized

 10

use. Thus the physical and “virtual” aspects of access control for such spaces have to be considered
together.

2.1.4 Security Policies
It is important in pervasive computing to have a flexible and convenient method for defining and
managing security policies in a dynamic and flexible fashion. Policy Management tools provide
administrators the ability to specify, implements, and enforces rules to exercise greater control over
the behavior of entities in their systems. Currently, most network policies are implemented by
systems administrators using tools based on scripting applications [2.2,2.3] that iterate through lists of
low-level interfaces and change values of entity-specific system variables. The policy management
software maintains an exhaustive database of corresponding device and resource interfaces. With the
proliferation of heterogeneous device-specific and vendor-specific interfaces, these tools may need to
be updated frequently to accommodate new hardware or software, and the system typically becomes
difficult to manage. As a result, general purpose low-level management tools are limited in their
functionality, and are forced to implement only generic or coarse-grained policies [2.4].

Since most policy management tools deal with these low-level interfaces, administrators may not
have a clear picture of the ramifications of their policy management actions. Dependencies among
objects can lead to unexpected side effects and undesirable behavior [2.5]. Further, the disclosure of
security policies may be a breach of security. For example, knowing whether the system is on the
lookout for an intruder could actually be a secret. Thus, unauthorized personnel should not be able
to know what the security policy might become under a certain circumstance.

2.1.5 Information Operation
There is a great deal of concern over new types of threats, namely, Information Operations (info
ops) and cyber-terrorism, which are natural consequences of the increasing importance of electronic
information and the heavy reliance on digital communication networks in most civilian and military
activities. Info ops, which can be defined as “actions taken that affect adversary information and information
systems while defending one’s own information and information systems,” [2.6] is a serious concern in today’s
networks. In such a scenario, cyber-terrorists and other techno-villains can exploit computer
networks, inject misleading information, steal electronic assets, or disrupt critical services. Pervasive
computing gives extreme leverage and adds much more capabilities to the arsenal of info warriors,
making info ops a much more severe threat.

2.2 Security Requirements
To deal with the new vulnerabilities introduced by pervasive computing, security and privacy
guarantees in pervasive computing environments should be specified and drafted early into the
design process rather than being considered as add-ons or afterthoughts. Previous efforts in
retrofitting security and anonymity into existing systems have proved to be inefficient and ineffective.
The Internet and Wi-Fi are two such examples both of which still suffer from inadequate security. In
this section, we briefly mention the important requirements needed for a security subsystem for
pervasive computing environments.

2.2.1 Transparency and unobtrusiveness
The focal point of pervasive computing is to transform users into first class entities, who no longer
need to exert much of their attention to computing machinery. Therefore, even the security
subsystem should be transparent to some level, blending into the background without distracting
users too much.

 11

2.2.2 Multilevel
When it comes to security, one size does not fit all. Hence, the security architecture deployed should
be able to provide different levels of security services based on system policy, context information,
environmental situations, temporal circumstances, available resources, etc. In some instances, this
may go against the previous point. Scenarios which require a higher-level of assurance or greater
security may require users to interact with the security subsystem explicitly by, say, authenticating
themselves using a variety of means to boost system’s confidence.

2.2.3 Context-Awareness
Often, traditional security is somewhat static and context insensitive. Pervasive computing integrates
context and situational information, transforming the computing environment into a sentient space.
The security aspects of it are no exceptions. Security services should make extensive use of context
information available. For example, access control decisions may depend on time or special
circumstances. Context data can provide valuable information for intrusion detection mechanisms.
The principal of “need to know” should be applied on temporal and situational basis. For instance,
security policies should be able to change dynamically to limit the permissions to the times or
situations when they are needed. However, viewing what the security policy might become in a
particular time or under a particular situation should not be possible. In addition, there is a need to
verify the authenticity and integrity of the context information acquired. This is sometimes necessary
in order to thwart false context information obtained from rogue or malfunctioning sensors.

2.2.4 Flexibility and customizability
The security subsystem should be flexible, adaptable, and customizable. It must be able to adapt to
environments with extreme conditions and scarce resources, yet, it is able to evolve and provide
additional functionality when more resources become available. Tools for defining and managing
policies should be as dynamic as the environment itself.

2.2.5 Interoperability
With many different security technologies surfacing and being deployed, the assumption that a
particular security mechanism will eventually prevail is flawed. For that reason, it is necessary to
support multiple security mechanisms and negotiate security requirements.

2.2.6 Extended boundaries
While traditional security was restricted to the virtual world, security now should incorporate some
aspects of the physical world, e.g. preventing intruders from accessing physical spaces. In essence,
virtual and physical security becomes interdependent.

2.2.7 Scalability
Pervasive computing environments can host hundreds or thousands of diverse devices. The security
services should be able to scale to the “dust” of mobile and embedded devices available at some
particular instance of time. In addition, the security services need to be able to support huge numbers
of users with different roles and privileges, under different situational information.

2.3 References
[2.1] Roy Campbell, Jalal Al-Muhtadi, Prasad Naldurg, Geetanjali Sampemane, M. Dennis Mickunas, “Towards

Security and Privacy for Pervasive Computing.” in Theories and Systems, Mext-NSF-JSPS International
Sympsoium, ISSS 2002, Tokyo, Japan, November 2002. pp. 1-15, G. Goos, J. Hartmanis, and J. vanLeeuwen
(editors) in Lecture Notes in Computer Science.

[2.2] J. Boyle and e. al, "The COPS Protocol." Internet Draft, Feb. 24, 1999.
[2.3] R. Mundy, D. Partain, and B. Stewart, "Introduction to SNMPv3." RFC 2570, April 1999.
[2.4] M. Stevens and e. al, "Policy Framework." IETF draft, September 1999.

 12

[2.5] P. Loscocco and S. Smalley, "Integrating Flexible Support for Security Policies into the Linux Operating
System," presented at Proceedings of the FREENIX Track of the 2001 USENIX, 2001.

[2.6] E. A. M. Luiijf, "Information Assurance and the Information Society," presented at EICAR Best Paper
Proceedings, 1999.

 13

C h a p t e r 3

RELATED WORK

3 Related work
Ubiquitous Computing seeks to move computers into the background while using them to enhance
human endeavors. Nevertheless, will society accept and totally trust the security associated with
background computational activities? Are there new security threats to person and property as a
consequence of this successor to interactive computing? Can we seamlessly leverage current/
classical security concepts and solutions to an augmented world? Ubiquitous computing security
research may still be considered a "hot topic", as there still remain some open questions. There are
many projects to address problems related to ubiquitous computing security [3.1].

3.1 SHAD – A Lightweight Security Scheme.
SHAD - a lightweight security scheme [3.2] avoids the use of centralized entities and it is designed to
be agile in a Peer-to-Peer environment. SHAD meet the following requirements:

1. Independence of centralized services or authentication servers.
2. Ease of use and the non-obtrusiveness.
3. Supporting of disconnections and delegation.
4. Minimizing of power consumption and the processing limitations of mobile devices.
5. Ease of deployment.

It is based on a personal device called PCM (Personal Command Module) – a mobile device that
represents the user in the system. It acts as both client and server as well in the system. The PCM
allows the user to control his activities and to use the pervasive elements nearby. The PCM stores
and manages the user’s secrets and it is the entity in charge of granting or refusing service requests.
Using the PCM to authenticate users, they can comply with the necessity of independence of
centralized services. Two principles can mutually authenticate and exchange tickets.

The user has not to introduce passwords or to be using authentication devices (e.g. fingerprint
reading devices) all the time, because the PCMs are able to negotiate keys without human supervision.
The PCM stores the secrets used by its owner to use resources that do not belong to him. A principal
can use a resource (that does not belong to him) when the owner is online. Later, the principal will be
able to keep using the resource although the resource owner disconnects, because the PCM may
handle disconnections by transferring session keys to devices. SHAD uses role based access control
(RBAC) policy as assigning roles to the humans. So it has several different access privileges in each
side depending on the level of trust. Because of minimizing the power consumption in mobile
devices, it uses symmetric cryptography.

SHAD is a new idea for security scheme in Peer-to-peer environment. But actually, they have some
drawbacks. SHAD needs an owner for each devices (like an administrator), so that it is not flexible
enough. We need a manual configure at the first time to response to other requests and of course we
need to reconfigure if we want to change the rights of others. If the key is disclosed, and be stolen,
then someone can use the devices without permissions. Another problem is how to use a devices if
we do not know about where is the owner, who is he?

 14

3.2 Cerberus - A Security Architecture for Context-Aware Middleware GAIA
Security Service of Gaia project comes with different approach. Cerberus [3.3], the security
architecture for Gaia, would not work for old applications not using Gaia. Approaches based on
libraries and frameworks that allow programmers to reach context information that ancient software
does not work and it has to be re-implemented. Contrary to SHAD, this is centralized approach.

This security architecture is dynamic, context-aware security architecture for Active Spaces. This
features a federated authentication system that is based on distributed, pluggable, "CORBArized"
authentication modules. This module-based service allows the separation of applications from the
actual authentication mechanisms and devices. The dynamically pluggable modules allow the
authentication subsystem to incorporate additional authentication devices and mechanisms on the fly
as they become available.

The access control system is designed to automate the creation and enforcement of access control
policies for different configurations of an active space. The system explicitly recognizes different
modes of cooperation between groups of users, and the dependence between physical and virtual
aspects of security in Active Spaces. They support both discretionary and mandatory access control
policies, and use role-based access control techniques for easy policy administration. Their model
dynamically assigns permissions to user roles based on context information. Dynamic protection
domains allow administrators and application developers the ability to customize access control
policies. The model preserves the principle of least privilege, promotes separation of duty, and
prevents rights-amplification.

The Cerberus core service of Gaia aims to capture as much context information as possible by
deploying different devices and sensors, identifying entities and reasoning automatically in order to
provide an unobtrusive computer environment. Cerberus consists of four major components: (1) the
security service, (2) the context infrastructure, (3) a knowledge base that stores various security
policies, and (4) an inference engine, which performs automated reasoning and enforces the security
policies.

One new aspect that Cerberus has comparing to other security projects is they do the authentication
associated with confidence values. This confidence value represents how confident the authentication
system is about the identity of the principal. And it is used as a parameter of the context.

Security policies in Cerberus are written as rules in first order logic. There are two kinds of policies
used in Cerberus. One set of policies is used by the authentication server at the time of logon or
authentication. These policies determine the confidence level of authentication. The other set
contains access control policies, which determine whether a principal is allowed access to a particular
resource.

The Inference Engine performs two kinds of tasks:

• It gives a level of confidence when a person authenticates himself. It makes use of the
authentication policies as well as contextual information to assign the confidence level.

• It evaluates queries from applications about whether a certain entity is allowed to access a
certain resource. It makes use of application-specific access control policies, the credential of
the entity, and contextual information to decide whether an entity has access to a resource.

The Inference Engine has access to all the authentication policies of the smart space and the access
control policies of all the components in the smart space. It can also get context information from
different context providers. It can either query various context providers or it can listen for events

 15

from context providers. It makes use of the Context Provider Lookup Service to look up various
context providers. It can also get authentication information of various people in the space from the
authentication service.

3.3 SECURE-Secure Environments for Collaboration among Ubiquitous
Roaming Entities

Another approach to secure systems in ubiquitous environment is trust-based one. SECURE (Secure
Environments for Collaboration among Ubiquitous Roaming Entities) [3.4] is a project like that.

The heart of the SECURE project is the development of a computational model of trust that will
provide the formal basis for reasoning about trust and for the deployment of verifiable security
policies. The result of the project is the development of a software framework encompassing
algorithms for trust management including algorithms to handle trust formation, trust evolution and
trust propagation.

They designed a scheme called APER which is usable to recognize peers on a network. APER
assumes that the network supports some form of “broadcast” or “multicast” messaging, for example
using IP broadcast or multicast addresses, or adopting an application layer broadcast approach.
APER has not (yet) undergone peer review for its security properties, they only indicate the
properties that they assume it to have, which is fine for current purposes since the scheme is really a
proof-of-concept for the “recognition is enough” argument.

It has three levels of recognition, any of which can be sufficient, depending on higher level policies.
Each level will have some associated parameters (e.g. the number of claims seen), which may also
impact on how the recognition is treated.

- Level 1: Claimants signature verified over a set of recently seen claims
- Level 2: Level 1 and claimants recent claims are “fresh”, based on the “last-n-hashes”

mechanism
- Level 3: Level 2 and the claimant successfully responded to a challenge

To provide adaptability to an entity's capabilities and to legacy authentication, it uses pluggable
solution so that entity recognition module into which different recognition schemes can be plugged.
The design of that pluggable recognition module (PRM) leverages from other work such as PAM.
PAM allows for the use of different legacy authentication schemes: Kerberos, smart cards, etc. In
order to get dynamic enrolments, policies - regarding which authentication scheme or combination
of authentication schemes should be used - cannot require an administrator to be effective. For
pervasive computing, the degree of auto-configuration has to be increased. To achieve this, the
appropriate recognition scheme must be negotiated, which means that alternative recognition
schemes are also possible. The negotiation will use the degree of trust needed.

At the end, it evaluates the end-to-end trust, which is the result of trust in technology and in other
entities. The formula is like this:

 End-to-end trust = (Trust in infrastructure) * (Trust in entities)

For trust in the underlying technology, it uses metrics, dynamically calculated or statically defined by
a group of experts. For trust in entities, trust would be calculated based on the human notion of trust,
probably thanks to direct observations, past history, and careful use of recommendation and
reputation.

 16

3.4 References
[3.1] Workshop on Security in Ubiquitous Computing,UBICOMP 2002, Göteborg Sweden
[3.2] Enrique Soriano Salvador, “SHAD: A Human Centered Security Architecture for Partitionable, Dynamic and

Heterogeneous Distributed Systems”, ACM 2005
[3.3] Jalal Al-Muhtadi et al, “Cerberus: A Context-Aware Security Scheme for Smart Spaces”, Proceedings of the First

IEEE International Conference on Pervasive Computing and Communications (PerCom 03)
[3.4] Jean-Marc Seigneur et al, “Entity Recognition Scheme (SECURE Project)”, 2003

 17

C h a p t e r 4

USEC SECURITY INFRASTRUCTURE: COMPONENTS AND ACTIVITIES

4 USEC Security Infrastructure: Components and Activities

4.1 Motivation
Some day in very near future, we’ll be staying in ubiquitous environments where human are
facilitated in every day life. Security is critic for these environments: users must be authenticated,
confidentiality and integrity have to be assured (mainly in wireless communications) and the access to
the resources must be controlled.

Traditional security schemes, like Kerberos [4.6] and Sesame [4.7, 4.8], are based on centralized
entities like key distribution centers and authentication authorities. Other security schemes that have
been proposed for ubiquitous environments are heavily [4.9,4.10] based on them. In most ubiquitous
schemes [4.11-4.15], it is necessary to reach centralized servers to query context and location
information too. For these systems to work principals need to be online and they must have
connectivity with the centralized server if they want to communicate. What would then happen when
two users meet at a remote isolated place? Another problem is that most of these systems are hard to
administrate because they need accounts for users that require management. Moreover, the
centralized services are unique failure points for the ubiquitous environment. Many approaches are
based on middleware. These systems have problems with existing or native applications, because in
most cases these applications have to be modified or wrapped. An example is Cerberus [4.16], the
security architecture for Gaia that would not work for old applications not using Gaia. Approaches
based on libraries and frameworks that allow programmers to reach context information have the
same problem: ancient software does not work and it has to be re-implemented. Moreover, most of
these architectures fail to work in P2P settings.

Therefore, a new architecture is needed for Ubicomp environments, because the current ones
introduce complexity, obtrusiveness and centrality. Our aim is to build up a security infrastructure in
order to fulfill such weaknesses as we mentioned earlier. This infrastructure along with our context-
aware middleware (CAMUS) will provide Secure Smart Space Environments. For the first proposed
architecture, we are dealing with six major components: Entity Recognition, Access Control,
Intrusion Detection, Trust/Risk Management, Privacy Control, and Firewall. Entity Recognition is
novel approaches of Authentication for Ubicomp. Entity Recognition and Access Control support
flexibly and variously devices and methods, such as Smart Badges, iButtons, Smart Watchs, PDAs,
integrating conventional authentication approaches (Username/Password, PKI, Kerberos, etc) and
emerging identity recognition technology. The Resurrecting Duckling security policy model is an
example of entity recognition; ducklings know that their mother is the first entity who sent the
imprinting key when they were born. Trust Management supports trust collaborations and
interactions which usually occur among roaming entities. By modeling trust relationships in smart
spaces environments, unknown entities from different domains can interact and request services and
resources from a given domain in secure and privacy manner. Besides, Privacy Control is integral part
in this convenience but obtrusive environment. It provides location privacy, anonymous connections
and confidentiality of information to users. Since smart spaces are deployed by various wire and
wireless devices and systems, it is likely to be attacked by outsider. Thus, Firewall is good solution to
defend against such threats.

 18

4.2 USEC Overview

USEC (A Trust-based Security Infrastructure) is a component-based security architecture supporting
ubiquitous computing systems. It is composed of seven security components along with Policy
Database and Cryptography Library as depicted in Fig. 4.1: Entity Recognition, Trust/Risk
Management, Hybrid Access Control, Privacy Control, Intrusion Detection, and Home Firewall.

A c c e s s C o n tro l

Pr
iv

ac
y

C
on

tro
l

En
tit

y
R

ec
og

ni
tio

n

In
tru

si
on

 D
et

ec
tio

n

Tr
us

t/R
is

k
M

an
ag

em
en

t

C ry p to g ra p h ic L ib ra ry

P o l ic ie s
(S e c u r ity , T ru s t ,

E v id e n c e , a n d P r iv a c y
p o lic y)

H
om

e
Fi

re
w

al
l

Fig 4.1 USEC Infrastructure Components

Entity Recognition is a novel authentication technology for ubiquitous computing paradigm. In
USEC architecture, Entity Recognition supports flexibly various devices such as Smart Badges,
iButtons, Smart Watchs, PDAs. This component integrates different type of authentications, ranging
from conventional authentication approaches (Username/Password, PKI, Kerberos, etc) to emerging
identity recognition technology. The Resurrecting Duckling [4.2] security policy model is an example
of entity recognition; ducklings know that their mother is the first entity who sent the imprinting key
when they were born.

Trust/Risk Management [4.1] provides trust value to the Access Control Manager. It supports trust
collaborations and interactions which usually occur among roaming entities. By modeling trust
relationships in smart spaces environments, unknown entities from different domains can interact,
request services and resources from a given domain in secure and privacy manner. Risk evaluator and
Trust value cooperate with each other to make decision of entity interaction. Hybrid Access Control
(HAC) [4.3] is the core part of USEC infrastructure. This is hybrid of Role-based (RBAC), Context-
based (CBAC) and Trust-based Access Control (TBAC) to solve different shortcomings of RBAC,
CBAC, and TBAC. HAC is critical to preserve confidentiality and integrity. Conventionally, the
condition of confidentiality requires that only authorized users can read information, and the
condition of integrity requires that only authorized users can alter information and in authorized
ways. In USEC, HAC extends scopes of users by using Trust/Risk Management. By doing this, it
supports not only predefined entities but also un-predefined entities. Privacy Control is integral part
in this convenient but obtrusive environment. It provides location privacy, anonymous connections and
confidentiality of information to users. In USEC infrastructure, we also integrate Home Firewall [4.4] to
protect smart space against potential outside attackers. Fig 4.2 shows the relationships and
interactions among these components.

Intrusion Detection System is deployed in order to defend against unauthorized access and who has
legitimate access to the system but abuse privileges. In ubiquitous environments, this usually occurs
due to ubiquity and wireless communication of the systems. In the sensor network layer, USEC
provides a lightweight cryptography mechanism in order maintain secure communication among
sensors and between sensors and context-aware systems [4.5]. Trust/Risk Management, Intrusion

 19

Detection System, Home Firewall, and Sensor Network Security are together supports Entity
Recognition.

