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KNOWLEDGE PROCESSING IN 
A CONTEXT-AWARE 
MIDDLEWARE FOR 

UBIQUITOUS COMPUTING 

by Knowledge Processing Team 

Project Supervisor: Professor Sungyoung Lee 
Department of Computer Engineering 

Context-awareness is one of the fundamental requirements for achieving user- 
oriented ubiquity. Ubiquitous computing environment consists of diverse range 
of hardware and software entities, and is about the interactivity of such entities. 
Context-awareness is one of the fundamental requirements for achieving user-
oriented ubiquity. A ubiquitous environment requires extensive data and 
information processing, for this purpose the middleware should be able to cope 
up with huge amounts of data, and adequate means of reasoning. The need for 
reasoning is required for forming complex concepts about the domain from very 
specific observable data. Similarly maintaining intensive interaction with a user’s 
environment requires the identification of user-activities, user-location and other 
high-level concepts. Identification of such complex concepts is vital to system 
performance and can only be done through reasoning in an efficient and timely 
manner. We define the completer working of the components needed for 
knowledge proessing in a true pervasive environment and all related issues.
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C h a p t e r  1  

INTRODUCTION TO KNOWLEDGE PROCESSING 

 
1.1 Ubiquitous Computing Vision 

The term "Ubiquitous Computing" was originally introduced by Mark Weiser [1] in the year 
1991. In his fundamental article "The Computer for the 21st Century" [2], he elaborated about "the 
computer that disappears". For Weiser the way into the 21st century was obvious: Computer 
and Network technologies are getting smaller, cheaper, and more powerful. Therefore, more 
and more everyday artifacts are going to be equipped with a reasonable amount of computing 
power and, maybe even more important, are networked together into a virtually unique 
network of communicating "things that think". In the pure sense of the word, computing gets 
"ubiquitous", anywhere, any time. Computers in every thing that is calmly doing what we 
intend it to do, in a way that is non-obtrusive and user-friendly, in a sense that we do not have 
to focus our attention on the trivia of running an electronic system. 
 
Research on Ubiquitous Computing (Ubicomp) is related to very many other disciplines from 
Robotics and Embedded Systems, Networking and Distributed Systems, to Artificial 
Intelligence and Psychology. Thus Ubiquitous computing is a very difficult integration of 
human factors, computer science, engineering, and social sciences. 
 
1.2 Context-aware Computing 

One goal of Context-aware Computing is to acquire and utilize information about the context 
of a device to provide services that are appropriate to the particular people, place, time, events, 
etc. For example, a cell phone will always vibrate and never beep in a concert, if the system can 
know the location of the cell phone and the concert schedule. Often, the term "Context-aware 
Computing" is used in a sense synonymously to Ubiquitous Computing. This is because 
almost every ubicomp application makes use of some kind of context. Ubicomp is mainly 
about building systems which are useful to users, which "...weave themselves into the fabric of 
everyday life until they are indistinguishable from it" [2].   
 
For ubicomp systems, Context is essential. How can a system be helpful for a user? Users tend 
to move around often, doing new things, visiting new places, changing their mind suddenly, 
and changing their mood, too. Therefore, a helpful system seems to need some notion of 
Context.  
In the Human point of view, we have a quite intuitive understanding of Context. Here, Context is 
often referred to as "implicit situational understanding." In social interactions Context is of 
great importance. A gesture, a laugh, or the tone of sentences builds up the implicit "picture" 
of what is meant or what communication partner is thinking. The same words can have 
a completely different meaning in different contexts.  
In Computer Science, Context is quite a familiar concept, be it within the discipline of Artificial 
Intelligence ("Thinking machines"), in Robotics ("Adaptive Systems"), in User Interface 
Design (like adaptive UIs or office assistants like the Microsoft Office assistant called 



"Clippy"), or basically any other discipline (to some extent). Especially, every discipline dealing 
with human users tries to take into account human behavior one way or the other, with the 
generated output loops back as part of the vector of input values.  
 
From the variety of definitions commonly used by Ubicomp researchers we can imagine how 
difficult it is to find a common ground. Context definitions are far away from mathematical 
precision and a particular definition often strongly depends on an authors' subjectiveness: 
 

• Schilit and Theimer [3]: "Context is location, identities of nearby people and objects, 
and changes to those objects."  

• A. Dey and Abowd [4]: "Context is any information that can be used to characterize the situation 
of an entity. An entity is a person, place, or object that is considered relevant to the interaction between 
a user and an application, including the user and applications themselves." 

• Pascoe [5]: "Context is the subset of physical and conceptual states of interest to a 
particular entity."  

So what is this leading to? Are those definitions helpful or misleading? In the sense of a 
functional definition they are only helpful as a general description of what to do. As an 
application designer they are only stating what they are doing anyway: trying to figure out 
what input is needed to produce the desired output. Hence, it is of topmost importance to 
have some common ground or a common "vocabulary" when talking about what Context 
is. We need some sort of formal approach towards handling and describing Context. 
Furthermore, in a software engineering sense, we need building-blocks for building 
context-aware applications in a structured way. The Context Toolkit [6] by A. Dey is a step 
into this direction and a good example for this principle (fig.1.) The Toolkit includes 
building blocks called "Widgets", wrapper classes for Sensors which serve as a hardware-
abstraction layer, "Aggregators", which concentrate multiple input values to a single output 
value, and "Interpreters", implementing some application logic and generating application 
dependant "higher-level" output based on the input given. They interpret the incoming 
data according to a pre-programmed scheme. 
 

 
 

Figure 1: The Context Toolkit Core Components 
 
With the Context Toolkit, the development of Context-aware applications basically consists of 
several distinguishable steps including  
1) The real-world is sensed;  



2) Context is detected, aggregated, "interpreted", and  
3) Applications are custom-built to match the "context-detection" technology.  
 
However, we believe that there is more tool-support necessary for software engineering and 
the design of Context-aware applications than provided today. We want to emphasize that the 
way applications are developed is very dependant on the underlying technology used, which we 
consider as bad practice in the long run. Research in the direction of decoupling applications 
from data acquisition seems to be important. This is detailed in the section 2, Middleware for 
Context-aware Ubiquitous Computing Environments. 
 
1.3 Role of Knowledge Processing 

Formation of the context information relies heavily on the inter-dependency of the various 
events, entities and other domain objects. A formal approach for context formation should be 
able to recognize these inter-dependencies and combine the current information to form the 
effective context. This sort of an approach would heavily rely on domain-knowledge, the 
performance of a system made along these lines would also be affected by the knowledge 
representation scheme used in such a heavy knowledge-based system. 