Context-Aware
Middleware (CAMUS)

Authentication DB
(Pre-registered ID,

password, etc)

Applications

Intrusion
Detection

Access Control
Manager

Identity
Recognition

Trust Policy

Trust/Risk
Management

Security Policy

Firewall

users

Authentication
Devices

Embedded devices,
sensors, ...

Privacy
Control

C
on

te
xt

 P
riv

id
er

Fig 4.2 USEC Architecture and Its Component Interactions

In the following sections, we focus on important components but have not paid much effort by
researchers. We will discuss about its current security problems and propose efficient solutions.

 20

C h a p t e r 5

HYBRID ACCESS CONTROL

5 Hybrid Access Control

5.1 Introduction
Ubiquitous Computing (ubicomp) is a revolution of computing paradigm that promises to have a
profound affect on the way we interact with computers, devices, physical spaces and other people
[5.1]. This new technology envisions a world where embedded processors, computers, sensors, and
digital communications are inexpensive commodities that are available everywhere. This eliminates
time and place barriers by making services available to users anytime and anywhere. Ubicomp will
surround users with a comfortable and convenient information environment that merges physical
and computational infrastructures into an integrated habitat. This habitat will feature a proliferation
of hundreds or thousands of computing devices and sensors that will provide new functionalities,
offer specialized services, and boost productivity and interaction. Context-awareness will allow this
habitat to take on the responsibility of serving users, by tailoring itself to their preferences as well as
performing tasks and group activities according to the nature of the physical space.

However, the ubiquity and invisibility characteristics of ubicomp itself arises many security problems,
especially in the area of resources/services access control. There are several important issues that
needed to be addressed in access control design:

• Ubicomp environment is composed of large scale of users, mobile devices, as well as
services. Therefore, determining user’s access privilege to resources must be based on role or
group of role, instead of individuals.

• User’s context (e.g. user location, user need, etc) and system’s context (e.g. CPU usage, network
bandwidth, etc) in ubicomp environments dynamically changes over time. Authorization of
user’s access based on such contextual information is required for proper enforcement of
the required policies.

• In context aware environments users might not know what credentials needed to provide to
access a specific service. In that case, the delivery service must support some interacting
mechanism to communicate with users to acquire explicitly what kinds of credentials that the
user has to show in order to access a certain resource.

• There are hundreds to thousands of entities roaming across different domains in ubiquitous
network. These entities are usually unknown by the system that they are located in.
Traditional access control approaches purely deny every request from such entities to protect
the local systems. Therefore, access control for ubicomp environments must support all of
these situations in order to provide ubiquity for users (i.e. users can access resources and
services in anywhere at anytime).

Lots of work has been done in the area of access control so far. Most of these works have followed
four main approaches: Role-based Access Control (RBAC), Policy-based Access Control (PBAC),
Context-based Access Control (CBAC), and Trust-based Access Control (TBAC) [5.2-5.10].
However, each of these approaches itself can not fulfill security requirements of ubicomp
environments, as we point out in the next section. Therefore, we propose a Hybrid Access Control
(HAC) model to tackle the problems of these approaches while takes their major advantages. HAC
adopts contextual information as principal design of access control rules. Whenever user’s context or
system’s context changes, user access privileges will be dynamically changed. In addition, HAC

 21

applies the models of deduction and abduction to support flexible interaction with users. Trust
management is also integrated to provide services to users based on trust level.

The rest of this section is organized as follows. In the Section 2, we discuss about access control’s
state of the art, mainly focus on four approaches RBAC, PBAC, CBAC, and RBAC. We also point
out the shortcomings of these models. In Section 3, we present our access control architecture,
including its overview, workflow, and some examples in reality to explain how it works.. Section 4
discusses about our approach and its promising benefit. Finally, Section 5 concludes the paper and
outlines our future work.

5.2 Access Control Approaches for Ubicomp Systems

5.2.1 Role-Based Access Control (RBAC)
Role-based Access Control (RBAC) is a technology that is attracting a great deal of attention,
particularly for commercial applications, because of its potential for reducing the complexity and cost
of security administration in large network applications [5.11]. It is determined by premise that most
real world access control decisions are determined by a person’s position or job title within an
organization. The fundamental of RBAC is concept of role. Basically, a role is a grouping mechanism
that is used to categorize subjects (i.e. individual users) based on various properties. Another two
fundamental concepts of RBAC is object and action. An object is any resource/service in a system that
a subject can access to. An action is a serial of access to a set of one or more objects. Actions can be
as simple as reading a file in a home computer, or can be as complex as aiming and firing a missile
from a Navy destroyer. Fundamentally, a subject relates to an object through an action as illustrated
in Fig 5.1.

action objectsubject

Fig 5.1 Fundamental relationship between a subject, object, and action in RBAC

Though the core of RBAC is very simple, its policy in practice is quite complex and raises many
problems. Two major problems are separation of duty and role precedence. Separation of duty is a case in
which the set of access privileges granted by multiple role possession can cause a conflict of interest.
For instance, a student can view his academic record. What if he is also a staff of school
administrative office? With the privilege of both “student” and “administrative staff”, he can perform
some illegal actions for instance he can modify his score as his desire. Role precedence stems from
inconsistent rules between two roles that a subject posses. For example, Bob is authorized to own
“professor” and “faculty”. Supposed that professor role is authorized to access and modify data in a
computer, but faculty role is prohibited to do so. Thus conflict between “professor” and “faculty”
occurs.

So far there have been lots of works published in the area of role-based access control for difference
types of applications including traditional computer networks, mobile grids, and ubiquitous
computing systems [5.2-5.4]. Jason Reid et al [5.3] present a novel model based on RBAC to protect
privacy in distributed health care information systems. In this paper, the authors argue that RBAC
does not support policy for this application’s type with sufficient flexibility and propose a novel
adaptation of RBAC principal to address this shortcoming. The main contribution of this work is to
propose a modified RBAC in which a set of privileges held by a role can be allowed or denied to
another role without using traditional RBAC constraints concepts such as static and dynamic
separation of duty.

 22

In [5.4], Covington et al proposes a Generalized Role-Based Access Control model (GRBAC). GRBAC is
an extension of the traditional RBAC model for securing application in the highly connected home as
well as in other environments. The major benefit of this model is its combination of usability and
expressiveness. It solves the problems in RBAC approach by introducing three different kinds of
role: subject roles (e.g. ‘adult’, ‘child’), object roles (e.g. image, source code, streaming video), and
environment roles (e.g. daytime, nighttime). However, the model is not a complete security solution itself.
To be useful in real-work environment, it must be integrated carefully into a trusted computer system.
On the other hand, it proposed policy language based on logic appears to be too simplistic.

5.2.2 Policy-based Access Control (PBAC)
Policy-based network management already requires a paradigm shift in the access control mechanism
(from identity-based access control to trust management and negotiation), but this is inadequate for
across domain autonomic communications. For many services, no partner may guesses a prior what
credentials will be sent by the clients and the clients may not know a prior which credentials are
required in order to get an access privilege to a certain services. In [5.12], the authors propose a new
concept of interactive access control to tackle such problems. This paper discusses about the following
three operations for making decision and defining policies:

• Deduction: Deduction is the default process that most access control techniques employ. In
deduction, given a defined policy and a set of credentials provided by the client, it is decided
whether to grant the access. It checks if a request for access can be permitted or not.

• Abduction: In abduction, given a defined policy and a request to access some resource or
service, it is decided what minimum credentials are required so that the given request can be
allowed. This process is specifically useful in context aware environments where the client
might not know what credentials it needs to provide to access a specific service. In that case,
the delivery service will request the client to provide the missing credentials and if the clients
provide valid credentials, the request is granted, else denied.

• Induction: Induction utilizes a heuristic function along with some positive examples of
scenarios in which the request should be granted and some negative examples of scenarios
where the request should be denied. Basing on this information, the induction process tries
to identify the policy that satisfies the validity of the granted requests. The induction process
is useful in the case where a single static policy can not be defined. This is true for context
aware systems since the context changes at run-time so should the policy to incorporate the
new situation.

By utilizing these three operations, an interactive and autonomous access control mechanism can be
put in to effect. It improves the chances of service matching by allowing the client to provide missing
credentials instead of plainly denying the request [5.5]. In our hybrid access control model, we
integrate the deduction and abduction functions to increase the usability of the system. Induction is
left for future implementation due to its complexity and high overhead causing to the system.

5.2.3 Context-based Access Control (CBAC)
The underlying technology of ubiquitous computing systems is context-awareness. Access control to
ubiquitous services calls for novel solutions based on various context information e.g. user location,
device properties, user needs, local resource visibility. Context-based Access Control (CBAC) has
become well suitable for such ubiquitous computing environments since this approach adopts
context as a design principle to rule access to resources. CBAC dynamically grants and adapts
permissions to users according to current context. For instance, if the user is in the presentation
room and using the projector, then he will be allowed to use the computer as well without any
credential provision because the system recognizes him as a presenter.

 23

A. Corradi et al proposes a novel model of context-based access control, called UbiCOSM
(Ubiquitous Computing Context-based Security Middleware) [5.6]. UbiCOSM uses the context as a
foundation for security policy specification and enforcement processes. Unlike traditional access
control models, permissions are directly associated with contexts, instead of user identities/roles: any
mobile user/device acquires a set of permissions by entering a specific context. Instead of managing
subjects and their permissions individually, a system administrator defines for each context the set
applicable permissions. When a subject operates in a specific context, she instantaneously acquires
the set of permissions active for the related context. When she changes her operating context, her
previous permissions are automatically revoked and new permissions acquired.

G. Zhang et al [5.7] extends the role-based access control model to provide dynamic context-aware
access control for ubicomp systems, called DRBAC. DRBAC addresses two keys requirements that
(1) A user’s privileges must be changed when the user’s context changes and (2) A resource must
adjust its access permission when the system’s context (e.g. CPU usage, network bandwidth, memory
usage) changes. The model dynamically adjusts Role Assignments and Permission Assignments based on
context information. In this approach, each user is assigned a role subset (by the authority service)
from the entire role set. Similarly the resource has permission subsets for each role that will access
the resource. During a secure interaction, state machines are maintained by delegated access control
agents at the subject (Role State Machine) to navigate the role subset, and the object (Permission State
Machine) to navigate the permission subset for each active role. The state machine consists of state
variables (role, permission), which encode its state, and commands, which transform its state. These
state machines define the currently active role and its assigned permissions and navigate the
role/permission subsets to react to changes in the context.

Another work proposed by A. Tripathi et al [5.8] is system architecture to support ubiquitous
computing for mobile users across different environments by transparently performing context-
based discovery and binding of resources. The focus of this paper is on policies for resource access
in ubiquitous and context-aware ubicomp environments. The environment is able to proactively
discover and transparently bind the resources required by the user. And the environment is able to
negotiate the security policies specified by the user and the security polices associated with the
resources. The goals of this paper are similar to many of the current research activities in the field of
ubiquitous computing [5.13].

5.2.4 Trust-based Access Control (TBAC)
For decades, Trust Management has been well investigated by many researchers in different fields
such as computer networks, Internet, Mobile Grid, etc. However, applying trust in security for
ubiquitous computing systems just started several years ago. Few works that adopts the notion of
trust for access control mechanism has been done and the others still are in progress [5.14-5.16].
Ubiquitous computing environments lead to new security-challenges for trust collaboration between
participants because these participants usually are roaming across domains and are unknown by the
system where they are located in [5.14]. TBAC is the idea of using the human notion of trust and
community as a principal concern for assigning privileges. This means that the user can be granted
some access permissions without any credentials if he is trusted at some level by the system. The
most challenge of TBAC is how to define mathematics model of trust, how much of trust is enough
to grant certain permission. For instance, how much trust do I need in my colleague to let him
borrow my PDA?

 The SECURE (Secure Environments for Collaboration among Ubiquitous Roaming Entities) project [5.15]
investigates the design of security mechanism for ubiquitous computing based on trust. It addresses
how an entity in and unfamiliar ubicomp environment can overcome initial suspicion to provide
secure collaboration. SECURE introduces a novel model of autonomic decision-making based on
economic theory. In SECURE, the access control manager grants or denies permissions of a principal

 24

to execute an action based on trust value in the principal and the cost if the outcome occurs. An
explicit cost-benefit analysis is used to determine how much trust is required to offset the risk. While
the trust framework is to calculate a trust-value for a principal p, the access control manager looks up
the outcome costs for the action and checks any specified environmental constraints (for example,
time of day), then evaluates a series of predicates which compare trust-values to costs.

William J. Adams et al [5.16] proposes a decentralized trust-based access control for dynamic
collaboration. The goal of this research is to create a decentralized trust-based access control system
for a mobile ad-hoc collaborative environment. User permissions can be determined and assigned by
using behavior grading without the need for pre-configured, centrally managed role hierarchies or
permission sets. The system provides trust-based access control suitable for deployment in a rapidly
assembled, highly fluid, collaborative environment.

5.2.5 Summarized Shortcomings of Existing Approaches
We have introduced four main different approaches of designing access control mechanism for
ubiquitous computing environments. Each approach has its own advantages and disadvantages.
RBAC is used in large scale organization for scalability and managing complexity. However, it can
not enforce fine-grained access control in a context-aware environment where users are not
predefined and the access rights and constraints are dynamic. Though [5.4] proposed GRBAC in
order to tackled problems in RBAC, but still it does not fit well to ubiquitous environments where
subject and object are highly mobile and usually unknown to the system. CBAC is an extension of
RBAC that grants access privileges based on current context of users and the system. Though its
advantage is to provide a flexible security mechanism according to context change, a scalability
problem arises in which a vast amount of resources needed to be monitored and adjusted permission
regularly. In PBAC mechanisms, the communicating parties agree on some policy to allow access to
resources/services. The shortcoming of this approach is that policies are not dynamic and can not
accommodate the changing security requirements of a context aware system with time. TBAC seems
to be more applicable for ubiquitous environments. [5.15,5.16] are examples of applying trust in
access control mechanism. However, TBAC is not scalable and flexible for making decision if
context-awareness and interaction with users are not complemented.

Motivated by such shortcomings, we introduce Hybrid Access Control to tackle these problems
while takes advantages of each existing approach to provide a flexible and scalable access control
mechanism for ubiquitous computing environments.

5.3 Hybrid Access Control (HAC) Architecture

5.3.1 HAC Overview
Our Hybrid Access Control (HAC) model, as its name suggests, is hybrid of RBAC, CBAC, PBAC
and TBAC. By applying role, context, policy, and trust in decision-making mechanism, HAC fulfills security
requirements and solves the shortcomings of RBAC, CBAC, PBAC, and TBAC approaches.

Fig 5.2 depicts HAC model including Trust Calculator (TC), Context Provider (CP), Policy Manager (PM),
Role Manager (RM), and the core part Access Control Manager (ACM). Trust Calculator is responsible for
calculating trust value on principal P. When it receives a request from Access Control Manager
(ACM) along with principal (P) and additional parameters (params), it computes the trust value on P
(TV) based on a our trust model [5.10]. In this trust model, we use a vector of trust values composed
of four elements: Peer Recommendation (PR), Confidence level (CF), History of Past Interaction (PI), and Time-
based Evaluation (TE). The trust value of Qi on Qj (tQiQj) is computed as:

 25

() (), ,
1 , 2 ,

, 2

1

2
i j i j

i j i j

i j

Q Q Q Q
Q Q Q Q

Q Q

ii

CF TE
w PR w PI

t
w

=

+⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠=
∑

(1)

where wi is weighted values which can be adjusted to meet different security requirements of deferent
systems.

After the ACM made a decision either allow or deny the request, it sends a feedback to Trust
Calculator to update History of Past Interaction value.

Access
Control

Manager

Trust
Calculator

Context
Provider

Role Manager

Policy Manger

P, paramsTv

UC, SC

R, REQ

Cm PRp

Decision

P, REQ, Cd

Tr
us

t u
pd

at
e

P: Principal (Certificate or ID or Name)
REQ: Service Requests
Cd: Credentials that P has
params: Additional Parameters for Trust
Calculation

Tp: Trust value of P
UC, SC: User Context and System Context
Cm: Additional Credentials to grant access
rights
R: Set of role of principal P

Fig 5.2 Hybrid Access Control Model

Context Provider module provides user’s context (UC) and system’s context (SC) to ACM. User’s context
here includes location and time that the user accesses resources or uses services. This information
serves as implicit credentials which are evaluated against the activity policies to access a given
resource/service. System’s context involves system information such as CPU usage or network
bandwidth. System’s context helps in selecting policy applicable in the given situation from a policy
pool.

Policy Manager maintains system policies and service policies. System policy deals with the permission over
resource access on the system level. For example, when to generate alarms in case of emergency
situation. In a context-aware environment, we define multiple level policies and the most applicable
policy basing on current context is chosen from that pool and applicable as long as the system
context doesn’t change or an exception doesn’t occur. By selecting basing on context, we can have
dynamic policy-based access control mechanism. The most important attributes of a policy are
“Triggering Context” and “Terminating Context”. These two attributes help the system in finding the
most suitable policy for the current system context. Service policy is local policy of each service. It
defines what action can be performed on the service and who is authorized to perform them. These
policies can be static or dynamic depending on the particular service security’s requirements.
Role Manager stores client roles in hierarchical structure. Using role hierarchical structure can deal with
separation of duty and role precedence problems of traditional RBAC. Role hierarchical structure helps

 26

manage role complexity to exploit commonality among roles. For example in an university, all
professors have certain set of role “faculty” even though they belongs to different departments. Here
we classify client role into subject roles and object roles. Subject role is analogous to traditional RBAC
approach. A subject can be a user, a mobile device, or even an application which is attempting to
access services/resources. A subject can have more than one role assigned to it. For example a
person may have “student” role and “graduate office staff” role as well. Object here includes services,
resources that a subject can access to. Object role can be classified based on any classifiable
properties of object, such as object type, sensitive level, or even the context of the object. By using
object role, we can easily structure accessing policy according to the properties of resources/services.
In HAC, Role Manager maintains accessing rules by using contextual graph structure as an example
in Fig 3. In this, subjects and objects connect with each other through action, i.e. particular access
privilege that a subject can use to operate on an object. For instance, a employee can view the
working schedule only, but he can not modify it (modify here includes add, update, and delete records).
However, a foreman can view as well as modify it, plus he can view salary record and employee
resume as well.

Employee

Working
Schedule

Foreman

Manager

Salary
Record

Employee
Resume

Read-only Access Modifiable Access

subject objectaction

Fig 5.3 An example of accessing rules by using contextual graph structure.

5.3.2 HAC Workflow
Fig 5.4 depicts the workflow of HAC including three major operations: deduction, abduction, and trust
comparison. When a user sends a service request (RS) to the ACM along with his credentials (CP), the
ACM firstly perform deduction operation (step 1, written in the circle). It evaluates the service request
by using policy rules from Policy Manager and context (user context UC and system context SC) from
Context Provider, and it makes a decision whether this request is permitted or not. For instance, Bob
is in his office. The system recognizes Bob (by some authentication method) and automatically
assigns him the role “professor”. Now he sends a request to access the fax machine. There is no one
using the fax machine, i.e. system context is ok. Therefore, according to policy rules, his service
request is definitely allowed. One moment later, he leaves his office. By tracking his location, the
system knows that his context has been changed. Thus it automatically switches his role to “faculty”.
Doing this makes Bob not able to access fax machine in other professor’s offices because his role no
longer is “professor”.

 27

P, Cp, Rs

Principal P

Context
Provider

UC, SC

Pi

YES

NO

Abduction

Deduction

ALLOW

1

2

NO

3

Tv = TsTv

NO

DENY

P: Principal
UC: User context
SC: System Context
Cp: Credentials of P
Rs: Service request

Role
Manager

Policy
Manager

Cm

Acquire additional
Credentials Cm

Pi

YES

feedback

YES

4

Trust
Caculator

P, params

5

6

Pi: Policy i
Cm: minimum additional credential
Tv: calculated trust value of p
Ts: minimum trust value of service

Fig 5.4 Hybrid Access Control workflow

If the service request is not allowed due to limited privileges of his role and credentials, the system
will pass this request to abduction operation. By checking the request and system policies, the
abduction operation is performed to find the minimum additional credentials (Cm) that the user must
provide more in order to get access permission to given services/resources. This additional credential
requirement is sent to the user (step 2). If the user provides such credentials, then there is no
problem for him to access the resource (step 3). For instance, Bob now comes to the training bureau
and he wants to access to the teaching schedule in order to assign some classes to faculty members.
However, with “faculty” role, his request is not permitted. The system then explicitly asks him for
“dean”, or “dean’s secretary” credential. He sends the “dean” credential to the system. Now he is
free to modify the teaching schedule.

So far we have presented the cases wherein the user is known by the system and he can provide
sufficient credentials to the system either by implicitly or explicitly manner. However, such cases do
not cover all the circumstances in ubiquitous computing environments. Usually, the user is unknown
by the system and he is not able to provide such required credentials that the system requests. HAC
deals with this problem by supporting Trust Comparison operation. Trust Calculator computes trust
value on this principal (TV) based on recommendations of other principals, history of its interaction
with the system, and other factors as mentioned above. It then passes this value to Trust Comparison
(step 5). If the trust value exceeds the predefined trust value of given service/resource, he will be
permitted to access to that service/resource, otherwise denied. After making decision, ACM sends a
feedback to Trust Calculator to update interaction information (step 6). We give an example by
assuming that Bob now comes to his friend’s company, Alice. Since Alice is attending meeting, so he
has to wait in her office. To save time, he uses his laptop to print some documents and he also wants
to fax his report to his department. He has never registered with Alice’s office system, so obviously

 28

the system does not know Bob. Also, he can not respond any credential request from the system.
Therefore the system cannot grant him any access privilege. Bob sends a request to Alice’s PDA to
ask for a recommendation. In addition, by checking history of interaction, the system knows that
Bob used to use the printer. Gathering all this information, the system computes trust value on Bob
as TV = 0.7. We assume that the printer has assigned trust threshold Tprinter=0.6 and the fax’s is
Tfar=0.8 (i.e. only when the system trusts the principal with the trust value is not less than 0.6 (0.8), it
permits this principal to access printer (fax machine). Since Tfaxr>TV > Tprinter, Bob is allowed to use
the printer only, but not the fax machine.

5.4 Discussion
The major goal of our hybrid access control model is to tackle problems of existing approaches while
takes their advantages. Our target is to provide a flexible and scalable access control mechanism for
ubiquitous computing environments.

Controlling user’s accesses to resources based on role is the foremost important and widely used
approach. By adopting role hierarchical structure, HAC can reduce the complexity and cost of
security administration. On the other hand, role hierarchical structure helps to deal with separation of
duty and role precedence problems in RBAC. HAC also uses context as principal design to dynamically
assign and adapt permissions to users. Whenever the context changes, role of user will be changed.
By doing this, HAC provides flexible, convenient, and high secure accessing to resource. In addition,
we adopt two fundamental operations of Interactive Access Control approach, Deduction and
Abduction. Deduction and abduction operations help users specify implicit as well as explicit
credential requirements of the systems. It deals with the problems in ubiquitous computing
environments that a user usually does not know a prior what kinds of credential needed to provide so
that he can access to certain resources. In this case, he is requested by the systems for additional
credentials so that the systems can provide as many services as possible to him. Last but not least,
trust is indispensable factor that ubiquitous computing systems must take into account in architecture
design. In HAC, trust management is involved as the final operation to deal with the problems of
uncertainty between different domains (i.e. users from foreign domains are unknown to the system and
traditional security mechanism purely denies every requests from such users for securing the system).
By applying trust management in to our access control mechanism, we want to provide to unknown
users as many services as possible even though they can not show evident credentials.

5.5 Conclusion and Future Work
We have presented the Hybrid Access Control (HAC), a flexible and scalable access control model
for ubiquitous computing environments. HAC is a hybrid of Role-based Access Control, Policy-
based Access Control, Context-based Access Control, and Trust-based Access Control. The major
benefit of HAC over existing access control models is its combination of flexibility and scalability.
HAC takes into accounts most of important factors that are role, context, interactive, and trust to
provide more services and resources to users in applicable and secure manner.

Though HAC was introduced as a promising approach for ubiquitous computing environments, it is
not a complete security model itself. There are many work that we are still working on. At this stage,
we are using Prolog to define policy specification for HAC, but we will extend to RDF [5.17] in our
future work. Currently, we are developing a Trust-based Security Architecture for Context-aware
Systems (USEC) [5.18] for our CAMUS context-aware middleware [5.19]. After completing our
architecture design, we will implement HAC as a core part of USEC.

5.6 Reference

 29

[5.1] M.Weiser, “Hot Topics: Ubiquitous Computing” IEEE Computer, 1993.
[5.2] David F. Ferraiolo, D. Richard Kuhn, R. Chandramouli. Role-Based Access Control. Artech House, INC 2003
[5.3] Jason Reid, Ian Cheong, Matthew Henricksen, Jason Smith. A Novel Use of RBAC to Protect Privacy in

Distributed Health Care Information Systems. 8th Australasian Conference on Information Security and Privacy,
Australia July 9-11, 2003 (LNCS volume 2727 pp. 403-415)

[5.4] M. J. Covington, M. J. Moyer, and M. Ahamad, "Generalized Role-Based Access Control for Securing Future
Applications," 23rd National Information Systems Security Conference, 2000.

[5.5] Maria Riaz, Saad Liaquat Kiani, Sungyoung Lee, and Young-Koo Lee. Incorporating Semantics Based Search
and Policy-Based Access Control Mechanism in Context Service Delivering. IEEE Fourth Annual ACIS
International Conference on Computer and Information Science (ICIS 2005),14-16 July 05, Jeju - Korea, pp.175-
180

[5.6] A. Corradi, R. Montanari, and D. Tibaldi, “Context-based access control management in ubiquitous
environments,” Proc. Third IEEE International Symposium on Network Computing and Applications, (NCA’04),
pp.253–260, Aug. 2004.

[5.7] G. Zhang and M. Parashar. Context-aware dynamic access control for pervasive computing. In 2004
Communication Networks and Distributed Systems Modeling and Simulation Conference (CNDS'04), San Diego,
California, USA, January 2004.

[5.8] Anand Tripathi, Tanvir Ahmed, Devdatta Kulkarni, Richa Kumar, and Komal Kashiramka. Context-Based Secure
Resource Access in Pervasive Computing Environments. In Second IEEE Annual Conference on Pervasive
Computing and Communications Workshops (PERCOMW’04) 2004.

[5.9] Adams, W.J.; Davis, N.J., IV. Toward a decentralized trust-based access control system for dynamic collaboration.
The IEEE Workshop on Information Assurance and Security, NY, 2005.

[5.10] Hassan Jameel, Le Xuan Hung, Umar Kalim, Ali Sajjad, Sungyoung Lee and Young-Koo Lee. A Trust Model
for Ubiquitous Systems based on Vectors of Trust Values. 3rd International IEEE Security in Storage Workshop
San Francisco, California USA, December 13, 2005

[5.11] David F. Ferraiolo, D. Richard Kuhn, R. Chandramouli. Role-Based Access Control. Artech House, INC 2003
[5.12] Koshutanski, H., Massacci, F.: Deduction, Abduction and Induction, the Reasoning Services for Access Control

in Autonomic Communication. In: proceedings of the 1st IFIP TC6 WG6.6 International Workshop on Autonomic
Communication (WAC 2004), October 2004, Berlin, Germany. Springer, 2004

[5.13] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste. Project Aura: Toward Distraction-Free Pervasive
Computing. IEEE Pervasive computing, 1(2):22–31, April-June 2002.

[5.14] Dimmock, N.: How much is `enough'? Risk in trust-based access control. In: IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises - Enterprise Security. (2003) 281-282

[5.15] Cahill, V., et al.: Using trust for secure collaboration in uncertain environments. IEEE Pervasive Computing 2
(2003) 52-61.

[5.16] Adams, W.J.; Davis, N.J., IV. Toward a decentralized trust-based access control system for dynamic
collaboration. The IEEE Workshop on Information Assurance and Security, NY, 2005.

[5.17] Resource Description Framework (RDF), http://www.w3.org/RDF/
[5.18] Hassan J., Le Xuan Hung, N.N. Diep, P.D. Giang, Riaz A.S., SY Lee, T.V. Phuong, Y-K. Lee, and Y. Weiwei.

Trust-based Security Infrastructure for Ubiquitous Computing Environments. Technical Report, Real-time and
Multimedia Lab. Department of Computer Engineering, Kyung Hee University, Korea

[5.19] Anjum Shehzad, Hung N. Q., Kim Anh P. M. , Maria Riaz, Saad Liaquat, Sungyoung Lee, and Young Koo Lee.
Middleware Infrastructure For Context-Aware Ubiquitous Computing Systems. Technical Report. Real-time and
Multimedia Lab. Kyung Hee University, Korea.

 30

http://www.w3.org/RDF/

C h a p t e r 6

PLUGGABLE RECOGNITION MODULE

6 Pluggable Recognition Module (PRM)

6.1 Introduction
The Ubicomp paradigm foresees communicating and computational devices embedded in all parts of
our environments, from our physical selves to our home, our office, our streets and so forth. In this
new paradigm devices will need to interact, almost spontaneously, with certain other devices in an
environment that is both unknown and changing. In traditional approaches, the interaction of two
(or more) devices is secured by an authenticated key exchange, where authentication usually means
entity authentication. However, we feel that security, based on entity authentication, is likely to be
inadequate in the pervasive computing paradigm, for two principle reasons:
Names of entities will probably be unknown – a rather fundamental obstacle for entity
authentication!

Authenticating an entity (supposing that its identity can be reliably determined) is not likely to give us
much confidence about what that device will do.

6.2 Pluggable Recognition Module (PRM)
In computer security, Authentication is defined as the process by which a computer, computer
program, or another user attempts to confirm that the computer, computer program, or user from
whom the second party has received some communication is, or is not, the claimed first party. In
Ubicomp environment where there are various devices and users, the condition of authentication
requires more than that. It has to support many kinds of devices and users with different
authentication modules. On the other hand, it has to offer a balance between authentication strength
and non-intrusiveness. For example, a smart badge that transmits a short range signal is a good non-
intrusive authentication mechanism, but provides a week form of authentication. Motivated from this,
Jalal A. et al proposed a GAIA Pluggable Authentication Module (GPAM) scheme for smart spaces
[6.1]. Conventionally, PAM provides an authentication method that allows the separation of
applications from the actual authentication mechanisms and devices. Dynamically pluggable modules
allow the authentication subsystem to incorporate additional authentication mechanisms on the fly as
they become available. The GPAM extends traditional PAM by providing support for federated,
CORBA-based authentication modules. This GPAM is wrapped by an API that is made available for
ubiquitous applications, services, and other Gaia components to request authentication of entities or
inquire about authenticated principals. However, as we mentioned earlier, this approach only
supports entities which have been registered to the system. This can not deal with unknown entities
comes from other domains that always occurs in ubiquitous environment.

We extend GPAM by providing a Pluggable Recognition Module to resolve this weakness. PRM can
incorporate with conventional authentication schemes such as Digital Signature,
Username/Password, Kerberos, etc or advanced entity recognition schemes such as Resurrecting
Duckling, µTESLA, ZCK, etc. Our PRM architecture is depicted by Fig 6.1.

 31

Fig 6.1 Pluggable Recognition Module

6.3 References
[6.1] Jalal Al-Muhtadi, Anand Ranganathan, Roy Campbell, and M. Dennis Mickunas. Cerberus: A Context-Aware

Security Scheme for Smart Spaces. In IEEE International Conference on Pervasive Computing and Communications
(PerCom 2003), Dallas-Fort Worth, Texas, March 23-26, 2003

 32

C h a p t e r 7

TRUST MANAGEMENT

7 Trust Management

7.1 Introduction
Ubiquitous computing premises a massive network world supporting diverse but cooperating mobile
entities where autonomous operation is necessary due to lack of central control. Due to the highly
dynamic and unpredictable of ubiquitous computing environments, there are several problems in the
ubiquitous security. First, traditional authentication and access control are only effective if the system
knows in advance which user is going to access and what their access rights are. Secondly, security
information in different domains is subject to inconsistent interpretations in such an open,
distributed environment. Thirdly, portable handheld and embedded devices have severely limited
resources.

Based on the above security challenges, computational models of trust have been proposed for use in
ubiquitous environments to decide whether to provide service to the service requestor. Trust is the
belief or willingness to believe an entity based on its competence (e.g. goodness, strength, ability) and
behavior within a specific context at a given time. It is an area of study in which people with various
backgrounds have tried to base their own views on their own circumstances and backgrounds. It is
subjective and situation specific. Also trust in one environment does not transfer to another
environment. So we need a method to measure trust. Translation of this subjective concept into a
language understood by computing entities is the main objective needed to be solved. At the same
time, when we evaluate the trust, prior probability is obviously very important that should be
involved.

7.2 Related work
Since mid ’90s the research community has outlined the key role of trust management models to

develop more complex and dependable computer systems. From this, the importance of trust model
was first highlighted by Blaze et al in their seminal paper [7.1]. Subsequently, Josang [7.2] presented
an interesting classification of trust relationships and its implication to traditional security concepts.
Until now, several trust models have been proposed in the literature for different distributed systems
[7.3]. For the Grid scenario, X.509 [7.4] and SPKI [7.5] seem adequate which propose a central
Certificate Authority (CA) based trust model. However, there are a number of issues related to
proxy/delegation certificates that are serious drawbacks of these models. A two-level trust model for
Grid based on graph topology was proposed in [7.6]. They use different trust evaluation metrics for
centralized grid domains and distributed Virtual Organizations (VO). A peer recommended trust
model was proposed in [7.7] for ubiquitous computing systems. Their trust management scheme
through recommendation lacks certain aspects such as the weighted recommendation of peers based
on their prior interactions.

In [7.2], a decentralized trust and reputation model for multi agent systems has been proposed
whereas a probabilistic trust model is proposed in [7.8] for mobile agents. Both these models lack a
fundamental requirement, i.e., very old recommendations should not be relevant in predicting the
behavior of an entity. Another probabilistic trust model called the Beta Reputation System (BRS)
[7.9] works by giving ratings about other users in the system. All these trust models can be generally
categorized into probabilistic models and others in which the trust evaluation formulae are tuned to

 33

give the desired result. In the fields of Ubiquitous Computing, research has paid much attention to
build autonomous trust management as fundamental building block to design the future security
framework. Up to now, research has focused mainly on the propagation and composition of trust
information [7.10, 7.11, 7.12, 7.13] while paying less attention to how direct trust information is
actually built. Though focused on distributed trust computation, [7.14, 7.15] face the problem of
building trust from past experience. Michiardi et al [7.16] proposed an organic reputation-based
framework to enforce collaboration in ad-hoc networks. Peer reputation is built by evaluating a mix
of directly collected information, undirected feedback, and eventually multiple interaction classes.

7.3 Example scenario

Alice Linda Bob Jack

Local

 Fig 7.1 example scenario

One of the example scenarios which can use the trust model mentioned in this paper is as follows:

As showed in figure 7.1, consider in a Smart Office Building, everyday there are lots of people
working in the building or drop by for business. Many services are available in this building, e.g. using
the copy machine, scanner, telephone to make local call and phone to make international call.

Different user has different rights to use different services, e.g. Alice, the desk clerk, can use the copy
machine and scanner. Linda, the secretary, can use the copy machine, scanner and telephone to make
local call. Besides these services, Bob, a manager, can also use phone with international service. As
showed in Figure 1 with real lines.

If Linda want to use the international telephone to dispose some urgent situation, since she doesn’t
have the right to use this, she must have recommendation form the users who know her and have
used the service before or have the right to use that, like Bob. As showed in figure 1 with dash line.
One of the possible results is that her request is accepted and manages to use the international phone
call service.

Jack, a business man drops by and never use any of the facilities in this building before, wants to use
some service, then he should have the recommendation from the reliable entities in this environment.
E.g. he uses the scanner with the recommendation from Alice and Linda, who know him. But if Jack

 34

wants to use the international phone call service to dispose some personal issues, he asks Linda, who
is also his private friends, to give him recommendation. Even though, Linda has successful used this
service before and she strongly recommend Jack, Jack’s request to use this service will be rejected, as
showed in Fig 7.1 using double dash line. But if Jack has the same recommendation from same
person, Linda, to use the local phone service, he will probably success.

Also, if the local phone itself has very unsuccessful communication with Alice before, even though
Alice is recommended as trustable by Linda and Bob, the request will probably be rejected. At the
same time, if Linda’s communication to Alice just took place yesterday. But Bob’s was 4 month
before. Of course in this case Linda's recommendation will be more useful.

Furthermore the devices in the building are not fixed since the highly dynamic of the ubiquitous
environment. Suppose Jack knows 10 people in this building, but 7 of them are not in the building
because of business, so the service provider should use the limited information only from 3 people’s
devices to make a decision as accurate as possible.

7.4 Our Trust Model

7.4.1 The factors Considered in Our Trust Model
Whenever two principals want to interact, they should be able to evaluate the amount of trust on
each other using some evaluation metric. This metric should include the recommendations of other
principals that had past experiences with these principals; the more the experiences, the higher the
weight of these recommendations. Moreover older experiences should have less impact on this
evaluation. Finally the interacting principals’ past experiences with each other should obviously have
a say in this evaluation. These metrics are precisely developed in the following sections.

7.4.1.1 Peer Recommendation

We assume each principal in the system has its own unique identity. Suppose n is the total number of
principals in the system. Each principle has a trust value for any other principal it interacted with
before. Let Q1;Q2;…;Qn denote the principals in the system. In this section we will model and
formulate how to calculate the trust value of a principal requesting some action by asking the
principal’s reputation from other principals in the system. The other principals might lie and give a
false recommendation for some mutual benefit. We will suppose a very reasonable assumption that
principals with high trust values will not send false recommendations.

This peer recommendation can be used to calculate how much trust the two principals can put upon
each other. The peer recommendation will be higher if the peers have more trust on the principals
and vice versa. Thus gives a good idea about the reputation of the two principals. Notice that this
value is the same for both the interacting principals. The peer recommendation involves a dot
product of vector elements, one of which is the trust that the principal Qi has on the other one and
the second one is the trust that the other principal has on Qj Thus if Qi has a low trust value for that
principal, then its recommendation will be highly minimized. Consequently, based on our assumption,
a principal who gives a false recommendation about Qj will not get any advantage as it will have a
low trust value.

7.4.1.2 Confidence
Intuitively, the peer recommendation value calculated above should have a higher weight if the
number of peers common to both the interacting principals is higher. Likewise principals with more
interactions with a particular principal should have a higher say in recommendation. This introduces
the notion of confidence over the peer recommendation value. The confidence level should be a

 35

maximum if the number of common peers and the number of individual interactions of these peers
are greater than a threshold value.

7.4.1.3 History of Past Interactions
An important factor in deciding this confidence is the history of the past interactions. Two
interacting principals should keep in mind their past experiences when calculating the trust value. We
can generically define successful and unsuccessful interactions between two principals based on their
past behaviors, where an unsuccessful interaction means that the principal has betrayed the trust
bestowed upon it. The nature of an interaction might reflect more than just a successful and
unsuccessful interaction. For example, a principal might behave totally contrary to the expectations
whereas another one might diverge to a lesser extent. However, as this transition is really
cumbersome to model and might differ from every principal’s perspective, we restrict ourselves to
the two outcomes; successful and unsuccessful. Furthermore, the outcome of an interaction might be
different in the view of the two principals. What one conceives as a success, the other might regard
as a failure.

7.4.1.4 Time based evaluation
Intuitively, very old experiences of peers should have less weight in peer recommendation over new
ones. In other words, peer recommendations older than a threshold time interval should have less
weight over the others. We can put this desired property in our evaluation model if every principal
keeps a time stamp with its latest interaction with every other principal.