The Knowledge processing layer of Auto-CAMUS is mainly responsible for providing these 
knowledge-related services especially storing the domain information and definitions in an 
efficient manner, defining rules for context-processing and synthesis, providing adequate 
mechanisms for transforming the sensed data into useful complex concepts, providing 
efficient means of tracking user-location. These tasks can be considered as forming the 
fundamental aspects of the knowledge processing in a context-aware ubiquitous system. 
Additional functionalities can be defined to cater for more complex tasks which depend on the 
degree of interaction to be kept with the user and his environment. As the amount of 
interaction becomes more intense, so does the need to store more elaborate information, more 
complex mechanisms for context and complex-concept formation increases. In essence the 
Knowledge-Processing layer forms the brain of the system.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure-2: The Auto-CAMUS architecture 

 
The current Auto-CAMUS architecture, as shown in 
figure-2, incorporates the knowledge processing components at all stages. The extraction of 
features and their conversion to context information forms the core operation of the 



knowledge processing layer. This task is achieved by the collaboration between the ontology 
repository, the feature-extraction layer, the reasoning modules. The reasoning modules range 
form general reasoning mechanism to specialized reasoning mechanisms such as the location 
reasoning module.  The knowledge processing layer is responsible for carrying out all the 
needed tasks and then providing the outcome in the form of general or specific context 
information to the service delivery layer which in turn is responsible for invoking the required 
services as mentioned by the application. 
The knowledge processing layer requires very intensive computations for carrying out these 
tasks, it is needed to implement these knowledge-processing in a computationally efficient 
manner, thus there is a trade-off between the preciseness of the results and the speed with 
which the computations are performed. 
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C h a p t e r  2  

DATA REPOSITORY IN AUTO-CAMUS 

 
2.1 Motivation 

Ubiquitous data management has a lot of challenges, which are not there in conventional data 
management application. The following list outline a few challenges, this list by no means 
complete. The ubiquitous application area is growing and a lot of challenges are still on the 
way. 
 

 Users are moving from place to place (Location Awareness, High Mobility)  
 Data are stored in many places. (High Distribution) 
 Various devices are with different capabilities and they use different means to 

store/access data. (High Heterogeneity) 
 Users cannot consistently control all the smart spaces he ever interacted with. (High 

Autonomy) 
 Users generate certain data and may want to access others. (Sharing and Collaboration) 
 The context of data is also important (Context Awareness) 
 The source of data must be known (Provenance) 
 Others: resource-constrained devices, unreliable connectivity and light weight 

communication and security measures. 
 
Auto-CAMUS has a central repository to maintain data with context. Data is captures by 
lowest layer through different sensors and given to second layer which build context from that 
data using OWL Ontology. This context-mapped data is pertinent to query the context later 
on. The data repository is responsible to maintain this data for future uses. How would this 
repository attack all the challenges will be discussed later in this report? 

  



2.2 Architecture 

 
 

2.3 Meta Data Management  

The Meta Data is very important in Auto-CAMUS as it gives an open way to accessibility and 
understanding of the data present in the repository. Metadata can provide richer searching and 
other services within a service and the glue for integration across several services. There are 
several key standard for maintaining metadata, we are using RDF based metadata to define and 
store data related to context and reasoning engines. The metadata is a separate storage in the 
repository that can be very helpful in migrating this metadata to some other application.  

 

2.4 Data and Knowledge Management 

The focus of data and knowledge management in Auto-CAMUS repository is ‘doing the thing 
right’ instead of ‘doing things right’. It does cater to the critical issues related to adaptation, 
maintenance and manipulation of both data and knowledge present in the repository.   In 
ubiquitous application the very nature of data required a lot of care and hence the data and 
knowledge management process and procedures and very important in this regards. One of 
the main issues in pervasive computing is that how to manage the context data over a large 



number of domains. A ubiquitous computing system can consist of many subsystems running 
on various domains such as home domain, office domain, university domain, etc. Furthermore, 
many ubiquitous systems can collaborate with each other to build a large pervasive 
environment. The use of ontology can help sharing the knowledge about data among different 
domains and systems. However, such a distributed and dynamic environment requires an 
efficient mechanism to store and retrieve context data over multi-domain repository and at the 
same time we also required the metadata of this multi-domain to assimilate and understand 
different domain and context within these domain. 

2.5 Knowledge Sharing and Querying  

The knowledge sharing and querying process in Auto-CAMUS is very simple and elegant. 
Each access for querying and sharing requires going through the metadata interface and getting 
the required information access criteria from there, and then the actual access is being made 
depending upon the nature of query and information share.   

2.6 Provision of Summary Data 

Auto-CAMUS offers context summarization and garbage collection for the un-referenced and 
redundant context data. Similarly a variety of different reasoning engines are available in Auto-
CAMUS to apply different type of reasoning required by any application, which is running on 
top of Auto-CAMUS.  Summary data provide a lot of ease in information retrieval. Question 
arises here what to summarize and how to summarized the required data.  The provision to 
keep summary data in the repository is there and the query processing exploits the fast that this 
summary data can decrease the query time.  

2.7 Conclusion 

In this chapter we discussed the role of repository in Auto-CAMUS, we are still evaluating 
different databases for performance reasons. There is no standard repository available to store 
and manipulate ontological data. The methodology we suggested here is a framework for 
knowledge management is ubiquitous environment. The selection of the repository is still on 
going project and will be incorporated in the next version of this technical report.  

 
 



C h a p t e r  3  

CONTEXT SUMMARIZATION AND GARBAGE COLLECTING CONTEXT 

3.1 Introduction  

The idea of Ubiquitous Computing [1] is gaining the popularity with every passing day. Several 
research groups are developing their own ubiquitous computing projects [2] [3] [4] [5]. 
Ubiquitous (or pervasive) computing provides a computing environment where computing 
resources are spread through out, present everywhere in the environment and providing 
services to user seamlessly & invisibly without any explicit user intervention. A ubiquitous 
computing environment, thus, contains a number of devices, sensors, and software systems.  
 
Context Awareness is among the foremost important features of any ubiquitous computing 
environment. In order to provide appropriate services to user, an application needs to be 
aware of the user and environmental context. Similarly at lower levels of abstraction, an 
application (or middleware) is also required to be aware of the computational context including 
device and network state. So what is ‘context’ itself? We take context as the ‘implicit situational 
understanding’ and consider all the information that defines a situation as context. So, location, 
temperature, network bandwidth, device profile, user identity can all be taken as the context 
information or simply context. 
 
Since a Ubiquitous Computing system needs to deal with such huge and diversified 
information (context), there should be an appropriate context model to define, represent, and 
store the context efficiently in some context repository. The management of context 
information and data in ubiquitous computing imposes lots of issues and challenges. M. J. 
Franklin [6] has identified a number of such issues in ubiquitous data management such as 
those posed by adaptivity, ubiquity, mobility and context awareness  
 
We approach the context (or data) management in ubiquitous computing from a different 
perspective. We are working on to identify the relevance and significance of information that a 
ubiquitous computing system receives from sensors and its surrounding. We believe that 
identifying and removing the irrelevant context (we call it ‘garbage collecting context’) and 
summarizing the available or incoming context (which we call the ‘context summarization’) 
will result in the improved performance of knowledge reasoning, inference making, machine 
learning and efficient use of computing resource including the storage space required by the 
Context Repository. 
 
3.2 Problem Definition 

Usually a ubiquitous computing environment comprises of a number of different sensors 
providing context information like  

• Environmental context (temperature, pressure, light), 
• Audio,  
• Video,  
• Location context,  



• Computational context (network bandwidth, underlying operating system, hardware 
specification)  

• The list goes on and on… 
 
The context information comes in a continuous stream with each sensor emitting the data 
regularly (at least during some interested activity). We are heading towards flood of context 
data. Such a huge amount a data requires proper management and should be dealt with great 
care. At this point, we need to answer what to do with such a huge amount of data? Do we 
need to store all of this data? More importantly do we really need such a large amount of data?  
 
Several data items sensed from the environment are required for some instant processing and 
reasoning, e.g., the presence of a person can be used to trigger the activity of turning lights on 
or caching the data related to the particular user. But most of the time, we also need to store 
the context for later use; knowledge reasoning, inference making and machine learning. For 
instance, we may need to keep the context of user presence for some on going (near future) 
activities, we may also need to store this information to reason about what she is doing and to 
make the inference what she might be up to. We also need this and other related context 
information (like time, and other activity details) for machine learning. Using various similar 
activities, a system can extract the patterns of activities and use such patterns to infer expected 
user intentions.  
 
But storing all such context information imposes several issues. First, it requires considerable 
amount of storage space. Since ubiquitous computing systems are essentially distributed, 
therefore, migrating larger amount of data puts significant burden over network traffic. 
Secondly, the query processing and data retrieval on large context repository requires 
significant computing resources decreasing the overall throughput of the system. Thirdly, 
several contexts needs to be discarded and should not be stored permanently. For example, the 
data with low precision, because of noise, needs to be filtered out before sensitive operations 
(e.g., heartbeat rate of a patient). Privacy control also prevents us from storing each and every 
information, e.g., the information that user is in washroom. Lastly, the performance and 
efficiency of techniques such as knowledge reasoning, inference making and machine learning 
depends heavily on the size of supplied data.  
 
So what can be done then? We present our proposed solution to cop up with such issues. 
 
3.3 Proposed Solution 

First we need to identify the low precision, irrelevant and redundant context and the one that 
is no longer useful and remove such context information. We call this process as Garbage 
Collecting Context (GCC).  
 
Secondly, we need to summarize the actual (raw) context in such a way that it is more 
meaningful, can be used more efficiently for reasoning, etc and takes up less storage space. We 
name this process as the Context Summarization (CS). 
 
A simple analogy is the human behavior towards the received news. Every day, we read a lot of 
news in newspaper, on internet and through television. But do we (need to) remember all the 
words and information that make up a particular activity or event? What we actually (need to) 



remember is some compact information about a particular event that what has actually 
happened. For example, Bob watches a soccer match for 70 minutes with a lot of attention but 
after the match is over, he does not remember exactly what had happened in the 14th minute 
of the game. What he actually remember is some pattern or a summary of the match like who 
has won the match, few ups and down during the match and how many goals were scored and 
by whom. This is very close to what we mean by Context Summarization that instead of 
storing each and every raw information, only keep the summarized and meaningful context 
information. Coming back to the scenario, after the match is over, Bob tends to forget some 
information, for example, how far did the ball go when Player X kicked it and who received it. 
Also, as time goes by, he also tends to forget more details like a spectator had broken in to the 
game field. This act of discarding irrelevant information is analogous to the concept behind 
Garbage Collecting Context 
 
In the following subsections, we will discuss, in more detail, about Garbage Collecting Context 
and Context Summarization. 

3.3.1 Garbage Collecting Context (GCC) 

Garbage Collecting Context is analogous to the concept of garbage collection in programming 
languages [7] [8] where we try to identify the memory areas no longer needed by a program 
and free it. Similarly in GCC, we try to identify the relevance and significance of context data 
and filter out (remove) the irrelevant, redundant and useless context.  
 
Garbage Collecting Context can be used at various places. It can be used to filter out the noise 
in the data, i.e., the data with low precision so that it does not affect the efficiency of system 
actions taken on the basis of incoming context. For example, in some hospital system if a 
particular context value of the heartbeat rate of a patient is not sensed accurately because of 
some noise and interference, we should discard it before entering the system. Several systems 
[5] provide the precision value or the probability of the correctness of sensed value which can 
be employed.  
 
Garbage Collecting Context (GCC) can also be used to identify and remove the context that is 
no longer needed by an application. For example, if in an application, we are getting and 
storing temperature values after every 5 minutes then an application may not require such 
context information for a large period of time. It might be useful to discard this history after 
certain period of time say 3 days. But generally, discarding information is not considered as a 
good idea; therefore, here we can employ the idea of context summarization and replace the 
raw history with this summarized history.  
 
Privacy control can also be dealt using the Garbage Collecting Context. In this case, certain 
privacy policies determine which context should not be stored and included in the system 
processing and should be discarded. For example, the location of user in private places (like 
washrooms) and activities during the lunch break should not be processed and stored 
permanently in the system. Similarly, the list of private telephone calls received and made by 
the employees (e.g., to or from family members) should not be preserved by the system.  
 
Garbage Collecting Context (GCC) Manager is a strong candidate to deal with such issues and 
solve them efficiently.  



 

3.3.2 Context Summarization (CS) 

Where Garbage Collecting Context (GCC) identifies and removes the irrelevant and 
insignificant context, the Context Summarizer (CS) operates on the incoming and existing 
context data to  
extract the useful information from the original data, and 
convert existing context information to more useful form  
 
so that the output context consumes less storage space and improve the performance and 
efficiency of query processing, data retrieval, reasoning mechanism and machine learning. The 
summarized context thus produced, replaces the existing raw context. 
 
3.4 Context Summarization (CS) 

Lets consider an example of context summarization. Consider a temperature sensor emitting 
the temperature value after every 5 minutes. We can simply store this as it is coming. Table 1 
demonstrates this case. 
 