7.4.2 Trust Evaluation Metric
Based on the aforementioned metrics, we are now ready to describe our trust evaluation metric. The
trust metric is defined as a weighted arithmetic mean of PR, CF, TE, and PI.(peer recommendation,
confidence, time based value and past interaction history) More precisely, the trust between two
principals Qi and Qj who want to interact can be calculated as:

, ,
1 , 2 ,

, 2

1

()() (
2

i j i j

i j i j

i j

Q Q Q Q
Q Q Q Q

Q Q
it

CF TE
w PR w PI

t
w

=

)
+

+
=

∑

where if N∈ and they can be adjusted to a suitable value if more weight is to be given to a specific
metric. For example, past interactions evaluation should be given more importance over the others.
The PR value is weighted over CF and TE.

7.5 Conclusion
This model for trust is based on the vectors of trust values of different entities in ubiquitous

computing. Distinguished from previous trust model, our trust model takes uncertainty of trust into
account with a precise computation model. Besides basic factors of trust computation such as peer
reputation, confidence, and history of past interaction. We additionally include time based evaluation
factor to calculate trust value and efficiently handle false recommendations. The calculation of the
trust depends upon the recommendation of peer entities common to the entities which are weighted
according to the number of past interactions and the time of last interaction. The model can calculate
trust between two entities in situations both in which there is past experience among the interacting
entities and in which the two entities are communicating for the first time. Several tuning parameters
are suggested which can be adjusted to meet the security requirement of a distributed system. This
highly secure system can adjust these parameters such that entities with high reputation and
recommendation are allowed to perform requested actions.

 36

7.6 References
[7.1] J. Blaze, M. Feigenbaum. Decentralized trust management. In Proceedings of the 1996 IEEE Symposium on

Security and Privacy, pages 164–173, 1996.
[7.2] A. Josang. The right type of trust for distributed systems. In New security paradigms workshop, pages 119–131,

1996. [11] M. Kamvar, S.D. Schlosser. The eigentrust algorithm for reputation management in p2p networks. In
WWW’03: Proceedings of the 12th international conference on World Wide Web, pages 640–651. ACM Press,
2003.

[7.3] N. Huynh, T.D. Jennings. Developing an integrated trust and reputation model for open multi-agent systems. In
AAMAS- 04 Workshop on Trust in Agent Societies, 2004.

[7.4] S. Mendes. A new approach to the x.509 framework: Allowing a global authentication infrastructure without a
global trust model. In Proceedings of NDSS 95, 1995.

[7.5] C. Ellison. Spki certificate theory. Internet Request for Comments: 2693, 1999.
[7.6] H. Li, T.Y. Zhu. A novel two-level trust model for grid. In ICICS, pages 214–225, 2003.
[7.7] M. Carbone. A formal model for trust in dynamic networks. In International Conference on Software Engineering

and Formal Methods (SEFM’03). IEEE, 2003.
[7.8] N. Patel, J. Jennings. A probabilistic trust model for handling inaccurate reputation sources. In iTrust, pages 193–

209, 2005.
[7.9] R. Ismail. The beta reputation system. In Proceedings of the 15th Bled Conference on Electronic Commerce, 2002.
[7.10] R. Matthew, R. Agrawal. Trust management for the semantic web, 2003.
[7.11] S. Hung, N. Q. Kiani. Developing context-aware ubiquitous computing systems with a unified middleware

framework. In 2004 International Conference on Embedded and Ubiquitous Computing. Springer Verlag, 2004.
[7.12] J. Theodorakopoulos, G. Baras. Trust evaluation in ad-hoc networks. In WiSe ’04: Proceedings of the 2004

ACM workshop on Wireless security, pages 1–10. ACM Press, 2004.
[7.13] R. Guha, R. Kumar. Propagation of trust and distrust. In WWW’04: Proceedings of the 13th international

conference on World Wide Web, pages 403–412. ACM Press, 2004.
[7.14] R. Michiardi, P. Molva. Core: a collaborative reputation mechanism to enforce node cooperation in mobile ad

hoc networks. In Proceedings of the IFIP TC6/TC11 Sixth Joint Working Conference on Communications and
Multimedia Security, pages 107–121. Kluwer, B.V., 2002.

[7.15] S. Ganeriwal and M. B. Srivastava. Reputation-based framework for high integrity sensor networks. In
SASN ’04: Proceedings of the 2nd ACM workshop on Security of ad hoc and sensor networks, pages 66–77. ACM
Press, 2004.

 37

C h a p t e r 8

Light weight Security Framework for Sensor Networks Layer

8 Light weight Security Framework for Sensor Networks Layer

8.1 Introduction
Wireless networks are relatively more vulnerable to attacks than wired networks due to the broadcast
nature of communication [8.1]. Wireless sensor networks which usually consist of a large number of
small size sensor nodes deployed in the observed environment. Sensor nodes have smaller memory
(8K of total memory and disk space) and limited computation power (8-bit, 4 MHz CPU) [8.2]. They
usually communicate with a powerful base station which connects sensor nodes with external
networks. The limited energy in senor nodes creates hindrances in implementing complex security
schemes. There are two major factors of energy consumption

1. Transmission and reception of data
2. Processing of query request.

In order to implement security mechanism in sensor networks, we need to ensure that
communication overhead is less and consumes less computation power. With these constraints it is
impractical to use traditional security algorithms and mechanism that are built for powerful
workstations.

Sensor networks are vulnerable to a variety of security threats such as DoS, Eavesdropping, Message
injection, Message replay, message modification, malicious code, side channel analysis, etc. In order
to secure sensor networks against these attacks, we need to implement message confidentiality,
authentication, message integrity, non-repudiation, and intrusion detection, etc. Encrypting
communication between sensor nodes can partly solve some of the problems but it requires a robust
key exchange and distribution scheme.

In general, there are three types of key management schemes [8.2, 8.3]: Trusted Server scheme, self
enforcing scheme and key-predistribution scheme. Trusted server schemes relies on a trusted base
station, that is responsible for establishing the key agreement between two communicating nodes as
described in [8.4]. It uses symmetric key cryptography for data encryption. The main advantages of
this scheme are, it is memory efficient, nodes only need to store single secret key and it is resilient to
node capture. But the drawback of this scheme is that it is energy expensive, it requires extra routing
overhead in the sense that each node need to communicate with base station several times [8.3]. Self
enforcing schemes use public key cryptography for communication between sensor nodes. This
scheme is perfectly resilient against node capture and it is fully scalable and memory efficient. But the
problem with the traditional public keys cryptography schemes such as DSA [8.5] or RSA [8.6]
requires complex and intensive computations which is not possible to perform by sensor node
having limited computation power. Some researchers [8.7,8.8] uses Elliptic curve cryptography as an
alternative to traditional public key systems but still not perfect for sensor networks. Third scheme is
key pre-distribution scheme that is based on symmetric key cryptography, in which limited numbers
of keys are stored on each sensor node prior to their deployment. This scheme is easy to implement
and does not introduce any additional routing overhead for key exchange. The degree of resiliency of
node capture is dependent on the pre-distribution scheme [8.3].

 38

Quite recently some security solutions have been proposed in [8.9-8.13] especially for wireless sensor
networks but each suffers from various limitations such as higher memory and power consumptions
that are discussed in detail in section 4.

Keeping all these factors in mind we have proposed a security framework- LSF - for wireless sensor
networks. LSF combines the features of trusted server scheme and Self Enforcing security schemes.
Our main contribution is the designing and implementation of LSF that provides

• Authentication and Authorization of sensor node.
• Simple Secure key exchange scheme.
• Confidentiality of data.
• Secure defense mechanism against anomalies and intrusions.
• Usage of both symmetric and asymmetric schemes.

The rest of this section is organized as follows. Section 2 describes the details of LSF. Section 3
presents the simulation results and evaluation of LSF. Section 4 presents the comparison of LSF with
other security solutions. Section 5 contains conclusion and future directions.

8.2 Light weight Security Framework (LSF)
The basic objective of LSF is to provide light weight security solution for wireless sensor networks in
which all nodes can communicate with each other. LSF can support both static and mobile
environment, which may contain single and multiple Base Stations (BS). Basic system architecture is
shown in Fig. 8.1. LSF uses both symmetric and asymmetric schemes for providing secure
communication in wireless sensor networks.

BS KM
Az

KMMAz

IDS TGM

Sensor
Field

Sensor
Nodes

Fig 8.1 LSF System Architecture

Key Management Module (KMM) is used to store public and shared secret key of each node with BS
to the database. Token Generator Module (TGM) is used to generate the tokens for the requesters,
which will be further used by the other communicating party for the authentication of requester node.
Authorization Module (AzM) is used to check whether particular node is allowed to communicate
with other node or group. Light weight mobile agents will only be installed on Cluster heads which
sends alerts messages to intrusion detection system (IDS), which is responsible for detecting any
anomaly or intrusion in the network. Basic assumptions and rules of LSF are given below.

 39

8.2.1 Assumptions
1. Base Station (BS) is the trusted party and it will never be compromised. Compromising the

Base station can cause the entire sensor network to be useless and it is the only point from
where sensor node can communicate with external networks.

2. Only Base Station (BS) knows the Public keys (Pk) of all the sensor nodes in the network.
Communicating nodes will know each others public key during the time of connection
establishment.

8.2.2 Rules

• Asymmetric scheme will only be used for sharing ephemeral secret key between
communicating nodes.

• For every session new random secret key will be used.
• Data will be encrypted by using symmetric schemes because these schemes are considered to

be execute 3-4 times faster than asymmetric schemes [8.14].

8.2.3 LSF Packet Format
LSF packet format is shown in Fig 8.2. Currently LSF uses seven types of packets, ‘Request’,
‘Response’, ‘Init’, ‘Ack’, ‘Data’, ‘Update Group Key’ and ‘Alert’ packet. All six packets are
distinguished by ‘type’ field in the LSF packet. IDsrc field contain the id of sending node and last
encrypted portion contain the information depending upon the type of packet, as shown in table 1.

The distribution of bits to different fields (as shown in Fig 8.2), introduces some upper limits, such as,
size of source address is of 2 bytes, it means our LSF is only works in the environment where sensor
nodes are not more than 218. Length of Nonce (unique random number) field is of 3 bytes, so LSF
can maximum allow 224 connections at a time. The length of public key and private key is of exactly
128 bits and the length of secret key is of exactly 64 bits. Only stream cipher encryption algorithms
are allowed to use because of a fixed length size of packets. MAC is of 64 bits.

Table 8.1 LSF: Type field

Type IDsrc Encrypted Portion

Request Any
(sensor node) EK A-BS (Intended-IDdest , N)

Response BS EKA-BS (R-type, Intended-IDdest , N , Pk, token |
R)

Init Any
(sensor node) EKB+(N, Pk, token)

Ack Any
(sensor node) EKA+(N,sk)

Data Any
(sensor node) EKsk (data)

UpdateGroupKey Any CH sensor node EKG (GroupID, new Key), MAC
Alert Any CH sensor node EKCH-BS (Alert-type), MAC

EKA-BS = Encrypt with the secret key shared between node A and BS
EKA+ = Encrypt with the public key of node A
EKB+ = Encrypt with the public key of node B
EKsk = Encrypt with the shared secret key
EKG = Encrypt with group key
EKCH-BS = Encrypt with the secret key shared between Cluster head and BS

 40

R-type = Response type (positive or negative response)
R = Reason of negative acknowledgement
Intended-IDdest = ID of Intended Destination
Pk = public key IDsrc = ID of source node
N = Nonce (Unique Random Number) MAC = Message Authentication Code
CH = Cluster Head

Encrypted PacketSrc Type

Fig 8.2(a): LTSS Packet Format

3 bytes2 bytes 2 bytes 4

Fig 8.2(b): Request Packet

1 bit 4 bytes16 bytes3 bytes2 bytes2 bytes 4

Fig 8.2(c): Response Packet

2 bytes 3 bytes 16 bytes 4 bytes4

Fig 8.2(d): Init Packet

8 bytes3 bytes 2 bytes 4

Fig 8.2(e): Ack Packet

30 bytes 2 bytes 4

Fig 8.2(f): Data Packet

8 bytes8 bytes8 bytes 2 bytes 4

Fig 8.2(g): Update Group Key Packet

8 bytes8 bytes 2 bytes 4

Fig 8.2(h): Alert Packet

Fig 8.2 LSF Packet Format

8.2.4 Procedure
LSF works in three phases, authentication and authorization phase, key distribution phase and Data
transmission phase. Authentication and authorization is performed during the exchange of “Request”
and “Response” packet by using symmetric scheme. Key distribution phase involves sharing of
random secret key in a secure manner by using asymmetric scheme. In this phase “INIT” and
“ACK” packets will be exchanged. Data transmission phase involves transmission of data packet in
an encrypted manner.

Let’s suppose node A wants to communicate with the node B. It will first send request packet to
Base station, in order to get token and public key of node B. The request packet is encrypted with the
secret key shared between node A and BS. BS first checks in the database via AzM that either node A
has rights to establish connection with node B. If yes it generates the token which will be further
used by the node B for the authentication of node A. That token is encrypted with secret key shared
between node B and BS, so that node A will not able to decrypt token. BS will sent back a response
packet that contains token, public key of node B and Nonce (Unique Random Number) that was
present in request packet. Nonce will ensure node A that packet came from genuine BS. When node

 41

A gets the positive response from BS it sent the INIT packet to node B that contains Nonce, its own
public key and token generated by BS. The whole INIT packet is encrypted with the public key of
node B. When node B gets INIT packet it first check token, if it is correct it will generate the secret
key and sent it back to node A in an encrypted manner. When node A gets ACK packet, it deletes
the public key of node B from its memory and sent data to node B by using new session secret key.
When data transmission complete both nodes delete that session key. For group communication,
each node uses the group secret key for data transmission in a secure manner. Cluster head will
update this key after periodic interval.

8.3 Simulation and Performance Analysis
We have tested our LSF protocol on Sensor Network Simulator and Emulator (SENSE) [8.15]. In
sensor node we introduce the middleware between application layer and network layer as shown in
Fig 8.3.

Fig 8.3 Sensor Node Architecture

That middleware uses LSF for the enforcement of security in the sensor network. At application
layer we use constant bit rate component (CBR) that generate constant traffic during simulation
between two communicating sensor nodes. For the demonstration and performance evaluation of
LSF, we run CBR with and with out LSF. We randomly deployed 100 sensor nodes plus one Base
station (BS) in 1000 by 1000 terrain. Basic simulation parameters which we use are given in table 2.

Table 8.2 Simulation Parameters

Terrain 1000x1000
Total Number of Nodes 101 (including BS)
Initial battery of each sensor node 1x106J
Power consumption for transmission 1.6W
Power consumption for reception 1.2 W

Position_out to Channel from Channel Data In

Application

Middleware

Network

FIFO Queue

802.11 MAC

PhysicalPower Manager

Battery

Mobility

LSF

Sensor

 42

Idle power consumption 1.15W
Carrier sense threshold 3.652e-10W
Receive power threshold 1.559e-11W
Frequency 9.14e8
Transmitting & Receiving antenna gain 1.0

8.3.1 Performance Analysis of Communication Overhead
In our simulation scenario, application sent data packets of size 30 bytes in a periodic interval. The
overall communication overhead of LSF for one to one communication is decreases with the
increase in transfer of number of data packets as shown in Fig 8.4. Communication Overhead
(C0 %) is calculated as

Where as ‘Nc’ is the
total number of

connections. 1

n
P

i
i

N
=
∑

is
the total number of packets transferred by all connections.

1

* 74.125(%) () *100
* 30

n
P

i
i

N cC O
N

=

=

∑

Communication Overhead of LTSS
(Data Packet Size = 30 bytes)

0

5

10

15

20

25

30

10 20 30 40 50 60 70 80 90 100

Number of Data Packets Transfer

C
om

m
un

ic
at
io
n
O
ve

rh
ea

d(
%
)

Fig 8.4 Communication Overhead (%) of LSF

8.3.2 Performance Analysis of Power Computation
Power Computation primarily depends upon the symmetric and asymmetric scheme applied. If we
assume that computation power required for symmetric encryption and decryption scheme is CSE
and CSD respectively and computation power of asymmetric encryption and decryption scheme are
CAE and CAD respectively. Then the total power consumption required by single node during first
two phases is

Power Computation = (CSE + CSD) + (CAE + CAD)

Computation power required by a single node during data transmission phase is calculate as,

Power Computation= (TNSP*CSE) + (TNRP*CSD)

Where TNSP is the Total Number of Sent data packets and TNRP is the Total Number of received
data packets.

8.3.3 Performance Analysis of Memory Consumption
Every sensor node needs to store only six keys, three of them are permanent and three are
ephemerals. Permanent keys are public and private keys of its own and public key of BS. Ephemerals

 43

keys are Group key, public key of other node and session secret key. In order to save these keys only
72 bytes are needed. Details are given in table 3. This approach will make sensor network memory
efficient.

Table 8.3 Storage Requirement of Keys

S/No Keys Size (in bytes)
Permanent Keys

1 Public key of node 16
2 Private key of node 16
3 shared secret key b/w Node & BS 8

Ephemeral Keys
4 Group Key 8
5 Public key of other node 16
6 Session key 8
Total Storage size Required 72 bytes

8.3.4 Performance Analysis of Energy Consumption
The main cause of energy consumption in sensor node is dependent on transmission and reception
cost. We have used the SENSE that consumed energy in four different modes: TRANSMIT,
RECIEVE, IDLE, and SLEEP. Energy consumption rate of each mode is given in Table 8.2. For
each connection, LSF per connection exchange four control packets of cumulative size 74.125 bytes
that requires for authentication, authorization and key exchange mechanism. That is an acceptable
tradeoff between energy and security. Simulation result of energy consumption is shown in Fig 8.5.

Initial Energy 1x106 J

1003.35
1003.37
1003.39
1003.41
1003.43
1003.45
1003.47
1003.49
1003.51
1003.53

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99
Nodes

En
er

gy
 C

on
su

m
ed

 (J
)

Normal LSF

Fig 8.5 Energy Consumptions

8.3.5 Resilience against Node Compromise
Single node compromised will not expose the whole communication in the network. Only those
communication links will expose that are established with compromised node. Let’s suppose ‘Ncn’ is
the set of nodes that establish connections and ‘Ncp’ is the set of compromised nodes. Then Ncn ∩
Ncp will give us the set of nodes that are compromised as well as connected. Then the maximum
number of connections that can be exposed only if all compromised nodes connected to
uncompromised nodes. On the other hand minimum numbers of links that can be exposed only if all
compromised nodes are connected with each other.

:M a x N c n N c pI

 44

2:
1

()
2

N c n N c p
fo r e v e n

M i n
N c n N c p

fo r o d d

⎛ ⎞
⎜ ⎟
⎜ ⎟⎯ ⎯→
⎜ ⎟
⎜ ⎟

+⎜ ⎟
⎜ ⎟⎯ ⎯→⎜ ⎟
⎝ ⎠

I

I

If we assume that sensor networks consists of 1000 nodes and total 500 connections established
between pair of nodes then the total links that can be minimum and maximum compromised is
shown in Fig 8.8.

N=1000 Connections = 500

0

20

40

60

80

100

50 150 200 250 300 350 400 450 500

Compromised Nodes

N
um

be
r
of

 C
om

pr
om

is
ed

Li

nk
s

(%
)

Min Max

Figure 8.6 Percentages of Compromised Links

8.4 Comparison of LSF with Other Security Solutions

Table 8.4 Comparison of LSF with other security solutions

 SPINS TinySec LiSP LSF
Memory Requirement with
respect to storage of keys 3 Depended on

KMS2 ≥ 8 6

Transm
ission

Cost
During key
exchange
(bytes)

-- Depended on
KMS 12.6*TNN3 74.125*TNC4

During Data
Transmission 20% 10% > 20% 8.33%

Public Key Cryptography
Support No No No Yes

Symmetric key cryptography
Support Yes Yes Yes Yes

Intrusion Detection
mechanism No No Yes Yes

Authentication support Yes Yes Yes Yes

Authorization support No No Yes Yes

2 KMS: Key Management scheme
3 TNN: Total Number of Nodes
4 TNC: Total Number of Connections

 45

Data Integrity support Yes Yes Yes No

Confidentiality support Yes Yes Yes Yes

Availability support No No Yes No

Quite recently some security solutions have been proposed in [8.9, 8.10, 8.12] specially for wireless
sensor network but each suffers from various limitations. Adrain Perrig et. al [8.9] have proposed
security protocols suite called SPINS for wireless sensor networks. SPINS consist of two building
blocks SNEP and uTESLA. SNEP provides data confidentiality, two party data authentication and
data freshness where as uTESLA provides authenticated broadcast for severally resource constraint
environment. For data confidentiality they use symmetric encryption mechanism in which secret key
called master key is shared between sensor node and base station. SNEP uses one time encryption
key that produces from the unique master key. SNEP uses MAC function for two party
authentications and checking data integrity. SPINS is based on binary security model means either it
provides maximum security or no security. There are number of drawbacks associated with SPINS
such as, it can only work in non-anonymous environment in which all nodes have some unique id.
Because of the usage of source routing scheme in SPINS they are making the network vulnerable to
traffic analysis [8.16]. It does not address security in the Physical layer therefore they are unable to
provide defense mechanism against physical layer attacks such as jamming etc [8.11].

Chris Karlof et. al [8.10] have proposed TinySec architecture for wireless sensor networks. TinySec is
a link layer security protocol that provides authentication, integrity and confidentiality by adding less
than 10% of energy, latency and bandwidth overhead. TinySec does not provide access control and
non-repudiation. It also does not provide protection against physical layer attacks. The major
drawback of this solution is that it is tightly coupled with Berkeley TinyOS and can not be use for
general sensor network model [8.17]. Like SPINs it can only work in non-anonymous environment in
which all nodes have some unique id.

Taejoon Park and Kang G. Shin [8.12] have proposed Light weight Security protocol (LiSP) that’s
makes a tradeoff between security and energy consumption through efficient re-keying mechanism.
LiSP achieves authentication, confidentiality, data integrity, access control and availability. Another
important feature of LiSP architecture is the ability to detection intrusions. By using LiSP each node
need to save eight keys.

General Comparison of all above discussed schemes with LSF is given in Table 8.4. We have
compared from the perspective of memory requirement, transmission cost, and some other basic
security parameters such as authentication, authorization, confidentiality etc.

8.5 Conclusion and Future Directions
We have proposed Light weight security framework (LSF) for wireless sensor networks, which
provides authentication and authorization of sensor node. It also provides simple secure key
exchange scheme, as well as confidentiality of data. LSF is highly scalable and memory efficient. It
uses 6 keys, which takes only 72 bytes memory storage. It introduces 74.125 bytes of transmission
and reception cost per connection. It also provides simple secure defense mechanism against
compromised nodes. In future we try to solve the issue related to the neighboring nodes of the BS,
that were suffered from higher communication overhead by forwarding request and response packets
during authentication and authorization phase.

 46

8.6 References
[8.1] C. Karlof and D. Wagner, “Secure Routing in Wireless Sensor Networks: Attacks and Countermeasures”,

Proceedings of the First IEEE International Workshop on Sensor Network Protocols and Applications (WSNA’03),
May 2003, pp. 113- 127

[8.2] Wenliang Du, Jing Deng, Han, Y.S., Shigang Chen, Varshney P.K, “A key management scheme for wireless
sensor networks using deployment knowledge”, proceeding of INFOCOM 2004, Mar 2004

[8.3] Lydia Ray, “Active Security Mechanisms for Wireless Sensor Networks and Energy optimization for passive
security Routing”, PhD Dissertation, Dep of Computer Science, Louisiana State University, Aug 2005

[8.4] J. Kohl and B. Clifford Neuman, “The Kerberos Network Authentication Service (v5)”, RFC 1510, Sep 1993
[8.5] W. Diffie and M.E. Hellman, “New Directions in Cryptography”, IEEE Transaction on Information Theory, vol.

22, Nov 1976, pp. 644-654.
[8.6] R. L. Rivest, A. Shamir, L.M. Adleman, “A method for obtaining Digital Signatures and Public key

cryptosystem”, Communication of ACM, vol. 21(2), 1978, pp. 120-126
[8.7] Erik-Oliver Blaß and Martina Zitterbart, “Towards Acceptable Public-Key Encryption in Sensor Networks”, 2nd

International Workshop on Ubiquitous Computing, ACM SIGMIS, May 2005
[8.8] John Paul Walters, Zhengqiang Liang, Weisong Shi, and Vipin Chaudhary, “Wireless sensor network security: A

Survey”, Technical Report MIST-TR-2005-007, July, 2005
[8.9] A. Perrig, R. Szewczyk, V. Wen, D. Culler and J. D. Tygar, “SPINS: Security protocols for sensor networks”,

proceedings of 7th annual international conference on Mobile computing and networking, Rome, Italy, Aug 2001,
pp 188-189

[8.10] Chris Karlof, Naveen Sastry, and David Wagner, “TinySec: a link layer security architecture for wireless sensor
networks”, Proceedings of the 2nd international conference on Embedded networked sensor systems, Baltimore,
MD, USA, Nov 2004, pp 162-175

[8.11] K. Jones, A.Wadaa, S. Oladu, L. W|son, and M. Etoweissy, “Towards a new paradigm for securing wireless
sensor networks”, Proceedings of the 2003 workshop on New security paradigms, Ascona, Switzerland, Aug 2003,
pp 115 - 121

[8.12] Taejoon Park, and Kang G. Shin, “LiSP: A Lightweight Security Protocol for Wireless Sensor Networks’ ACM
Transactions on Embedded Computing Systems, Vol. 3, No. 3, Aug 2004, pp. 634–660

[8.13] Sencun Zhu, Sanjeev Setia, and Sushil Jajodia, “LEAP: Efficient Security Mechanism for Large-Scale
Distributed Sensor Networks”, Proceedings of the 10th ACM conference on Computer and communications security,
Washington, USA, 2003, pp. 62-72

[8.14] Elaine Shi and Adrian Perrig, “Designing Secure Sensor Networks”, IEEE Wireless Communications, Dec
2004, pp. 38-43

[8.15] Sensor Network Simulator and Emulator (SENSE) http://www.cs.rpi.edu/~cheng3/sense/
[8.16] Jeffery Undercoffer, Sasikanth Avancha, Anupam Joshi, and John Pinkston, “Security for Sensor Networks”,

Proceeding of 2002 CADIP Research Symposium, Baltimore, MD, Oct 2002.
[8.17] Adrain Perrig, John Stankovic, and David Wagner, “Security in wireless sensor networks”, communications of

ACM, vol 47(6), Jun 2004, pp. 53-57

 47

C h a p t e r 9

INTRUSION DETECTION SYSTEM

9 Intrusion Detection System

9.1 Introduction
Intrusion detection (ID) is defined as “the problem of identifying individuals who are using a
computer system without authorization and those who have legitimate access to the system but are
abusing their privileges”. The intrusion detection field has grown considerably in the last few years,
and a large number of intrusion detection systems have been developed to address different needs.
Intrusion detection is clearly more necessary in ubiquitous networks where other secure systems such
as firewall are not applicable. In this Smart Spaces scenario, we focus on designing an IDS
architecture for sensor network side.

Wireless sensor networks (WSNs) constitute a new paradigm of ambient monitoring with many
potential applications. Typically formed by thousand of nodes of small dimension, they use ad-hoc
communication and have scarce resources regarding energy, bandwidth, processing capacity and
storage.

WSNs are typically designed to gather data in inhospitable places and might be involved in critical
applications. Wealth environment mapping and enemy’s movement monitoring in a battlefield are
some examples of critical applications they are used for. In these applications, WSNs are of interest
to adversaries. WSNs are susceptible to some types of attacks since they are deployed in open and
unprotected environments and are constituted of cheap small devices. Preventive mechanisms can be
applied to protect WSNs against some types of attacks. However, there are some attacks for which
there is no known prevention method, such as wormhole. Moreover, there are no guarantees that the
preventive methods will be able to hold the intruders. For these cases, it is necessary to use some
mechanism of intrusion detection. Besides preventing the intruder from causing damages to the
network, the intrusion detection system (IDS) can acquire information related to the attack
techniques, helping in the development of prevention systems.

Intrusion detection poses many challenges to WSNs, mainly due to the lack of resources. Besides,
methods developed to be used in traditional networks cannot be applied directly to WSNs, since they
demand resources not available in sensor networks. WSNs are typically application-oriented, which
means they are designed to have very specific characteristics according to the target application. The
intrusion detection assumes that the normal system behavior is different from the behavior of a
system under attack. The several possible WSN configurations make difficult the definition of the
“usual” or “expected” system behavior. Since common nodes are designed to be cheap and small,
they do not have enough hardware resources. Thus, the available memory may not be sufficient to
create a detection log file. Moreover, a sensor node is designed to be disposed after being used by the
application and it makes difficult to recover a log file due to the possible dangerous environment in
which the network was deployed. The software stored in the node must be designed to save as much
energy as possible in order to extend the network lifetime. Finally, another challenge to the design of
an IDS is the frequent failures of sensor nodes when compared to processing entities found in wired
networks. Given all these characteristics, it is important to detect the intrusions in real time. In this
way, we could hold the intruder and minimize the application damages.

 48

9.2 Related work
Lots of work has been done in the field of intrusion detection for Wireless Ad-hoc networks. In [9.1],
they pointed out the challenges of intrusion detection and proposed the first distributed and
cooperative architecture to suite the needs of mobile ad-hoc networks. In that architecture, every
node is installed an IDS agent which is responsible for detecting signs of intrusion locally and
independently. However, IDS agents in neighboring nodes can collaboratively participate in global
intrusion detection actions. In [9.2], architectures using clustering were first proposed to reduce the
number of monitoring nodes. The protocol for securing clusters was presented in [9.3] where every
node has equal chance to be elected as a cluster head. Here, abnormal detection & identifying attack
type based on statistics of packets. Clustering technique was also used in [9.4] to organize and
maintain a dynamic hierarchy of intrusion detection components. The advantages of a hierarchy is
“its potential scalability to large networks, since it can provide rapid and communication-efficient
detection for local cooperative attack recognition, while still allowing data sharing for more widely-
distributed cooperative intrusion detection algorithms.” The hierarchy is dynamic because it always is
reconstructed to adapt to the flexibility of mobile ad-hoc networks. Mobile agents were mentioned in
[9.5, 9.6] to solve problems of memory limit and intermitted connection in ad-hoc networks.

However, all above techniques can not be applied directly to intrusion detection in Wireless Sensor
Networks because of their some crucial characteristics. The Decentralized Intrusion Detection
System [9.7] has some nodes installed intrusion detection agent (called monitoring nodes). These
nodes were selected to cover all the networks. Each intrusion detection agent uses some simple rules
to detect anomaly behavior. However, this architecture lacks of cooperation between monitoring
nodes. An algorithm to detect anomalies based on packets’ receive power was discussed in [9.8]
where a packet is considered anomaly if its receive power is below the min or above the max of a
certain value. “The New Intrusion Prevention & Detection Approaches” presented in [9.9] can
reduce monitoring time & reduce energy but it is only used for Clustering-based Sensor Network.

In summary, these intrusion detection architectures proposed above did not work well & had high
rate of false alarm due to the limit in computation, memory and energy of sensor nodes.

9.3 Proposed architecture
Our proposed architecture takes full advantage of the secure & powerful server in Smart Space
scenario. It includes two parts: ID server and ID agents. Most of the intrusion detection processing is
done in the server side to reduce processing amount in the client side. ID agents are installed in every
sensor nodes to collect data and detect anomaly behaviors.

 49

Fig 9.1 Intrusion Detection Architecture

9.3.1 ID Agents
Because sensor networks lack of central point to collect data so there is no doubt that every intrusion
detection architecture must install detection agents on many nodes in order to cover the entire
network. The important thing is how agents should do to save energy & other resources of the host
nodes, however, still guarantee the security for the host nodes & all network.

ID agent is responsible for monitoring the host node & its neighbors for anomaly behaviors. Because
of limited resources of sensor nodes, ID agent must be as lightweight as possible. In our architecture,
agents use some simple rules to detect intrusion.

IDS Central
Processing

IDS
agent

IDS
agent

Network of Sensors

IDS
agent

IDS
agent

IDS
agent

IDS
agent

Application Routing

Data
Acquisition

Anomaly
Detection

Data collector

Promiscious
listenning

Normal
listenning

Sent to IDS
server

Server

Fig 9.2 IDS agent architecture

Data Acquisition

 50

In this phase, messages are listened to in promiscuous mode by the monitor mode and the important
information is filtered and stored for subsequent analysis. Important information includes message
fields that might be useful to the rule application phase. Thus, we use less memory and less
processing time, saving energy. Messages to which no rules can be applied are not stored.

Data extracted from the messages are stored in an array data structure and discarded after a given
period of time or when there is no space left in memory.

Anomaly Detection:
This module detects anomaly behavior in neighboring nodes based on statistical data of packets
received by promiscuous listening. This module supplements Rule Application module.

Data Collector Module:
This module is in charge of collecting & sending necessary data to the IDS server for father
processing. However, in the sake of saving resource, this module is active only when the IDS agent
detects something abnormal in the network. IDS agents rarely go to the final decision of intrusion
detection. This is in charge of IDS server.

9.3.2 IDS Server
IDS server is the central processing in this architecture. IDS server will collect all data from necessary
sensor nodes, aggregating & making the final intrusion decision. IDS server can use both signature
based and anomaly detection technique.

9.4 Proposed anomaly detection algorithm

9.4.1 Background

9.4.1.1 Anomaly Attack Detection

All of the intrusion detection techniques are classified into one of two methodologies: misused
detection or anomaly detection. Misused detection techniques, sometimes referred to as signature-
based detection techniques, look for behavior that matches a known attack scenario by analyzing the
information in the network, comparing it to a large database of known attacks (signatures). Any new
attack which is not in the database can not be detected so the database must be kept up to date,
which is not easy to do in sensor networks. Anomaly detection techniques look for behavior that
deviates from normal system activities. These techniques do not require knowledge of know attacks
and can detect new types of intrusion which is considered more suitable for sensor networks.

The key question in anomaly detection techniques is how to distinguish anomalies from normal.
Which factors of behavior used to know whether one behavior is normal or not is the most
important thing in an anomaly detection system. Some systems use the distribution of commands
that users used in their session, some use statistics about system calls … Generally, it depends on
characteristics and common types of attacks against each systems.

9.4.1.2 Attacks on sensor networks

In order to construct an anomaly detection algorithm in sensor networks, it is necessary to analyze
some of the most common attacks in sensor networks including: wormhole, black hole, HELLO
flood attack, Jamming … Most of them focus on vulnerabilities of routing protocols.

 51

• Wormholes: By some ways, an adversary creates communication links between some pairs of
compromised sensor nodes. This may attract more sensor nodes to send their traffic via
these links. After that, the adversary can eavesdrop, alters or simply drops these packets.

• Black holes: a black hole is formed when a node tries to advertise a zero-cost route to all
other nodes in the network. As a result, more sensors will send traffic through this zero-cost
route and will be unsuccessful.

• HELLO flood attack: an adversary broadcasts HELLO packets with large enough
transmission power to lure other sensor nodes that the adversary is their neighbor.

• Exhaustion: a sacrificed node keeps transmitting packets to another node to exhaust the
target’s battery power.

To realize the anomaly characteristics of these attacks, we divide them into two major categories: (1)
attracting other nodes to send their traffic to a compromised node and (2) exhausting a node’s
resources by sending many packets to the target. It is straightforward to see that attacks in each
category makes the network traffic deviated from that in normal condition in different ways. If the
network is under attacks in the first category, traffic to some nodes (compromised nodes) will be
suddenly increased and attacks in the third category is realized by the increasing amount of outgoing
traffic related to one node. Therefore, we can detect attacks in sensor networks by monitoring these
anomalies. They are the changing in (1) the number of incoming packets to a node and (2) the
number of outgoing packets from a node.

9.4.2 Proposed Algorithm
 A lot of techniques have been done for anomaly detection such as: neural network, audit data
analysis and mining, statistical models … Each of them has their own pros and cons. Here, we used a
widely-used anomaly detection algorithm, Cumulative Sum (CUSUM). CUSUM is suitable to deploy
in sensor network because it is a strong, light-weight and less memory consuming statistical model.

9.4.2.1 CUSUM algorithm

CUSUM is one of some change point detection algorithms used widely to detect the change of mean
value of a random sequence (see [9.11, 9.12] for good survey). In brief, CUSUM detect changes
based on the cumulative effect of the changes made in the random sequence instead of using a single
threshold to check every variable. To detect abrupt changes in a random sequence {Xn}, CUSUM
requires a parametric model for {Xn} which it not easy in some cases. Thus, a new approach called
non-parametric CUSUM proposed by Wang [9.13] is used more popular especially in attack detection.
Assume that {Xn} has a negative mean in normal condition and become large positive in anomaly
operation, we set:

y0 = 0
yn = (yn-1 + Xn)+

 (n ≥ 1)
where

(x)+ = x : x > 0
= 0 : otherwise

yn can be canculated in another way:

yn = Sn – min Sk,

Sk =
1

k

i
i

x
=
∑

In normal operation, the mean of {Xn} is negative so yn ~ 0. In anommaly condition, Xn will
become positive. {yn} will accumulate with time. A large {yn} is a strong indication of abrupt changes.
In attack detection, we set dn(yn) be the decision function. dn() can be defined as:

 52

dn(yn) = 0 if yn ≤ N
= 1 if yn > N

(N is the threshold of the attack detection)
We can describle the CuSum algorithm in brief as following:

CuSum := 0
n := 0
Repeat
 n := n + 1
 CuSum := CuSum + Xn
 If CuSum > ThresHold then
 Signal attack indication
Until Finished
where n is the nth sampling period

The algorithm is straightforward. The most important thing is how to model {Xn}. In next parts, we
will discuss the way to model {Xn} to detect abrupt changes in the number of incoming packets, the
number of collision packets and the number of outgoing packets from a node.

9.4.2.2 Detecting changes in the number of incoming packets

Let { , n = 0, 1, …} be the number of incoming packets to the monitored node collected within one

sampling period. However, { } depends on the size of sampling period and the density of the monitored

node’s vicinity. To normalize, we simply define Zn =

nΔ
nΔ

nΔ / F where F is the average number of incoming

packets to the monitoring node in a sampling period. F can be calculate recursively as following:

F (n) = α F (n-1) + (1 - α) INC(n)
where INC(n) is the number of incoming packets to the monitoring node in the nth sampling period. α is a
constant lying between 0 and 1 indicating the memory in the estimation.
Thus, the mean of {Zn} is close to 1 in normal condition. To satisfy the assumption (2), we transform {Zn} to
another random sequence without loss of any statistical feature.

Xn = Zn - β

where β is a constant parameter depending on the network condition to produce {Xn} with a negative mean.

In general, β is selected to be larger than the mean of {Zn} during normal conditions.
So, we can apply nonparametric CUSUM with a random sequence {Xn} to detect changes in the number of
incoming packets to the monitored node.

9.4.2.3 Detecting changes in the number of outgoing packets

Similarly, let { , n = 0, 1, …} be the number of outgoing packets to the monitored node collected
within one sampling period. We define Zn =

nΔ
F / nΔ where F is the avarage number of outgoing

packets to the monitoring node in a sampling period.
F (n) = α F (n-1) + (1 - α) OUT(n)

where OUT(n) is the number of incoming packets to the monitoring node in the nth sampling period.
α is a constant lying between 0 and 1.
Thus, the mean of {Zn} is close to 1 in normal condition & become larger under attack. To satisfy
the assumption (2), we set

Xn = Zn - β

 53

β is selected to be larger than the mean of {Zn} during normal conditions.

Algorithm 2 summarizes our algorithm described above.

all CuSum = 0
n = 0
repeat
 n = n + 1

for each neighbor i do
 CuSum(inc i) : = (CuSum(inc i) + Xn(inc i))+

 CuSum(out i) : = (CuSum(out i) + Xn(out i))+

if any CuSum > Its Threshold then
 Signal attack indication
end for

until Finished

where n is the nth sampling period. inc i means the number of incoming packets of ith neighbor. out i
means the number of outgoing packets of ith neighbor. Collision means the number of collision
packets of the monitor node.