Table 1. Temperature values stored after every 5 minute  

Time Temp. 
12:05 23 °C 
12:10 21 °C 
…   
15:35 15 °C 
…   
 
 
Using Context Summarization, for example, we can summarize this information and group on 
the daily basis. Table 2 demonstrates one such implementation 
 
Table 2. Temperature values stored daily  

 

Date 
Avg.  
Temp 

Max. 
Temp 

Max. 
Temp At

Min. 
Temp

Min. 
Temp At

12/01 8 °C 14 °C 15:15 2 °C 04:35 
12/02 7 °C 15 °C 14:55 0 °C 06:05 
12/03 9 °C 13 °C 12:40 -1 °C 03:50 
…       
 
 
Another possible implementation could be achieved when a day is divided into several periods 
like morning, afternoon, evening, early night and late night and context information is kept for 
each such period. Table 3 demonstrates such approach 
 



Using the similar concept, location and computational environment context (like network 
bandwidth and processor load at a particular time) can also be summarized.  
 
Table 3. Temperature values stored for different periods of day  

Date Period 
Avg.  
Temp 

Max. 
Temp

Min. 
Temp

12/01 Morning 5 °C 8 °C 3 °C 
12/01 Afternoon 10 °C 14 °C 8 °C 
12/01 Evening 9 °C 11 °C 7 °C 
12/01 Early Night 7 °C 8 °C 5 °C 
12/01 Late Night 4 °C 5 °C 2 °C 
…     
12/04 Morning 4 °C 8 °C 1 °C 
12/04 Afternoon 8 °C 11 °C 5 °C 
…     
 
 
The above examples demonstrate the summarization on historical data, i.e., the data that has 
been recorded earlier. The context summarization can also be used as the data is received from 
the sensor. For example, when receiving the data from some audio and video sensors we can 
summarize it by extracting the useful information from it. With audio, we can extract 
information like Intensity, Spectral centroid, Transient detection, Low Energy ratio and Audio 
type (Music, Talk, Telephone Ring, etc). From video sensor, we can extract information like 
Pixel percent change, Pixel change variance, Motion pattern, Luminous intensity, etc. As a 
result, instead of storing the complete audio & video context, we can summarize it and only 
store the relevant information that what the particular audio and video data represent.  
 
One of the benefits of performing the context summarization is reduced storage space. Such a 
compaction of data repository will save significant amount of storage space which will result in 
the faster query execution and data retrieval. It will also make the data migration in distributed 
environment more efficient as the larger the size of context data needs to be migrated the 
more will be the burden on network traffic. But this is not the only motivation for context 
summarization. After all, storing the data in Giga Bytes (GBs) is not much a problem in terms 
of storage space.  The primary motivation behind the idea of Context Summarization (CS) is 
to store only the relevant context information in such a way that it is more useful for context 
consumers.  
 
Reasoning about the context and drawing inferences based on the context is the primary 
reason why we are keeping the context in context repository in first place. Reasoning and 
inference making are the primary tools for providing context aware services to the user. For 
example, if a ubiquitous computing system knows that when Bob comes to his office in the 
morning, he likes to check his emails, then a system can start downloading his emails when 
Bob enters the room in the morning. What makes a reasoning engine perform more efficiently 
is the amount of source data and the quality of supplied data. We believe that if the context 
summarization is done properly according to the nature of target context then it will result in 
less data; optimized for reasoning and inference making. Likewise, machine learning also 



depends heavily upon the historical data and if it is supplied with relevant, compact and 
optimized context data (by context summarization) then it is also expected to perform better 
and will provide efficient results 
 
Context Summarization is a goal driven task, i.e., if we know why we are summarizing the data 
and for what purpose it will be used, then the method opted is likely to produce more efficient 
results. In short context summarization is the process of transformation of raw context data 
into summarized more useful, relevant context data. Figure 1 depicts this 
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Figure 1. Context Summarization (CS) and Garbage Collecting Context (GCC) Process  

3.4.1 Instantaneous & Delayed Summarization 

Context Summarization can be classified into ‘Instantaneous’ and ‘Delayed’ in terms of 
when the summarization is applied. In Instantaneous Context Summarization, the context 
is summarized instantly as it is received from the context sources; sometimes, even before it 
being stored in the Context Repository. For example, the summarization of audio and video 
context (as discussed earlier in this section) comes in this category. Instantaneous Context 
Summarization is usually irregular and event-based and is performed more frequently.  
 
Delayed Context Summarization is usually performed on the context already stored in the 
context repository. The summarization of temperature (as discussed earlier in this section), 
location, humidity and available network bandwidth comes in this category. Delayed Context 
Summarization, usually, is regular and periodic, i.e., performed in the background after a 
certain regular interval or at some pre-specified time. Delayed CS is usually performed less 
frequently and may consume considerable amount of computing resources 
 
Figure 2 demonstrates the flow of context in Instantaneous & Delayed context summarization 
 
 



 
Figure 2. Instantaneous & Delayed Summarization 

 

3.4.2 Three Levels of Summarization 

Context Summarization can be performed at three levels. First of all, summarization can be 
applied at the sensor layer by summarizing the context information just as it is received from 
sensors. The summarization of audio/video context through feature extraction can be carried 
out efficiently at this level. Secondly, the summarization can be carried out at the middleware 
level when the context has been retrieved from the sensors and system environment and 
stored in the context repository. The summarization of numerical valued contexts (like 
temperature, pressure, available network bandwidth, etc) through aggregation and 
generalization techniques and that of location and activity information through pattern 
identification can be performed at this middleware level. Finally the summarization can also be 
carried out at the application level. Here the application specific logic specifies how to carry 
out the summarization and on which context information. The summarization of user and 
device profile through categorization technique falls under this level of summarization. Figure 
3 depicts the three levels of context summarization 
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Figure 3. Three Levels of Context Summarization 



3.4.3 Autonomic Context Summarization 

Context Summarization is purely done for the ubiquitous systems internal use; hence it must 
be managed by the system with the least possible involvement of the human administrators. 
Our context summarization model [21] is policy driven where context summarization 
techniques exists as self managed components with each serving each different category of 
summarization. The administrator only specifies the policies through meta-data for each 
context type and the system configures itself accordingly. The system do not remove the 
context history just as it summarizes it but keep it in the secondary or backup storage and 
performs the lazy deletion as the history gets matured, thus providing system the ability of self 
healing which proves handy when something goes wrong. Thus our model justifies the self 
configurability, self management and self healing properties of IBM Autonomic Computing 
System model [22]  
 
3.5 Techniques of Context Summarization 

Now we will present various techniques that can be employed for Context Summarization in 
ubiquitous computing systems. We have identified several categories of context information 
based on the similarities in the context information and nature of context. Each technique is 
designed for a particular category of context and depends upon the nature of the context.  