9.5 Conclusion
Our architecture is decentralized because IDS agents are installed on every node of the network. In some
certain cases, this is considered redundant & resource-consuming. However, in order to save resources, we
can install agents on certain sensor nodes so that these nodes can still cover all the network. The key point
in our architecture is the cooporative intrusion detection performed by the IDS server. Because the server is
very powerful so this architecture will both reduce the resource needed in sensor end and increase the
effectiveness of the IDS system.

9.6 References
[9.1] Zhang Y, Lee W & Huang Y: “Intrusion Detection Techniques for Mobile Wireless Networks”, ACM Wireless

Networks, 9, 2003
[9.2] Oleg Kachirski and Ratan Guha. “Effective Intrusion Detection Using Multiple Sensors in Wireless Ad Hoc

Networks.” IEEE HICSS in Hawaii, Jan. pp57 (2003)
[9.3] Yi-an Huang, Wenke Lee A Cooperative Intrusion Detection System for Ad Hoc Networks, ACM Workshop on

Security of Ad Hoc and Sensor Networks (SASN '03) October 31, 2003 George W. Johnson Center at George
Mason University, Fairfax, VA, USA

[9.4] Daniel F. Sterne, Poornima Balasubramanyam, David Carman, Brett Wilson, Rajesh Talpade, Calvin
Ko, Ravindra Balupari, Chin-Yang Tseng, Thomas F. Bowen, Karl N. Levitt, Jeff Rowe: A General Cooperative
Intrusion Detection Architecture for MANETs. IWIA 2005: 57-70

[9.5] P. Kannadiga, M. Zulkernine, and S. Ahamed, Towards an Intrusion Detection System for Pervasive Computing
Environments, Proc. of the International Conference on Information Technology (ITCC), pp. 277-282, IEEE CS
Press, Las Vegas, Nevada, USA, April 2005

[9.6] Guy Helmer , Johnny S. K. Wong , Vasant G. Honavar , Les Miller , Yanxin Wang, Lightweight agents for
intrusion detection, Journal of Systems and Software, v.67 n.2, p.109-122, 15 August 2003

[9.7]A. P. R. Da-Silva, M. H.T Martins, B. Rocha,A. Loureiro, L. Ruiz, and H. C. Wong
University of Bel-Horizon, Brasil, Decentralized Intrusion Detection in Wireless Sensor Networks

[9.8] An Intrusion Detection System for Wireless Sensor Networks, Proceedings of the 1st ACM international
workshop on Quality of service & security in wireless and mobile networks

[9.9] Mong-Fong Horng, Ko-Ming Chang, Chien-Chung Su and Yau-Hwang Kuo, “The New Intrusion Prevention and
Detection Approaches for Clustering-based Sensor Networks,” accepted by IEEE Wireless and Communications
and Networking Conference, New Orleans, Mar. 2005

 54

http://www.ccs.neu.edu/home/papers/ad-hoc/p135-huang.pdf
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Sterne:Daniel_F=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/b/Balasubramanyam:Poornima.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/c/Carman:David.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/w/Wilson:Brett.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/t/Talpade:Rajesh.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/b/Balupari:Ravindra.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/t/Tseng:Chin=Yang.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/b/Bowen:Thomas_F=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/l/Levitt:Karl_N=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/r/Rowe:Jeff.html
http://www.informatik.uni-trier.de/~ley/db/conf/iwia/iwia2005.html#SterneBCWTKBTBLR05

C h a p t e r 1 0

HOME FIREWALL

10 Home Firewall

10.1 Introduction
The vision of ubiquitous computing, with devices seamlessly integrated into the life of everyday users,
and services readily available to users anywhere all the time [10.1,10.2] is becoming now a reality. A
ubiquitous computing environment consists of a various range of hardware (user devices, sensors
etc), applications and services which can predict the demand of users and act on their behalf
proactively. These gadgets enable the seamless integration of computing resources and physical
spaces, and surround users with a convenient, information-rich atmosphere that we refer to as a
smart space [10.3].

However, ubiquitous computing increases more concerns related to security and privacy. The
emergence of smart spaces computing to physical environments causes the information and physical
security issues become interdependent. In addition, it is the dynamism and mobility absolutely
necessary for smart spaces that can yield extra chances for attackers to exploit vulnerabilities in the
system invisibly. Therefore, designing a sufficient and suitable security perimeter mechanism for
home and office smart spaces becomes an urgent demand.

Many of related research activities [10.3-10.5] have been focused on how to efficiently protect
networks and data from attackers, and even more study is still in progress. Numerous methods
related to secure communication, authentication, and authorization issues are being presented
[10.6,10.7,10.8]. Also, quite much research work has been dedicated to firewall and its connected
applications [10.9-10.12].

However, these efforts have focused on the area of fixed wire networks and just few of them on the
area of wireless ones. And at the time of this writing, to our knowledge, there has been no published
work on applying firewall technology to smart spaces.

The freedom of mobile and pervasive users to wirelessly and invisibly connect to their home systems
from anywhere, at any time raises complicated security risks. The communication between the users
and the environment, and the transaction inside the environment itself are more easily intercepted;
malicious software is more easily installed into the systems; and the space is more susceptible to
attacks. This enforces additional requirements on security factors. Researchers must find techniques
to reduce the security risks as much as possible from every aspect of the smart medium. Firewall
technology is a logical approach that can help them accomplish this troublesome task.

Generally, a firewall is a hardware or software barrier placed between the network of concern and the
rest of the world to prevent unwanted and damaging intrusions of the network [10.13]. Unfortunately,
due to the pervasiveness and context-awareness characteristics of the smart space, conventional
firewall is not suitable for this environment. In traditional network systems, this kind of firewall only
has to deal with normal TCP/IP packets and can place at the network gateway to trace the abnormal
signatures. However, in ubiquitous computing environments, the firewall not only has to encounter
with ordinary TCP/IP packets but also faces with context-aware packets and other command packets
in/out the service servers. Alternatively, it is not easy to put the firewall at the gateway to control the
whole space since various types of networks, such as wireless networks, wireless sensor networks,
and fixed wire networks, are deployed in the smart medium. Therefore, how and where can the

 55

common firewall efficiently examine context-aware or control packets that are in improper condition
or modified by the attackers to deny them?

In this paper, we introduce a new concept of context-aware host-based firewall called Home Firewall.
A concrete scheme is also presented. The suggested solution combines with other security methods
to protect the central service server deploying our current context-aware middleware, namely
CAMUS [10.14]. In the CAMUS project, we present the design and approach to a middleware
solution that expedites context-awareness in a ubiquitous computing environment. CAMUS
envisions a comprehensive middleware solution that not only focuses on providing context
composition at the software level by masking the inherent heterogeneity of environment sensors.
The CAMUS core architecture consists of the core services that make up the smart spaces. We
believe that security and context awareness are two necessary core services for any ubiquitous
environment.

The remaining paper is organized as follows. In Section 2, we describe a smart home scenario as an
example of our security model. In Section 3, we present the proposed method. Section 4 provides
the discussions. Section 5 describes the related work. Finally, in Section 6, conclusion and future
work are given.

10.2 A Smart Home Scenario
In order to elaborate the functional aspects of the model proposed in the next section, we consider
the following scenario.

Firstly, we assume that a morning routine of one user consist of doing his personal hygiene, listening
(or reading) to his related news, having breakfast, and leaving for office on his car. All these things
can be automatically and timely done in a smart home by a central service server running context-
aware applications or services. When he wakes up, windows drapes open, lights in rooms turn on/off
according to his location, coffee pot heats up coffee. His PDA can well-timed inform him about his
important events such as the stock condition, daily rate exchange information, etc. Before leaving
home, the surveillance camera and alarm system automatically start controlling and detecting events
of interest (e.g., thieves actions, enemy vehicles, house fires.)

Now, we consider the infrastructure model supporting the smart space (the smart home, smart office,
etc, described in Fig 10.1) in which it has one machine playing the role as a central server and variants
of clients. The house is equipped with a number of different useful sensors including location,
temperature, light, humidity sensors in the rooms. For instance, the camera and alarm system placed
on the ceiling of living room or to the suitably unobtrusive places is used to supervise the user’s
condition and state. The sensors and camera system are assumed to connect to the central server
deploying a context-aware middleware, like CAMUS, through a base station to control the user
behaviors.

Mobile and wireless devices (PDAs, Laptops, Mobile phones, etc) are supposed to wirelessly connect
to a Wi-Fi network through a Wireless Access Point (Wireless Gateway) in order to query or manage
information supplied by the server.

Applications or services performing on the server on the servers requires a user’s electronic profile to
control the behavior of these devices, such as issuing control commands to start up his PDA to
query proper data, close the front-door, and turn on the surveillance camera and alarm system when
he left, to make the space become a smart environment.

 56

Machine
Monitoring

Wireless
Sensor

Human Monitoring
(Surveillance Camera

& Alert Systems)

Light
Monitoring

Vehicle
Monitoring

Wireless Data Collection
Networks

BST BSC (Base Station
Controller)

Central Server
(deploying Context-aware

Middleware)

Wireless (Wi-Fi 802.11g 2.4GHz,
BlueTooth, IrDA, CDMA,

Cellular Network)

`

Fixed Wire Network
(Ethernet LAN, Optical)

Cellular
Phone

PDA

Laptop PC PC PCLaptop

BST (Base Station
Transmitter)

Fig 10.1 An example for a smart home infrastructure

10.3 Proposed Methodology
As mentioned above, ubiquitous computing environments raise a great number of security issues.
Two main causes of these matters are exchange of information and mobility. Ubiquitous information
is transmitted invisibly and wirelessly, so it can more easily intercepted than in other spaces. The
problem gets worse when users and their devices permit to be mobile. We can take a visual example
by supposing that the user in the scenario noted earlier joins his laptop into an unprotected network
already infected with viruses, worms, or Trojan horses at his office, his laptop is then infected with
the kind of plague. Later, he brings the laptop into his home network, a protected environment, and
connecting to the central server through the Wireless Gateway. In this case, packets from his laptop
are sent to the servers without any verification and they are thus free to corrupt the entire system.
In this section, we focus on the security problems, discuss some firewall basic knowledge, and
present our solution in a concrete way.

10.3.1 Threats to the Central Server

Before any security policies can be implemented, we identify the security holes in the smart
environment being protected. Obviously, the main server is one of the most difficult-to-secure
systems in the space. This central system has the highest risk of becoming infected viruses, worms or
Trojan horses, and other client-born threats that take advantage of out-of-date or improperly

 57

configured security software. Once being compromised, it loses productivity and put its personal and
corporate information, and the smart space itself at risk.

One of the most severe security threats to the server coming from wireless sensor networks is base
station spoofing. In a common smart area, the wireless sensor networks often gather and relay data
to the server via a gateway or base station. This base station typically has resource-rich capabilities in
term of its computation, energy and storage. It will be capable of both wired connectivity to the
Internet as well as wireless connectivity to the sensor network [10.15]. An attacker gains
unauthorized access to the environment by making it appear that a malicious message has come from
the base station by spoofing the IP and/or MAC address [10.16,10.17] of that machine. In this way,
the attacker can deceive the central server in order to getting all its control information that should
have sent to the station to cancel the server’s command to the sensor system. Therefore, instead of
sending the control packets to the base station, for example to turn the surveillance camera and alarm
system on, in order to alert strangers breaking into the house, the server delivered messages to the
hacker’s machine.

Moreover, dangers to the main server coming from wireless networks are wireless device
compromise. The aforementioned example of the virus-infected laptop is a good case of this.
Harmfully, if this laptop is compromised by a hacker, it will then be used as a jumping-off place to
launch attacks to the server.

Also, risk to the principle server resulting from applications or services implemented on the system
can be exploited by attackers because they missed crucial security patches. Once these programs
compromised, the system control right will be taken over by hackers. Our server may be planted
viruses, opened back doors for serving the intruder’s remote control demands.

So what if the central server is compromised? Our front-doors, for example, will automatically open
without our permission, camera systems will suddenly be turned off when we are absent from the
environment and the smart space is no longer smart at all. And how can we efficiently protect the
server from those threats?

10.3.2 Firewall Background
The firewalls that have been discussed in [10.12,10.18,10.19] are network based. We placed them on
borders between subnets to manage network traffic crossing from one segment to another. However,
our proposed firewall is applied at the host level to control how packets enter and leave the central
server.

A firewall security policy is a list of ordered filtering rules that define the actions performed on
packets that satisfy specific conditions [10.20]. A rule usually consists of filtering fields and an action
field. The filtering fields play an important role in evaluation a packet matching a rule or not. The
action is either to allow, which permits the packet coming in or out the secured server, or to deny,
which causes the packet to be dropped.

10.3.3 Our Approach
In this section, we propose an approach of using a Home Firewall to protect the smart space from
such security problems. In this approach, we rely on following assumptions:

• A unique central server is deployed for serving and supervising all the services in the space.

• All entities of the smart space including sensors, mobile and wireless devices, and applications are
not compromised simultaneously.

The proposed home firewall has some characteristics like a host-based firewall which should not be
confused with the hardware firewall that is commonly found on usual network perimeters. Rather, it
is set of related programs installed and administered on the server to protect a single computer from

 58

intruders [10.21]. The Home Firewall acts as the extra logical line of defense against penetration
attacks. It enforces the system’s defenses by:

• Monitoring incoming traffic and block malicious code
• Screening outgoing packets that infect other resources
• Preventing IP and/or MAC address spoofing
• Blocking different types of reconnaissance probes used to discover vulnerable applications or

services running on the system
Basically, the Home Firewall security policy is similar to a traditional firewall one which can be
thought of as a pair of policies: one which exists to “deny” default all the traffic, and the other which
exists to “allow” default all the traffic except the traffic enforcing explicit policies.

In the former case, the user only needs to take care of deployed services and check those for security
risk since the final firewall rule is configured to “deny all” traffic that is not specifically permitted.
This put him in pro-active mode. Conversely, the latter case requires that the user should have a
comprehensive understanding his system in order to allow default all the traffic from/to his central
server. Obviously, the first one is the most appropriate one, and it is the policy that we have used in
our proposed model.

10.3.3.1 Models and Configurations

In this section, we present our basic design of the proposed Home Firewall in the smart home
described above. This general scheme is shown in Fig 10.2.

In order to clearly explain about our proposed solution, we separate the system into three different
sub models as follows:

• Model 1: the system is composed of one Central Server, our Home Firewall, a Wireless Access
Point (WAP) for serving wireless connections, and mobile devices (Laptops, PDAs)

• Model 2: the system is composed of one Central Server, our Home Firewall, and Applications and
Services implemented on the server

• Model 3: the system is composed of one Central Server, our Home Firewall, one Base Station, and
sensing devices such as sensors, camera and alarm systems.

In the proposed firewall designed for all these three models, we enforce the following conditions:

• Username/password authentication mechanism is installed to identify the user who wants to
change the current security policies

• The packet filtering module allows the firewall to accept connections from the users and to
respond to the user requests

• The decision of how many services, what kind of service, and other parameters such as interval for
serving each service should be provided depends on the firewall rule set.

In addition, the Home Firewall holds the following rule table for packet filtering:

Table 10.1 An entry of the proposed firewall rule table

Order Source MAC
Address

Destination MAC
Address

Controlled
Entity

Interval Command Action

 59

The firewall rule table indicates which machine the server can or cannot communicate with, and
which service the server can or cannot provide. If a rule field is not used, it will get the default “any”
value.

We begin considering the first model. The other models will be argued in turn. In this model (Fig
10.3), our Home Firewall and the Wireless Access Point (WAP) share responsibility and work co-
operatively to provide security to the Central Server. Commonly, the WAP controls the Data Link
level access whereas the Home Firewall supplies 2-layer defense mechanism including Network layer
and Application layer protection.

Machine
Monitoring

Wireless
Sensor

Human Monitoring
(Surveillance Camera

& Alert Systems)

Light
Monitoring

Vehicle
Monitoring

Wireless Data Collection
Networks

BST BSC (Base Station
Controller)

Central Server
(deploying Context-aware

Middleware)

Wireless (Wi-Fi 802.11g 2.4GHz,
BlueTooth, IrDA, CDMA,

Cellular Network)

`

Fixed Wire Network
(Ethernet LAN, Optical)

Cellular
Phone

PDA

Laptop PC

BST (Base Station
Transmitter)

Home Firewall

Laptop PC PC

Fig 10.2 A smart space with Home Firewall support

 60

Fig 10.3 The first model of our proposed solution

As indicated above, if our security perimeter is limited to the WAP with some restricted default
security policies, the compromise of the WAP will leave the main server vulnerable. This violates the
“defense in depth” principle. So the appearance of our proposed Home Firewall in addition to the
WAP will make the security perimeter stronger. The firewall manages all the transactions between the
user’s mobile devices and the central server. If the WAP and/or user’s mobile devices are
compromised, attackers still have no way to change the behavior of our central server since they
don’t know the username/password to change the firewall policies. For instance, if a firewall rule is
configured as follows:

Table 10.2 The content of an entry in a firewall security policy

Order Source MAC
Address

Destination
MAC Address

Controlled
Entity

Interval Command Action

01 Any Any Camera and
Alarm
Systems

11P.M-
6A.M

On Allow

02 Any Any Camera and
Alarm
Systems

7A.M-
10P.M

Off Allow

03 Any Any Any Any Any Deny

Without the protection of our firewall, the central server can be comprised by the attacker after he
controlled the user’s laptop. He who installed a backdoor for abusing the user’s laptop mentioned
above will not have a chance to modify the firewall security policy to turn all the camera system off
even though they are mastering the user’s device if our proposed firewall is deployed. For example,
the attacker wants the camera system to be turned off from 11P.M-6A.M in order to successfully
break into the house by delivering a request from the user’s laptop to the server. However, these
command packets from the central server could not be sent to this system because they did not
satisfy the rule set and they would be dropped at the firewall layer. Therefore, along with built-in
security techniques implemented on the WAP [10.22] and the Home Firewall installed in the server,
this model brings better solution for protecting the smart space.

In the second model, depicted in Fig 10.4, the firewall is located in front of the applications and
services implemented on the server. It helps preventing these server’s programs from being
compromised by stopping common hacker’s reconnaissance port scanning techniques [10.23]. An
attacker who can successfully conduct recon on your server has a much higher likelihood of
attempting to compromise your system than an attacker whose recon attempts are thwarted. Once
the attacker knows what services that the server is running and their related information, he can
activate attacks based on exploiting software vulnerabilities to our server.

 61

Fig 10.4 The second model of our solution

In order to defend our server from these kinds of potential threats, such as ICMP scanning, TCP
scanning, UDP scanning [10.24], we deploy an anti-scanning security policy as follows:

Table 10.3 The content of an entry in an anti-scanning security policy

Order Source MAC
Address

Destination
MAC Address

Protocol/
Packet Type

Direction Action

01 Any Any ICMP/Echo Request In Allow
02 Any Any ICMP/Echo Reply Out Deny
03 Any Any ICMP/Port Unreachable Out Deny

The two first rules are coordinately used for preventing ICMP scanning technique by prohibiting the
ICMP replying packets sent back to the attacker. The third rule is used to deny ICMP Port
Unreachable packets transmitted back to him for protecting UDP scanning technique. It’s because all
these packets are exploited to notice the attacker about the status of the server’s services. In order to
detect the TCP scanning signature, we might say that if there are more than 5 SYN packet attempts
to non-listening ports in one minute, then an alarm SMS message should be automatically triggered
to the user’s cell phone. Therefore, our suggested firewall helps us hiding sensitive application
information from malicious probes.

The last model in our explanation, shown in Fig 10.5, is for the circumstance of base station spoofing
in the smart space. In such attacks, the adversary intercepts a legitimate communication between the
server and the base station. The malicious host then controls the message stream and can eliminate
or modify the information sent by the base station without the knowledge of either the server or the
base station. In this way, the attacker can deceive the central server into disclosing confidential
information by spoofing the identity of the base station, which is seemingly trusted by the server.