3.5.1 Aggregation 

In aggregation, the history of context information is aggregated to generate compact and 
consolidated context. Numerical context types like temperature, light intensity, pressure, 
humidity, available network bandwidth and state of current system resources can be 
summarized using this technique. In previous section, we have demonstrated how this 
technique can be used to summarize numerical context information history.  
 
Aggregation is a delayed, regular and periodic type of context summarization, which usually 
works in the background periodically after certain time interval or at some specific time and is 
usually less frequent. The Aggregation Context Summarization removes the original (raw) 
context after the context summarization has been performed.  
 
Note that aggregation is performed when the context information has become the history and 
is not directly useful for application. Such historical information is useful mostly in identifying 
user preferences, machine learning and adaptation, reasoning and inference making.  

3.5.2 Categorization 

This technique of context summarization categorizes different context entities and summarizes 
the context values of these entities. For example, context information like user profile and 
device profile can be categorized to form user or device groups having some similar properties. 
In this way, we can identify the activities and features of a particular group or category like we 
can track the network bandwidth utilization by some particular user group (say doctors) or by 
some particular device group (say PDAs) during office hours.  
 
Categorization is delayed and usually static type of context summarization, i.e., it is not 
performed and changed frequently. Categorization can be performed at system startup by 
some human or the system can learn itself and define categories as it is executed for elongated 



period of time. In any case, the categorization supports Machine Learning and higher level 
reasoning. Unlike other techniques, Categorization does (should) not remove the original 
context information such as existing user or device profiles.  

3.5.3 Context Extraction 

In Context Extraction, useful and interested context is extracted from continuous context 
streams such as audio and video streams. For example, Context Extraction can be applied to 
video stream received from video sensors like Camera, Webcam to extract features like pixel 
percent change, pixel change variance, picture motion pattern (such as stable, regular, irregular), 
luminous intensity, etc. In the similar way, audio context can also be summarized.   
 
Context Extraction is an instantaneous, irregular and event based context summarization. It 
can start at any time whenever an interested activity starts. Unlike other techniques of context 
summarization, it can be triggered even before the context is stored in the context repository. 
In fact, it may discard the original (or raw) context even before it being stored in the 
repository; hence resulting in only storing the extracted features and not the original data. It 
results in saving a lot of storage space but may take considerable time in doing so. Some 
ubiquitous computing projects [16], including our project Auto-CAMUS [5], have been using 
this technique for some time.  

3.5.4 Pattern Identification 

Context information can be summarized by identifying existing patterns in the context 
repository or history of activities. For example, the location context can be summarized using 
this technique. Consider the location context history stored in the context repository as 
depicted in Table 4 
 
Table 4. Location Context History of Users and Rooms  

 
Time User Room 
09:05 1 1 
09:02 2 1 
09:02 3 1 
10:08 1 2 
10:37 5 2 
10:59 6 3 
11:26 3 3 
11:44 3 3 
…   
 
 
Using pattern identification, a system may deduce the pattern of user’s location during week 
days and come out with something as presented in Table 5. 
 
Table 5. Pattern Identification for User Location  

 



Time Period 
User Room Probability

From To 

09:00 12:00 1 1 0.76 
13:00 17:00 1 1 0.83 
09:00 12:00 2 2 0.67 
13:00 17:00 2 1 0.89 
14:00 19:00 4 3 0.36 
…     
 
 
In the similar way, system can find the pattern of room occupants during various time periods. 
Using categorization along with pattern identification, system may also infer which user group 
(doctors, programmers, operators) occupies which room at different time periods.  
 
Pattern Identification is again delayed, regular and periodic class of context summarization, i.e., 
it is invoked periodically after certain time interval or at some pre-specified time and works in 
background. It is resource intensive and thus, performed less frequently. On the positive side, 
it results in reducing considerable amount of storage space and also supports higher level 
inference making, machine learning and in predicting future intentions of a user or expected 
behavior of a device in the current situation. As mentioned earlier, pattern identification works 
on the existing history of context and replaces the larger history with patterns of activities.  

3.5.5 Generalization 

In generalization, we map various ranges of context values to a general higher level context. 
For example, we can map the raw temperature, network bandwidth and user movement speed 
to general concepts as presented in Table 6, 7 and 8 respectively. 
Table 6. Generalization of Temp. Range 

 
Temp. Range 
(°C) 

Generalized 
Weather 

20 ~ 30 Hot 
10 ~ 19 Moderate 
  0 ~ 9 Cold 
 
Table 7. Generalization of Network Bandwidth 

 
Network Bandwidth 
Range Available 

Generalized 
Network Traffic

1 mbps or more Mostly free 
500 kbps ~ 1 mbps Moderately used 
Less than 500 kbps Busy 
 
Table 8. Generalization of User Movement Speed 



 
User Movement 
Speed (km/hr) 

Motion 
Pattern 

  1 ~ 5 Walking 
  6 ~ 15 Running 
16 or more Rushing 
 
 
The examples presented, until now, only contain the one to one mapping of the context values 
to higher level context (or concept) so where is the summarization in this technique? Actually 
generalization is an instantaneous kind of summarization performed between the sensor and 
middleware. This real time summarization only supplies the values to middleware when there 
is the difference of context general state. For example, suppose the generalization CS module 
informs the middleware that the current room temperature is moderate then it will only re-
inform the middleware (and thus the system above) when the temperature general state is 
changed from moderate state (to cold, hot or other).  
 
This type of summarization will definitely reduce the processing burden from the middleware 
in addition to saving the storage space used otherwise for keeping each and every sensed 
temperature value in the context repository. Generalization is mostly instantaneous kind of 
summarization working between the sensor layer and middleware. We can combine 
generalization technique with other techniques like Aggregation and Pattern Identification to 
further optimize the system performance. 

3.5.6 Drift Calculation 

This technique calculates the drift or the change of behavior of contextual activities from some 
fixed known points. For example, consider the network bandwidth of a particular server 
monitored regularly in a ubiquitous system. The server is supposed to have 1 Mbps network 
speed. The system hourly monitors the available speed. With drift calculation, we can calculate 
the drift rate of the network speed during peak hours, normal hours or the average drift from 
the assigned speed. The system, for instance, may find that during peak hours 5 pm to 10 pm 
the drift rate is 20% else the drift rate is less than 10%. Now we can keep only this drift rate 
into the context repository as inferred result from the network speed monitoring.  
 
Similarly, drift calculation is also useful in identifying the user preference. The system can 
calculate how often the user behavior is different (drifts) from the system assumed behavior. 
For example, a system may calculate how often it makes appropriate decision for user’s 
favorite TV show or other user intentions and keeps on recording the drift in the context 
repository. 
 