 62

Fig 10.5 The third model of our solution

In order to prevent this kind of attack, we suggest an additional module included in the Home
Firewall, the MAC Address Refining (MAR) module. This module is responsible for real-time
selecting trusted MAC addresses of available confident base stations in the space. The selected
addresses are maintained in an admission list. The MAR module periodically sends an RARP
(Reverse Address Resolution Protocol) [10.25] packet to each address in the list. The function of
RARP is mapping a MAC address into an IP address. Following this, Reverse ARP should reply one
IP address for one network device. If multiple IP addresses return, it means that the MAC address is
being exploited by more than one device.

The MAC address is also called a hardware address, and it supposed to be permanent, following the
NIC (Network Interface Controller) card attached to a network device. Since an intruder is trying to
identify and duplicate existing MAC address of the base station, our defense firewall can quickly
detect this duplication. The performance of MAR module makes sure that the MAC addresses in the
admission list are trusted addresses and cannot be forged. This list is then employed by the firewall
security policies to verify the source MAC address of the packets sent to it for certain that these
packets really come from a legitimate base station.

10.4 Discussions
The firewall solution proposed in this paper clearly demonstrates to be as an efficient defense for a
smart space. There are many advantages in our model. This solution applies the principle of “defense
in depth”. For example, if one defensive component of the security perimeter is compromised, like
Wireless Gateway, still will our Home Firewall cease the intruder, or at least stretch attacker’s
energetic and vigorous activities until the user perceives the security violation.

Since the scheme does not introduce any modification to the existing model, it just provides an extra
security level for the smart space. Its simplicity and compatibility in implementation could be seen as
a few advantages. The Home Firewall is deployed on the central server, so other entities of the smart
environment are not affected. It can prevent the server from various attacks, such as base station
spoofing, application reconnaissance security scanning, and user wireless device compromise, to
make the space more confident.

Nevertheless, this suggested firewall is not a complete solution for all kinds of attack yet. A tricky
attacker can use unknown variant of probing techniques for gathering server sensitive information is
a good example of this. Additional, our solution supposed to protect a unique service server
deployed in the space. Other security techniques to guard a group of server go beyond the scope of
this scheme. Also, our model is only suitable for the situation when all entities of the space are not
compromised concurrently.

 63

10.5 Related Works
The security in ubiquitous computing would be a major issue as individual, groups, and organizations
are unlikely to put personal, important, and mission-critical information over an infrastructure that is
either not secure or is not perceived to be secure [10.26]. The security weaknesses of wireless and
mobile infrastructure stem from both the use of multiple “incompatible” security schemes and due to
“inherent” weaknesses in certain wireless security algorithm (such as wireless LANs) [10.26].

Security problems and vulnerabilities related to ubiquitous computing are generally concerned by
Stajano [10.27]. Covington et al. [10.28,10.29] tackled the problem of securing a smart home
environment. They refer to this environment as the “Aware Home”. However, at the time of writing
this paper, there has been no published work on proposing a firewall solution to smart spaces. Most
of the suggested firewall models mainly focus on fixed wire networks [10.4,10.5], and a few ones
support for wireless networks [10.12]. Thus, the problems arise from the smart space are still open.
The act of proposing the Home Firewall to the smart surroundings is the contribution of this work.

10.6 Conclusions and Future Work
Security for smart spaces is really a fascinating and challenging research topic. The inherent features
of the ubiquitous computing environment such as dynamism, mobility, and pervasiveness raise new
difficult and stimulating tasks. Firewall security, like other security technologies, requires appropriate
management and operation in order to safely protect context-aware middleware or services.

In this paper, we formally defined some firewall security policies and proved that these can efficiently
defend our context-aware server in risky circumstances in which some smart space entities are
compromised. Hence, if our proposed firewall is implemented and administered in a well-defined
way, attacks upon the server deployed in the space can be maximally reduced.

We believe that there is lots of work to do in firewall implementation area. Our future research plan
includes implementation of major Home Firewall modules, such as packet filtering module for
verifying traffic in/out the central server, MAC Address Refining module for protecting base station
spoofing, and rule editing module.

10.7 References
[10.1] M. Weiser, “The Computer for the 21st Century,” Scientific America, pp. 94-104, Sept. 1991; reprinted in IEEE

Pervasive Computing, pp. 19-25, Jan.-Mar. 2002.
[10.2] M. Satyanarayanan, “Pervasive Computing: Vision and Challenges,” IEEE Personal Communications, pp. 10-17,

Aug. 2001.
[10.3] Jalal Al-Muhtadi, Anand Ranganathan, Roy Campbell, M. Dennis Mickunas, “Cerberus: A Context-Aware

Security Scheme for Smart Spaces”, in Proceedings of the First IEEE International Conference on Pervasive
Computing and Communications (PerCom’03).

[10.4] Bryan, J. “Build a Firewall”, BYTE, pp. 91-96, April 1995.
[10.5] Bellowin, S. M. and W. R. Cheswick “Network Firewalls,” IEEE Communication Magazine, pp. 50-57, Sep.

1994.
[10.6] Xinyi Huang, Susilo W., Yi Mu, Futai Zhang, “Identity-based ring signcryption schemes: cryptographic

primitives for preserving privacy and authenticity in the ubiquitous world,” Advanced Information Networking and
Applications, 2005. AINA 2005. 19th International Conference on Volume 2, pp. 649-654, 28-30 March 2005.

[10.7] Al-Muhtadi J., Ranganathan A., Campbell R., Mickunas M.D., “A flexible, privacy-preserving authentication
framework for ubiquitous computing environments,” Distributed Computing Systems Workshops, 2002.
Proceedings. 22nd International Conference, pp. 771-776, 2-5 July 2002.

[10.8] Sailer R., Giles J.R., “Pervasive authentication domains for automatic pervasive device authorization,” Pervasive
Computing and Communications Workshops, 2004. Proceedings of the Second IEEE Annual Conference, pp. 144-
148, 14-17 March 2004.

[10.9] Bellowin, S. M. and W. R. Cheswick. “Network Firewalls,” IEEE Communication Magazine, pp. 50-57, Sep.
1994.

[10.10] Cheswick, W. R. and S. M. Bellowin, “Firewall and Internet Security: Repelling the Wily Hacker,” Addison-
Wesley Publications, 1994, Reading, MA.

 64

[10.11] Ranum, Marcus J., “Thinking About Firewalls,” Trusted Information Systems, Inc. Glenwood, Maryland.
Available through WWW at www.tis.com/home/NetworkSecurity/Firewalls.

[10.12] U. Murthy, O. Bukhres, W. Winn, E. Vanderdez. "Firewalls for Security in Wireless Networks," hicss, p.
672, Thirty-First Annual Hawaii International Conference on System Sciences-Volume 7, 19910.

[10.13] Bryan, J. “Build a Firewall”, BYTE, pp. 91-96, April 1995.
[10.14] Hung Q. Ngo, Anjum Shehzad, Kim Anh Pham, Maria Riaz, Saad Liaquat, and S. Y. Lee, “Developing

Context-aware Ubiquitous Computing Systems with a Unified Middleware Framework,” Embedded and Ubiquitous
Computing 2004.

[10.15] Jing Deng, Richard Han, and Shivakant Mishra, “Enhancing Base Station Security in Wireless Sensor
Networks,” Technical Report CU-CS-951-03, Department of Computer Science, University of Colorado, April 2003.

[10.16] CERT, “IP Spoofing Attacks and Hijacked Terminal Connections, CA-95:01,” Computer Emergency Response
Team, Carnegie Mellon University, Pittsburgh, Pennsylvania, Sept. 1991.

[10.17] Lorri Ely Berend, “Wireless Network Hacking,” GSEC Practical Assignment, v1.4b, Avaiable through WWW
at http://www.giac.org/certified_professionals/practicals/gsec/2372.php

[10.18] Schuba C.L., Spafford E.H., “A reference model for firewall technology,” Computer Security Applications
Conference, 1997. Proceedings., pp. 133-145, 13th Annual 8-12 Dec. 1997.

[10.19] Yi Xu, Lee H.C.J., “A source address filtering firewall to defend against denial-of-service attacks,” Vehicular
Technology Conference, 2004. VTC2004-Fall. 2004 IEEE 60th, pp. 3296-3300 Vol. 5, 26-29 Sept. 2004.

[10.20] Al-Shaer E.S., Hamed H.H., “Discovery of policy anomalies in distributed firewalls,” INFOCOM 2004.
Twenty-third AnnualJoint Conference of the IEEE Computer and Communications Societies, pp. 2605-2616, 7-11
March 2004.

[10.21] Noakes-Fry K., and Diamond T., “Personal firewalls: technology overview,” Retrieved December 19, 2004
from http://www.gartner.com, Document G001211810.

[10.22] John Tsai, “Wireless Access Point/Router Security,” Available through WWW at
http://www.rescomp.berkeley.edu/besecure/how-to/wireless/

[10.23] Andy Millican, “Network Reconnaissance – Detection and Prevention”, GSEC v1.4b, 23 January 2003,
Available through WWW at http://www.giac.org/certified_professionals/practicals/gsec/2473.php

[10.24] Prabhaker Mateti, “Port Scanning,” College of Engineering & CS, Wright State University, Dayton, Ohio
45435-0001, 29 June 2001. Available through WWW at
http://www.cs.wright.edu/~pmateti/Courses/499/Probing/index.html.

[10.25] Finlayson, Mann, Mogul, Theimer, “RFC-903 Reverse Address Resolution Protocol,” Network Working Group.
June 1984.

[10.26] Upkar Varshney, “Network Access and Security Issues in Ubiquitous Computing,” CIS Department, Georgia
State University, Atlanta.

[10.27] F. Stajano, Security for Ubiquitous Computing: Halsted Press, 2002.
[10.28] M. J. Covington, W. Long, S. Srinivasan, A. K. Dev, M. Ahamad, and G. D. Abowd, "Securing context-aware

applications using environment roles," presented at Proceedings of the Sixth ACM Symposium on Access control
models and technologies, Chantilly, Virginia, United States, 2001.

[10.29] M. J. Covington, M. J. Moyer, and M. Ahamad, "Generalized Role-Based Access Control for Securing Future
Applications," presented at 23rd National Information Systems Security Conference, 2000.

 65

C h a p t e r 1 1

PRIVACY CONTROL

11 Privacy Control

11.1 Introduction

The major advances in distributed systems and mobile computing have converged to enhance global
interconnectivity. This has fueled the idea of ubiquitous computing and active information spaces
where users can access services, run programs, utilize resources, and harvest computing power
anytime and anywhere. This new generation of ubiquitous computing enables the delivery of
integrated services and multimedia-enabled applications that are no longer bound by time or location
barriers. Ubiquitous computing promotes the proliferation of embedded devices, smart gadgets,
sensors and actuators. These devices will be everywhere, performing regular tasks, providing new
functionality, extending the reach of traditional computing to physical spaces, and allowing users to
interact seamlessly with the surrounding environment.

Physical spaces augmented with sensors and actuators that can locate users, detect their presence,
and track their whereabouts will be commonplace in this new and exciting computing paradigm.
These sensors will play a major role in bridging the virtual computing world with the physical world
and boosting the productivity of users and the availability of computing resources. However, these
very features could severely threaten the privacy of users. For instance, the mentioned services can be
exploited by intruders, malicious insiders, or even “curious” system administrators to track or
electronically stalk particular users. Although encryption provides confidentiality by hiding
information flowing through communication channels from eavesdroppers (e.g., an insider or a
system administrator), an eavesdropper can still gather the network addresses or physical locations of
the communicating parties. The lack of privacy in today’s networks and distributed systems is well-
documented [11.1,11.2]. Similar concerns arise for ubiquitous computing environments [11.1]. While
several approaches have tried to address these problems (see Section 11.2) the solutions presented
are either only concerned with anonymous web browsing or with trusted third parties that store the
location information of users and only disclose it to authorized principals.

This report tried to serve as an introductory reading for the interested computer science researcher,
especially in the field of ubiquitous computing. It gives a brief background on privacy – its issues
surrounding it, touches on various legal implications, and tries to develop a comprehensive set of
mechanisms and guidelines for designing privacy-aware ubiquitous systems.

11.2 Related work
Privacy is actually a fuzzy term that is often overloaded to mean a large variety of things. Therefore,
before proceeding any further, it is important to clarify the scope of user privacy that we strive to
achieve in a ubiquitous computing environment. Our goal is to achieve the following:

● Location privacy: Neither the system nor the users of the system will be able to know the exact
physical location of a user, unless that user decides to disclose such information or if another person
physically sees that user at that location.

● Anonymous connections: If two parties decide to communicate with each other, then other users
in the system will not know who the communicating parties are, unless one of the communicating
endpoints decides to disclose such information.

 66

● Confidentiality: If both endpoints of a communication agree, they can make the content of their
communication confidential, such that neither the system nor other users in the system can read the
contents of the communication [11.4].

In this section, we present some of the existing research that relate to our problem. Compared to the
amount of research efforts directed towards ubiquitous computing, very little attention has been paid
to the security aspects of ubiquitous computing so far. However, in this section, we will consider
some of the approaches that attempt to achieve anonymity on the Internet. Some projects try to
provide a way to hide a user’s identity while communicating over an open network while others try to
provide a communication channel that is immune to traffic analysis, hence, providing anonymity
from eavesdroppers. We describe some of the representative works in this section.

In [11.3], Marc Langheinrich warns us about the possibility of an Orwellian nightmare in which
current ubiquitous computing research continues on without considering privacy protection in the
system. He proceeds to describe the design principles of privacy-aware ubiquitous systems. Some of
the principles proposed are yet to be implementable with current technology but the paper gives a
good general guideline for privacy issues in ubiquitous computing systems. The crucial point of this
paper is that unless you consider the privacy concerns since the initial stages of a ubiquitous system
design, it is very likely to end up becoming a ubiquitous surveillance system. Our approach fits the
spirit of this paper in the sense that we integrate the privacy concerns into the routing itself.

Previous research on privacy and anonymity on the Internet can be classified into roughly two
categories: user anonymity and anonymous communication. User anonymity aims at providing the
users anonymity while they are using the network by letting them hide their identity from the
communicating peers. Research on anonymous communication focuses on providing a
communication channel that is immune to traffic analysis so that the communicating parties can be
anonymous against the eavesdroppers.

Anonymizer [11.5] and SafeWeb [11.6] are two user anonymity solutions provided to World Wide
Web users. Anonymizer is a centralized approach to hide the web users’ real identities from the web
servers they access. Users can enjoy anonymity by rerouting their HTTP packets through the
Anonymizer, which replaces the information in the packet headers so that the websites cannot infer
the users’ identities. This approach has the problem of a centralized trusted entity. The Anonymizer
site can track all the anonymous user activities and is also a single point of failure.

Crowds [11.7] by Aviel Rubin et al. is one of the approaches on anonymous communication. A
Crowd is a set of voluntarily cooperating hosts. Any message that requires anonymity first channels
into one of the Crowd shosts and then enters a loop until it finally gets out of the Crowd and arrives
at the destination. Using statistical forwarding decisions, Crowds can effectively hide the
communication pattern of a user. Another similar approach is Onion Routing [11.8]. Users can use
the deployed set of Onion routers in the Internet to achieve a level of privacy similar to that of
Crowds. One difference, however, is that the Onion routers themselves form a ring and keep
constant TCP connections between the neighboring routers, constantly transmitting packets through
the routes. Also, packets are encrypted with multiple keys to form an “onion,” so none of the Onion
routers forwarding the packets can discover both the source and the destination information of the
packet. NetCamo [11.9] is an approach to counter traffic analysis in real-time. NetCamo models the
traffic patterns of nodes or networks and provide a real time rerouting and padding to hide the
communication pattern.

 67

11.3 Description

11.3.1 Mechanisms for Privacy Protection
Before setting out to assemble a technical infrastructure for privacy protection, we need to take care
of the array of mechanisms available to us – both those working in our favor, and against. Building a
technical infrastructure, whether for privacy protection or other purposes, cannot be done in
isolation from the legal and social realities that inevitably surround it. Otherwise we might easily run
the risk of creating unworkable or unacceptable solutions.

The field of ethics in general, and technology assessment in particular, can provide valuable insights
into the requirements and limits of any privacy solution, as it reflects the moral realities of how much
or how few privacy is deemed desirable. Another important component is trust, since data collection
systems require some basic trust in either the technology itself, the entities collecting or using the
data, or law enforcement mechanisms that allow interactions with un-trusted parties.

Corresponding privacy legislation can often help strengthening any privacy conserving system. While
some basic similarities exist, legal protections differ substantially around the world. The sectorial
framework in the US have seen a number of recent additions that specifically address issues such as
location privacy , while European law with its more comprehensive protection still requires
corresponding updates that take into account the recent technological developments.

Of the existing technical solutions, maybe the most prominent ones are those for encryption and
authentication. While often used synonymous with privacy tools in general, such security
mechanisms cover an important part of technical privacy protection, though not the complete range
of issues. Anonymization and pseudonimization are another building block in providing privacy
when the full disclosure of one’s identity is not necessary. These mechanisms are complemented with
transparency and trust tools, such as the Web technology P3P, which allow data collectors to
describe their collection policies in a machine-readable format and communicate these to their data
subjects.

By being aware of the full range of mechanisms that are at work in the field of privacy – social
mechanisms such as moral, ethics, and trust; legal mechanisms such as laws and regulations; and
technical mechanisms for solving different distinctive problems – we can hope to build a
comprehensive solution that solves the right problem, in the right manner, with the right
mechanisms.

11.3.2 Guiding Principles
With the wealth of mechanisms in mind, we can set out to draw up a number of principles that are to
guide technical development. A a starting point for such guidelines, we draw from a well-established
set of practices with more than thirty years of experience: the Fair Information Principles, drawn up
in 1973 in a report by the US Department of Health, Education, and Welfare (HEW), which form
the basis of practically all modern privacy laws today.

Among the most fundamental requirements is that of notice and disclosure: There should be, simply
stated, no hidden data collections. Ubiquitous computing systems will per definition be ideally suited
for covert operation and illegal surveillance; no matter how much disclosure protocols are being
developed. It will always take special detection equipment to be reasonably sure that a certain room
or area is not being monitored by others. But for those who want (and are bound by law) to “play it
by the book,” some kind of announcement system would be helpful that would allow them to openly
announce otherwise covert data collections to customers, employees, and visitors, but also to family
members and friends.

 68

Given that individuals know about data collections taking place, they can exercise another
fundamental requirement of data collection regulations: choice and consent. Again, the area of
pervasive computing poses new challenges in this respect, as not even a button-click – the
established means of giving consent on the Web – will be available in most of these smart
environments. Users will need delegation mechanisms that allow for an automated pickup privacy
announcements and subsequent decision-making on the basis of previously established preferences.

Should an offered service be not to the use’s liking (with respect to his or her privacy), a choice
should exist involving anonymity and pseudonymity. While several anonymization schemes for
Internet service access exist, their deployment in future computing scenarios is made difficult by the
fact that real-world data is much harder to anonymize than virtual data. Especially the realm of
location anonymity and pseudonymity would need to be part of any privacy protection scheme for
ubiqutious computing.

Adequate security, i.e. encryption of electronic communication and storage, as well as authentication
as access control, must of course also be involved whenever data collection takes place, otherwise
promised collection and handling practices can hardly be guaranteed. Although alarge number of
encryption mechanisms and security procedures exist, finding the right balance between security and
usability will be a challenge for any application involving invisible computers.

Trusting a system, and especially a system as far-reaching as a ubiquitous one, requires a set of
regulations that separate acceptable from unacceptable behavior, together with a reasonable
mechanism for detecting violations end enforcing the penalties set forth in the rules. Technology can
help implementing specific legal requriements such as access and recourse, so that data subjects can
see for themselves what information about them is on file and potentially correct of delete it.