Mostly drift calculation is delayed summarization and is performed at middleware level. It is 
especially useful for application adaptation for user preference and machine learning. 
 
3.6 Related Work 

Unfortunately, Garbage Collecting Context (GCC) and Context Summarization (CS) have not 
yet got the attention of researchers. One primary reason is that most of the ubiquitous 



computing systems are academic projects and are still in the phase of development. Not many 
systems have been deployed in real environment and actually used for elongated periods. The 
issues identified in this work come in front only to one’s attention when the actual system is 
deployed and run for considerable time in real environments. Also, the focus of research 
community in ubiquitous computing is not towards the context data management, its 
techniques and issues in this field. Most of the research is still going on in finding ways to 
make ubiquitous computing operational in first place.  
 
Several existing ubiquitous computing systems support features like noise filtering, privacy 
control, feature extraction [9] [10] [5] but we believe that using separate components for GCC 
and CS with clearly defining the responsibility of each component will produce better results; 
mainly because of the separation of concerns. Also the perception provided by GCC and CS 
attacks the issues in different and clearer way. 
 
In Database Management Systems (DBMS), there are techniques that deal with similar 
problems. Data mining [11] and data ware housing [12] use the concept of histogram [13] and 
multidimensional views of database and work on the aggregate, consolidated data instead of 
raw data to support the higher level decision making and to identify the hidden patterns in the 
data. This can be considered as related to the idea of context summarization. Hence, when we 
extract underlying meaning from the context data, it can be considered as something like 
‘Context Mining’ where we extract higher level context from the lower level context. Online 
Analytical Processing (OLAP) and data mining is not done on the actual data but on the 
historical, consolidated and aggregate data while we are performing the context summarization 
on the actual context. The goal of data mining and OLAP is somewhat similar but we want to 
transform the raw context to summarized form taking less storage space and provide 
improved and efficient reasoning and machine learning. Anyhow, the concepts explored in the 
field of data mining and OLAP are highly useful for the Context Summarization. 
 
Researchers in DBMS have also analyzed the time series data streams for very large databases 
[14] [15]. Here, they analyze the data coming in continuous streams with time. They have 
proposed solutions on how to manage, represent and store the time series data streams. This is 
also highly related to the context summarization.  
In traditional DBMS, the data is seldom deleted. But in our context summarizer, we do 
remove the raw context once it has been summarized and higher context have been extracted. 
We believe that we can afford to remove certain context data in ubiquitous computing 
environment and replace it with summarized information. Why? The answer lies in why, in 
first place, we are storing the context? We are storing the context and maintaining context 
history so as to reason on context, draw inferences from the context and make the machine 
learn. As we mentioned above that if the context is summarized properly, keeping the target 
usage in mind, the application can reason, infer and learn about the activities more efficiently 
as what they need is the history and consolidated data which we are providing as a result of 
context summarization.  
 
3.7 Proposed Model for GCC and CS 

In this section, we will present our proposed model for designing and developing Garbage 
Collecting Context (GCC) and Context Summarizer (CS) and provide few implementation 
guidelines.  



 
The first question, while designing and developing the GCC and CS, is should these 
components be part of middleware or not? We believe that making these components part of 
a middleware will yield us the re-usability of design and code and the specific applications will 
not be required to re-write all the logic and code again. 
 
We prefer designing these components (GCC and CS) as frameworks [17] [18] so that 
applications only need to provide the hotspots (areas of specification) for their specific needs. 
Hence, Garbage Collecting Context (GCC) can be developed in such a way that application 
specific techniques for Noise Filtering and Privacy Policies can be induced even while the 
application is operational. XML provides a good solution to specify which kind of data can be 
considered as garbage. For example, an application can specify, through XML, that from 1 pm 
to 2 pm, there is a lunch time at room X, so the location and other activities of users over 
there should not be monitored. The GCC contains some pre-specified noise filtering 
techniques and privacy policies while newer or updated policies can also be inducted in it 
exploiting the framework based design of GCC module. Figure 4 shows the proposed 
architecture of Garbage Collecting Context (GCC) module. 
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Figure 4. Garbage Collecting Context Module  

The GCC retrieves context data from Context Repository (CR), identifies noise (corrupted) 
context using its Noise Filters (NF), applies Privacy Policies (PP) to remove privacy sensitive 
context and updates the context repository. Depending on the implementation, GCC may not 
actually delete the context as it identifies the context as garbage but only mark that particular 
context information and later remove the context or move such context to some other 
repository for some human or system analysis.  
 
Context Summarizer (CS) can also be developed with the framework technique. There are 
various context summarizer sub-modules for each different category of context. We call these 
sub-modules as Context Category Summarizer (CCS). Each CCS is responsible for dealing 
with each different category of context. Thus temperature, humidity, network bandwidth, 
luminous intensity can all be summarized using a single Context Category Summarizer (CCS). 
Context Summarizer (CS) is supplied context information along with Context Meta-Data 
(CMD). This context meta-data, usually represented through XML, specifies the type (or 
category) of supplied data, so that the CS may decide which Context Category Summarize 
(CCS) should be used to summarize this context information. All Context Category 
Summarizers (CCS) implement a particular interface so that the CS can access each of the CCS 
uniformly. Because of the framework based design of the CS, new CCS can be added and the 
existing CCS can be updated while the application is operational. Figure 5 shows the 
architecture of Context Summarizer (CS). 



 

 
Figure 5. Context Summarization Module  

 
Context is received from various context sources like sensors, computational and departmental 
infrastructure. The received context is then stored in some Raw Context Repository (RCR). 
Context Summarizer (CS) usually receives the source context data from this repository (RCR), 
summarizes and stores it in a separate repository called Summarized Context Repository (SCR). 
In practice, the RCR and SCR are not physically and logically different databases. Instead, they 
are managed in separate database tables, in case of related database management systems. 
Figure 6 presents the flow of Context in the presence of Context Summarizer.  
 

 

 
  CS Module 

   
  RCR

1.Get Raw Context

Data from
Context Sources 

3. Remove Raw 
Context

2. Summarize & Store 

   
  SCR 

CCS  Context Category Summarizer sub-module
CMD  Context Meta Data 

Stores

 
 
          CS Module 
CC CC CC

CC CC CC SCR

Receives

CMD Data from
Sensor 

RC

RCR  Raw Context Repository 
SCR  Summarized Context Repository 

Figure 6. Context Flow in case of Context Summarizer  

 
We are using our middleware Auto-CAMUS [5] to apply the context summarization. The 
interaction of summarization module with other components of middleware is presented 
in Figure 7. 
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Figure 7. Interaction with other middleware modules  
 
First we extract features (unified representation of sensory data) through our Feature 
Extraction Agents (FXA) and store all these features in Feature Tuple Space (FTS)  which is 
an in memory repository of current context or the latest information received from sensors. As 
a new instance of information is inserted in FTS, the older one is transferred to the Context 
Repository (CR) represented using ontology in OWL through Feature-Context Mapping Layer. 
From then, all the middleware modules (reasoning engines, middleware services) and 
application access this information from the context repository. As data is stored in the 
repository, we summarize this information timely and store back to repository. One approach 
(used in case of temperature, humidity, etc) the raw information is removed from the 
repository and only the summaries or aggregates are used to answer queries. Another approach 
is to keep multiple summaries of different strength are kept and used to reply the query with 
appropriate confident values. A hybrid approach can also be used in which both summaries 
and raw information are kept; specific or precise queries are answered from raw data while the 
general queries are answered through summarized information 

3.7.1 Query Translation 

Context Summarization modules change the context repository and form data units with 
different schema than the original one. How can context consumers cater with this? How do 
they know whether particular information is in summarized state or it is still in raw form? As in 
Figure 2, there is a special module called Query Translation (QT) which encapsulates context 
repository (CR). All other modules (CS, Reasoning Engine, Applications, etc) interact with 
repository through QT. Query Translator makes all the access to CR transparent, i.e., even the 
modules and applications are not required to be aware of summarization process. It keeps 
track of partition of summarized and raw data and directs the access to these accordingly by 
intercepting each and every access to CR. If the required data has been used in the 
summarization, it directs the queries to the summarized data repository. The results produced 
due to QT are not 100% accurate; hence it also returns a confidence value with each query 
result. Further, a query may also specify the minimum degree of confidence for the required 
results.  
 



3.7.2 Context Category Summarizer (CCS) 

Each category of context is summarized by a particular Context Category Summarizer (CCS); 
hence there is a different CCS for aggregation, pattern identification, etc based information. 
For example, temperature, available network bandwidth and noise level can be summarized 
using aggregation based CCS. Each CCS instance contains  
(a) summarization algorithm,  
(b) general parameters (key field, required fields, etc), 
(c) specific parameters (source & target data source, summarization strength, time interval for 
repeated invocation of summarization),  
(d) query translator for summarized information 
Context Summarization Manager also maintains a list of context information used by different 
CCS for summarization, an example for such a table is present in Table 9.  
 
Table 9. List of context information summarized by different CCS 

CCS_ 
ID 

CCS_ 
Instance_
ID 

Context_Type
_ID 

Last_Updated 

017 1 1 (temperature) 09/19/05 05:42 

017 2 4(light 
intensity) 09/19/05 11:37 

019 1 21 (location_A) 09/19/05 17:16 

 
 
Using this list, a Query Translation Manager can identify whether a particular context 
information type is summarized and also if the required data has been in summarized or it is 
still in raw format. Moreover, if the required information is in summarized state, then which 
CCS’s QT should be invoked to get the query result? The general process flow of query 

processing is presented in Figure 8 
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Figure 8. General Process Flow of Query Processing  

 
3.8 Issues & Challenges 

Context Summarization (CS) has its own unique research issues and challenges both at 
conceptual and implementation level. The issues range from questions like what/when/how 
context can be summarized to the performance and security of the ubiquitous computing 
system. In the following subsections, we will identify several such issues and wherever possible 
identify few applicable solutions.  

3.8.1 Performance Overhead 

Perhaps the foremost concern to apply Context Summarization (CS) techniques is the 
performance cost. What will be the performance requirement and what will it provide in 
return? Do the benefits achieved by these methods justify the computing resource 
consumption? We believe that a proper application of CS (like those discussed in section 4) 
will yield the performance improvement and will not eat up many resources. In any case, the 
overall system should not be ceased or hung-up during the execution of CS modules, the 
resources (like context repository) should not be locked for noticeable period of time and the 
regular execution of the system should continue without any disturbance or interruption by 
these modules. But the problem is how to achieve this? We need Context Summarization only 
when there is considerable amount of context information; a considerable amount of context 
means a considerable amount of processing and resource consumption to produce useful 
output. Designing algorithms and techniques to minimize this resource consumption is 
probably the biggest issue in Context Summarization. 

3.8.2 Security & Risks 

Security is the most questionable part of today’s computing systems. What security threats 
would the techniques of context summarization will pose? The CS modules operate totally 
inside the middleware and ubiquitous systems and directly access and modify the context 
information which is the most valued asset of any ubiquitous system. Hence, the components 
and modules must be administered and validated carefully.  
 
About the risks involved, firstly Context Summarization (CS) results in some data and 
precision loss. Failing to compensate this precision lost may result in decreasing the 
performance and overall throughput of the system. Secondly, improper Context 
Summarization may make the reasoning and machine learning even more difficult, 
complicated, inefficient, incorrect and misleading instead of improving it. Finally, CS makes 
changes to the existing Context Repository (CR). Several modules of middleware and 
application might be accessing the CR at the same time. Such a sudden modification might be 
unexpected for these modules and may make them produce unexpected results and must be 
avoided. 

3.8.3 Incorporation of Summarized Context 

Incorporation of summarized context into existing context repository is another research issue. 
The important point to note here is that the summarization process is performed when the 
ubiquitous system is completely operational. The context information might be in use when 
summarization modules access it to summarize and attempt to remove some information 



replacing them with the summarized context. But how the application processing can be 
diverted to the summarized context in between the processing? Our idea is to direct all the 
access to context repository first to the summarized part of repository. If the system 
requirement can not be fulfilled by it only then the access should be forwarded to the un-
summarized part of the repository. The access to un-summarized repository should block all 
the CS modules on this part of un-summarized repository until the request has been fulfilled. 
To avoid such collision, we also recommend making the summarization on context history as 
periodic and scheduled according to the system load. 

3.8.4 Other Issues 

Some other research issues and challenges are; 
• Using ontology for context representation is gaining acceptance in ubiquitous 

computing community [5] [20]. We need to define & implement techniques of CS that 
can efficiently operate on the ontology based context repository [19] 

• How are we going to deal with the distributed and ubiquitous nature of middleware, 
data repository and applications? 

• What are the security, trust and service level guarantees required for systems using CS 
techniques? 

• What could be the possible impacts of these techniques, especially when something 
goes wrong? 

 
In order to make Context Summarization (CS) feasible, we need to solve these issues and 
answer the challenges posed by these concepts.  