Even with a ubiquitous computing systems supporting all of the above requirements, situations may
arise where getting the explicit consent from a subject beforehand will be difficult, if not infeasible.
Complementary mechanisms such as principles of proximity and locality should be embedded in the
underlying infrastructure in order to not only prevent accidental data collections (e.g., a memory
amplifier recording without its owner being present) but also limit data dissemination (e.g., keeping
sensory data stored close to its collection place).

Whether the above six points – notice and disclosure, choice and consent, anonymity and
pseudonymity, adequate security, access and recourse, and proximity and locality – can be realized in
future computing systems, will of course depend to a large extend on the intricate interplay between
technology, social norms, and legal obligations that together will form the design space of any such
environment. What we can hope to achieve is building as system that complements, rather than
replaces, these mechanisms. We call this privacy awareness, rather than privacy protection, indicating
that its effectiveness rests on supporting existing social and legal tools, not on replacing them.

11.4 Summary
Ubiquitous computing is an emerging research area with great potential. However, without careful
consideration for user privacy from the ground up, there is a fair possibility of creating a ubiquitous
‘surveillance’ system instead. To avoid this undesirable future, we contend that the privacy and
anonymity of users in ubiquitous computing environments should be considered seriously and
carefully from the very beginning of the system design phase.

 69

11.5 References
[11.1] M. Reiter and A. D. Rubin, “Crowds: Anonymity for Web Transactions,” ACM Transactions on Information and

SystemSecurity (TISSEC) Volume 1, Issue 1, November 1998.
[11.2] J. Schwartz, “As Big PC Brother Watches, Users Encounter Frustration,” The New York Times, September 5,

2001.
[11.3] M. Langheinrich, “Privacy by Design – Principles of Privacy-Aware Ubiquitous Systems,” ACM UbiComp

2001, Atlanta, GA, 2001.
[11.4] J. Al-Muhtadi, Roy Campbell, Apu Kapadia, M. Dennis Mickunas, Seung Yi, “Routing Through the Mist:

Privacy Preseving Communication in Ubiquitous Computing Environments”, University of Illinois at Urbana-
Champaign.

[11.5] Anonymizer, http://www.anonymizer.com
[11.6] SafeWeb, http://www.safeweb.com
[11.7] M. Reiter and A. D. Rubin, “Crowds: Anonymity for Web Transactions,” ACM Transactions on Information and

System Security (TISSEC) Volume 1, Issue 1, November 1998.
[11.8] M. Reed, P. Syverson, and D. Goldschlag, “Anonymous Connections and Onion Routing,” IEEE Journal on

Selected Areas in Communication, Special Issue on Copyright and Privacy Protection, 1998.
[11.9] Y. Guan, C. Li, D. Xuan, R. Bettati, and Wei Zhao, “Preventing Traffic Analysis for Real-Time Communication

Networks,” Proceedings of The IEEE Military Communication Conference (MILCOM) '99, November 19911.

 70

C h a p t e r 1 2

SECURITY POLICY

12 Security Policy

12.1 Introduction
Ubiquitous computing (ubicomp) integrates computation into the environment, rather than having
computers which are distinct objects. We hope that embedding computation into the environment
would enable people to move around and interact with computers more naturally than they currently
do. One of the goals of ubiquitous computing is to enable devices to sense changes in their
environment and to automatically adapt and act based on these changes based on user needs and
preferences [12.1], as long as system’s security policies are not violated.

Ubiquitous computing has unique features that make it different from other computer science
domains. They are ubiquity, invisibility, sensing, heterogeneous and with many resource-constrained
devices. With these features, ubiquitous environment is not only the virtual world as traditional
computing environment but the strong combined environment of virtual and physical world.
Therefore, it also raises the risk of privacy and security.

Traditional security focuses on authentication, access control, confidentiality, integrity, availability,
and trust. In the new environment, these problems are much more complex since ubiquitous
environment is more dynamic, more distributed, more invisible. Therefore, we need to view security
problems in a new paradigm and explore them thoroughly under the above effects.
Security requirements in ubiquitous computing

The ubiquitous computing bring us a new environment, it also imposes new requirements on security
and privacy. Due to its unique features, security services will also have unique features compared
with traditional security services. They are ubiquity, context-awareness, invisibility (non-intrusive and
transparent), and light-weight. They need to be adaptability and multilevel for supporting a
heterogeneous environment and the dynamic characteristic of the environment.

The security system has to support a security policy language that is descriptive, well-defined, and
flexible. The language should be able to incorporate rich context information as well as physical
security awareness [12.2].

12.1.1 Definitions
In this section, we will clarify some terms related with security and security policy in ubiquitous
computing.

As we know, a security policy is a statement that partitions the state of the system into a set of
authorized (or secure) states, and a set of unauthorized (or non- secure) states. In which, a secure
system is a system that starts in an authorized state and cannot enter an unauthorized state. Thus, a
breach of security occurs when a system enters an unauthorized state.

And, to precisely describe the security requirements of the model and to provide a framework for the
specification, implementation, and verification of the security properties of the network, it is
necessary to have a mathematical formulation of the model. We call it security model. We can have

 71

its definition in RFC 2828 as follows: “a schematic description of a set of entities and relationships
by which a specified set of security services are provided by or within a system“.

From the above section, we knew about one unique feature of security of ubiquitous computing, that
is context-aware. Here, we need to define a new term: security context. Security context as a set of
information collected from the user’s environment and the application’s environment and that is
relevant to the security infrastructure of both the user and the application (Kouadri and Brezillion).

We also consider context explicitly as a guide to deduce which mechanisms to enforce in each
situation (security context) that we call “context-based security”.

12.2 Background and related work

12.2.1 Security Policy Overview
The definitions most frequently proposed for computer security identify three primary objectives for
security: confidentiality (sometimes called secrecy) related to the disclosure of information, integrity
related to the modification of information, and availability related to the denial of access to
information. To achieve these objectives three mutually supportive technologies are used:
Authentication, Access Control and Audit. Access control is concerned with limiting the activity of
legitimate users who have been successfully authenticated, and is the process of ensuring that every
access to a system and its resources is controlled and that only those accesses that are authorized can
take place. There are three basic components to an access control system: the subjects, the targets
and the rules which specify the ways in which the subjects can access the targets. The set of high-
level rules according to which access control must be regulated are traditionally called access control
policy [Samarati et al. 2000]. The study of access control has identified a number of useful access
control models, which provide a formal representation of security policies and allow the proof of
properties about an access control system. Note that the use of the term policy is often used in the
literature to refer to both high-level security policies as defined above, and actual authorization rules
to be enforced.

Access Control Models
Access control policies have been traditionally divided into discretionary and mandatory policies.
Discretionary policies are concerned with the specification of authorization rules to govern the access
of users to the information, whereas mandatory policies are mostly concerned with controlling
information flow between the objects of a system. Information flow policies are often described as a
separate type of policy, and are directly related to the issue of data confidentiality. Recently role-based
access control policies are attracting increasing attention, particularly in commercial applications, and
are often seen as an alternative to traditional discretionary and mandatory access control. The
following figure shows a relationship between the four generic models mentioned.

We view role-based policies as more closely applying the principles of discretionary access control.
On the other hand information flow policies are more closely related to mandatory access control.

 72

Over the years other, often more sophisticated security models have been proposed to formalize
security policies required for commercial applications. The most well known is the Clark-Wilson
model [Clark et al. 1987], which attempts to present in a formal, abstract way commercial data
processing practices. Its main goal is to ensure the integrity of an organization’s accounting system
and to improve its robustness against insider fraud. The Clark-Wilson model recommends the
enforcement of two main principles, namely the principle of well-formed transactions where data
manipulation can occur only in constrained ways that preserve and ensure the integrity of data, and
the principle of separation of duty. The latter reduces the possibility of fraud or damaging errors by
partitioning the tasks and associated privileges so cooperation of multiple users is required to
complete sensitive tasks. Authorized users are assigned privileges which do not lead to execution of
conflicting tasks. This principle has since been adopted as an important constraint in security systems.
Other models include a security policy model that specifies clear and concise access rules for clinical
information systems [Anderson 1996]. This model is based on access control lists and his authors
claim it can express Bell-LaPadula and other lattice-based models. Finally the Chinese-wall policy (see
description in [Anderson et al. 2001]) was developed as a formal model of a security policy applicable
to financial information systems, to prevent information flows which cause conflict of interest for
individual consultants. The basis of the model is that people are only allowed to access information
which is not held to conflict with any other information that they already possess. The model
attempts to balance commercial discretion with mandatory controls, and is based on a hierarchical
organisation of data. It thus falls in the category of lattice-based access control models.

Recent proposals include a trend towards languages able to express different access control policies
in a single framework in order to provide a common mechanism able to enforce multiple policies.
This enables uniform specification and composition of access control policies across administrative
domains and for a number of different platforms.

Another direction is certificate-based access control aimed at specifying trust policies for access to
resources from un-trusted sources e.g. over the Internet. Trust has long been tied to authorization:
“Access control consists in deciding whether the agent that makes a statement is trusted on this
statement; for example, a user may be trusted (hence obeyed) when he says that his files should be
deleted.” [Abadi et al. 1993]. However, its only very recently that work on certificate-based
authorization has been intensified, as part of trust management systems.

Policy Specification Approaches
There are three main categories: policy specification languages, rule-based specifications, and formal
logic languages. From a human input standpoint, the best way to specify policies is using a policy
language because it provides considerable flexibility compared to the other approaches. However, the
use of a generic high-level language compromises the ability to analyze policy specifications, a
process that can be made considerably simpler with the design of declarative languages. In the rule-
based approach policies are specified as sequences of rules of the form: if condition then action, and
are mostly applied to quality of service management in IP networks. Finally, logic-based approaches
are driven by the need to analyze the policy specification, but generally fail to directly map to an
implementation and are not easily interpreted by humans. Formal logic is mostly used in the
specification of security policies.

There are many ways to divide the discussion on the various policy specification approaches, e.g.
based on the granularity of specification, based on the functionality, or based on the application
domain. To specify security polices, we can use logic-based languages, high-level languages [12.3].

12.2.2 Related work
Recently, there are some works about access control model in ubiquitous computing.

 73

One new access control model is the Usage Control (UCON) concept. The UCON model
encompasses traditional access control, trust management, and digital rights management (DRM) to
control the access to and usage of digital information objects. The UCON model consists of three
core components and three additional components that are mainly involved in the authorization
process. Core components comprise subjects, objects, and rights while the additional components
include authorizations, conditions, and obligations.

Subjects hold and exercise certain rights regarding objects. A subject can be a user, a group, a role, or
a process. Objects are entities to which subjects hold rights allowing the subjects to access or use
objects. Objects can be either privacy sensitive or privacy non-sensitive. Examples of objects include
documents and audio, video, and executable files. Rights are privileges that a subject can hold
regarding an object. Rights consist of a set of usage functions that enable a subject to access objects.
Rights include rights of access (allowing access to and use of objects) and rights for delegation of
rights.

Authorization rules are a set of decision factors used to check whether a subject is qualified to use
certain rights with respect to an object. Examples of authorization rules include identity or role
verification, proof of payments, metered payment agreements, and usage log report agreements.
Conditions are a set of decision factors that the system should verify during the authorization process
along with authorization rules before allowing the use of rights regarding a digital object. Conditions
differ from authorization rules in that conditions are used to check whether existing limitations and
the status of usage rights regarding an object are valid. Some examples of dynamic conditions are the
number of times an object can be used (e.g., a video file can be viewed five times) and the accessible
time period (e.g., during business hours). Finally, obligations are mandatory actions that a subject has
to perform after obtaining or exercising rights with respect to an object. Traditional access control
has paid little attention to the obligation concept. The UCON model is a promising approach for the
next generation of access control because it covers both security and privacy issues concerning
current business and information system requirements in a systematic way.

On the other hand, the UCON model leaves open the architecture and mechanisms for providing
trusted attributes. This is one of the important challenges as we look ahead. The delegation of rights
is among the crucial issues that should be covered by the UCON model. In addition, there should be
a clear description of administration issues.

Another new access control model is UbiCOSM (Ubiquitous Context-based Security Middleware).
As well as allowing security administrators to specify system access control policies to prevent illegal
access to local resources, it also allows users to specify privacy requirements to regulate the disclosure
of their personal information when entering a new context. UbiCOSM uses the context as a
foundation for security policy specification and enforcement processes. Unlike traditional access
control models, permissions are directly associated with contexts, instead of user identities/roles: any
mobile user/device acquires a set of permissions by entering a specific context. UbiCOSM exploits

 74

an RDF-based standard format to express access control permissions. The definition of permission
includes a Name that identifies the permission, an Action that specifies the allowed operation, a
Target representing the resource the specified action can be applied to, and a Kind representing the
positive or negative meaning of the permission. UbiCOSM also allows permissions to be associated
with an individual context (simple association) or to multiple contexts composed of and, or, and
dependence relationships. The policy semantics change according to the type of association. Thus,
access control policies are enforced on any mobile client currently operating within that context.
One another project that bases on context is SESAME dynamic context-aware access control
mechanism for pervasive Grid applications. SESAME complements current authorization
mechanisms to dynamically grant and adapt permissions to users based on their current context. The
underling dynamic role based access control (DRBAC) model extends the classic role based access
control (RBAC).

“Context-Based Security Policies: A New Modeling Approach” is also a project that use context as
additional material for access control. It shows a solution for modeling security policies by using
graph, called “Contextual graphs for modeling context based security policies”.
Context Sensitive Access Control is another interesting project that proposes an authentication
solution by verifying context.

 In case of peer-to-peer and ubiquitous computing systems, we have a novel and interesting
authentication problem in wireless networks, secure transient association. One solution to enable
secure transient association is the Resurrecting Duckling security policy model. The name of this
model was inspired by ducking behavior whereby a duckling emerging from its egg will recognize as
its mother the first moving object it sees that makes a sound. This phenomenon is called imprinting.
The Resurrecting Duckling security policy model enables a duckling (a slave device) to imprint upon
itself a mother duck (a master) through the transfer of an imprinting key, or “soul”. Once the slave
device is imprinted, it remains faithful to the master as long as that soul persists. When the duckling
dies, the soul dissolves, and the duckling’s body is ready for imprinting with respect to a new mother
duck. During the imprinting phase, a shared secret must be established between the duckling and the
mother. If at least one of the two principals (the mother and duckling) can perform the public key
operations (decrypt and sign), the other device then simply generates a random secret and encrypts it
under the public key of the powerful device from which it gets back a signed confirmation [12.4].

Although most of the efforts on security policy specification focus on the use of formal logic, some
approaches have been proposed for high-level security languages.

Lalana Kagal et. al describes Rei - A Policy Language for Pervasive Computing Environment. Rei is
based on demonic concepts and includes constructs for rights, prohibitions, obligations and
dispensations (deferred obligations). The language consists of a few simple constructs that are
extremely flexible and allows different kinds of policies (security, privacy, management, conversation
etc.) to be specified. The policy language is not tied to any specific application and permits domain
specific information to be added without modification. As our policy language is geared towards
environments that consist of several domains we believe that there is a potential for policy conflicts.
The language includes two constructs for specifying meta-policies that are invoked to resolve
conflicts; setting the modality preference (negative over positive or vice versa) or stating the priority
between policies. For example, it is possible to say that in case of conflict the Federal policy always
overrides the State policy. Rei models speech acts like delegation, revocation, request and cancel that
allow policies to be less exhaustive and allow for decentralized security control.

Rei includes three types of constructs: (i) policy objects, (ii) meta policies and (iii) speech acts. (i) The
policy objects represent rights, obligations, prohibitions and dispensations. The has policy construct
allows these objects to be associated with different entities creating policy rules. This allows for reuse

 75

 76

of policy objects. For example, the same right to read a certain file could be associated with different
entities in different policy domains. (ii) The policy language contains meta-policy specifications for
conflict resolution. These include constructs for specifying precedence of modality and priority of
policies. (iii) Rei models four speech acts that can be used within the system to modify policies
dynamically: delegate, revoke, cancel and request. In order to make correct policy decisions, we
assume the presence of a monitoring service that sends all relevant speech acts to the policy engine.
Associated with the policy language is the policy engine that interprets and reasons over the policies,
speech acts and domain information to make decisions about users rights and obligations [12.5].

12.3 Description

12.3.1 Issues and challenges of security policy in ubiquitous computing
A ubiquitous computing environment creates new challenges that cause data security to differ from
traditional system protection. First, the environment is often unfamiliar to the users. They will not
have a trust relationship with the owners of the environment – as they might have with a local system
administrator – that is appropriate for handling their security and private information. Second, user
access rights change dynamically with respect to their relationship with the mechanisms by which
data are generated and sometimes the users cannot be predetermined. For example, a number of
users can record a meeting using a camera that is administered by the environment. These users
should have access to the video produced during the meeting period, but not other video segments.
The system must be able to associate a piece of information with the correct set of users while it is
being produced.

12.3.2 Proposals

12.4 Summary

12.5 References
 [12.1] http://en.wikipedia.org
[12.2] Jalal Al-Muhtadi, Anand Ranganathan, Roy Campbell, M. Dennis Mickunas, “Cerberous – a context-aware

security scheme for smart spaces”, Proceedings of the First IEEE International Conference on Pervasive Computing
and Communications (PerCom’03), 2003

[12.3] Nicodemos C. Damianou, “A Policy Framework for Management of Distributed Systems”, 2002
[12.4] Shigeki YAMADA, Eiji KAMIOKA, “Access Control for Security and Privacy in Ubiquitous Computing

Environments”, IEICE TRANS. COMMUN., VOL.E88–B, NO.3 MARCH 2005
[12.5] Lalana Kagal et al, “A Policy Language for a Pervasive Computing Environment”

	1.2.1 Confidentiality
	1.2.2 Integrity
	1.2.3 Availability
	2 Security Challenges and Requirements
	2.1.1 The Extended Computing Boundary
	2.1.2 Privacy Issues
	2.1.3 User Interaction Issues
	2.1.4 Security Policies
	2.1.5 Information Operation
	2.2.1 Transparency and unobtrusiveness
	2.2.2 Multilevel
	2.2.3 Context-Awareness
	2.2.4 Flexibility and customizability
	2.2.5 Interoperability
	2.2.6 Extended boundaries
	2.2.7 Scalability
	4.2 USEC Overview
	5.2.1 Role-Based Access Control (RBAC)
	5.2.2 Policy-based Access Control (PBAC)
	5.2.3 Context-based Access Control (CBAC)
	5.2.4 Trust-based Access Control (TBAC)
	5.2.5 Summarized Shortcomings of Existing Approaches
	5.3.1 HAC Overview
	5.3.2 HAC Workflow
	7.4.1 The factors Considered in Our Trust Model
	7.4.1.1 Peer Recommendation
	7.4.1.2 Confidence
	7.4.1.3 History of Past Interactions
	7.4.1.4 Time based evaluation

	7.4.2 Trust Evaluation Metric
	8.2.1 Assumptions
	8.2.2 Rules
	8.2.3 LSF Packet Format
	8.2.4 Procedure
	8.3.1 Performance Analysis of Communication Overhead
	8.3.2 Performance Analysis of Power Computation
	8.3.3 Performance Analysis of Memory Consumption
	8.3.4 Performance Analysis of Energy Consumption
	8.3.5 Resilience against Node Compromise
	9.3.1 ID Agents
	9.3.2 IDS Server
	9.4.1 Background
	9.4.1.1 Anomaly Attack Detection
	9.4.1.2 Attacks on sensor networks

	9.4.2 Proposed Algorithm
	9.4.2.1 CUSUM algorithm
	9.4.2.2 Detecting changes in the number of incoming packets
	9.4.2.3 Detecting changes in the number of outgoing packets

	10.3.1 Threats to the Central Server
	10.3.2 Firewall Background
	10.3.3 Our Approach
	10.3.3.1 Models and Configurations

	11.3.1 Mechanisms for Privacy Protection
	11.3.2 Guiding Principles
	12.1.1 Definitions
	12.2.1 Security Policy Overview
	12.2.2 Related work
	12.3.1 Issues and challenges of security policy in ubiquitous computing
	12.3.2 Proposals