3.8.5 Risks Involved 

Garbage Collecting Context (GCC) and Context Summarization (CS) are sensitive in nature as 
they directly access context information and modify it. Information is always one of the most 
important assets of any system and organization. Hence, techniques like these must be applied 
with great care. In this section, we will briefly mention about some risk factors that should be 
considered while developing and implementing GCC and CS techniques 
 
Garbage Collecting Context (GCC) and Context Summarization (CS) both will result in some 
data and precision loss. Failing to compensate this precision lost may result in decreasing the 
performance and overall throughput of the system. 
 
Improper Context Summarization may make the reasoning and machine learning even more 
difficult, complicated, inefficient, incorrect and misleading instead of improving it 
 
GCC and CS will make changes to the existing Context Repository (CR). Several modules of 
middleware and application might be accessing the CR at the same time. Such a sudden 
modification may be unexpected for these modules and may make them produce unexpected 
results and it must be avoided. 
 
3.9 Future Work & Conclusion 

The foremost important issue is the performance cost and the selection of time interval for the 
invocation of summarization. Synchronization of the different CCS modules is also an 



important consideration. If too many CCS modules start performing summarization then the 
overall system performance might degrade. Also there might be some queries for the data that 
is currently being summarized; we are also working on implementing the appropriate locking 
mechanism. Another interesting future work is to implement hierarchical summarization with 
different summarization strength and which allows inter-module negotiation [23] for required 
summarization strength and confidence values for queries. For our future work, we also want 
to use the concept present in [23] for summarization strength negotiation.  
 
In the conclusion, we will say that Garbage Collecting Context (GCC) and Context 
Summarization (CS) are new, interesting and useful research areas and include a number of 
interesting research issues. We have presented both the benefits that can be achieved and risk 
factors that are involved in using these techniques and have also identified four different 
techniques for implementing Context Summarization (CS). We have also presented our 
proposed model for implementing these concepts and identified certain research issues and 
challenges we expect to face. We have concluded that these are sensitive operations and must 
be handled with great care and applied after rigorous testing. Finally, ‘to summarize and how 
to summarize?’ that is the question! 
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C h a p t e r  4  

BAYESIAN REASONING IN AUTO-CAMUS 

 
4.1 Introduction to Bayesian Reasoning 

Bayesian reasoning is based on the celebrated Bayesian rule of conditional probabilities. 
Application of the Bayes’ rule in very complex cause-effect maps requires intense 
computational and memory resources [1]. Bayesian Networks were developed keeping this 
limitation in mind. Bayesian networks efficiently represent the cause and effect relationships 
which exist between the various domain features and at the same time they also provide 
adequate mechanisms for belief updation based on evidences extracted from the domain 
[1,2,3]. Traditional reasoning mechanism like rule-based reasoning do not incorporate 
provision for uncertainty, Bayesian Networks have been designed so that reasoning can be 
performed under uncertain conditions. 
A Bayesian Network consists of variable-set V (discrete/continuous random variables), a 
directed acyclic graph G and a joint probability distribution P defined over all the variables in 
the set V [1,2]. A sample Bayesian Network is shown in figure-1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure-1: A sample Bayesian Network along with the probability distributions. 
 

As the number of variables in a network grow the size of the joint probability distribution also 
grows exponentially. Thus it is better to store the conditional probability of each variable 
conditioned on its parent-set locally, as shown in fig-1. These locally stored probabilities can be 
combined using the chain rule [1,2] to construct the overall joint probability distribution P.  
Bayesian Networks allow a structured representation of all the related concepts in a domain 
along with adequate representation of the strength of this relationship. The main language 
used for representing this strength is the probability calculus and the main motivation for using 
probability calculus comes from the well-formed axiomatic foundations of probability theory 
and the ease with which related beliefs can be combined [2]. 
The inference mechanisms for Bayesian Networks are also very well established and a number 
of inference algorithms exist which can be used to perform inference on sparse graphs. 



Algorithms for performing both exact and approximate reasoning exist and can be used 
depending on the domain being modeled and the requirements. Along with these algorithms 
for inference generation Bayesian Networks can also be learned from data, and similarly they 
also provide adequate mechanisms of adaptation and tuning [1,2]. Adaptation can be viewed as 
online learning, and tuning is parameter adjustment (probability measure) in a supervised 
manner. 
 Bayesian Networks have been used in expert systems, decision support systems, fault and 
anomaly detection for industrial processes, automated planning etc.  
 
4.2 Motivation 

In a ubiquitous environment the system is supposed to infer high-level concepts from sensor 
and device readings. These sensor and device readings provide only very specific data about 
certain environment entities such as temperature, pressure, etc. As the system is unable to 
determine the exact nature of the concept (with complete confidence) the environment can be 
labeled as being partially-observable. For such partially-observable environments employing a 
technique which does not cater for uncertainty would be inappropriate.  
As an example of the above mentioned description of a ubiquitous environment, consider the 
case in which the system needs to infer whether the user is having lunch or not. For inferring 
such an activity it is needed that we have some data about the location of the user, time of the 
day, and some data about his actions. Let’s assume that the system has sensors for estimating 
the location of the user, similarly there are some pressure sensors on the chair in the dining 
room. If now a snapshot of the environment is taken into consideration and we find that the 
chair is indeed occupied, and also that the location of the user is the dining room. These pieces 
of information are not enough to correctly state whether the user is having lunch or not. It 
could be that he is reading some thing, and that he is just sitting there talking over the phone. 
Thus the system is now faced with multiple hypothesis (candidate conclusions) and it is needed 
that one of them should be adjudged as the most likely one. One way to break this tie among 
candidate conclusions is to give a score to each of these conclusions based on experience. This 
would require some data about the habits of the user, where and when he takes his lunch, how 
often he talks on the phone while in the dining room, does he usually reads in the dining room 
while not eating anything, thus the system requires some sort of probabilistic knowledge to 
rate these candidate conclusions. Once these conclusions have been rated the conclusion 
having the highest score can be considered as the most plausible conclusion which can be 
reached given the data at hand. Thus all that a system can do is behave in a normative manner, 
and predict these events in an uncertain manner. A Bayesian network for the example is shown 
in figure-2. 
 
4.3 Where to use Bayesian Networks in  a Ubiquitous Environment 

Bayesian Networks are used for reasoning under uncertainty and should only be used for 
carrying out those tasks which involve a very complex structure of reasoning. They should not 
be used for a task which can be solved without reasoning for example turning on the lights 
when motion has been detected. These kind of trivial tasks do not require much knowledge 
and it would be very costly as far as performance costs are concerned to use a Bayesian 
network for such a trivial task. 



In Ubiquitous environments Bayesian Networks are best suited for accomplishing more 
complex tasks such as activity recognition, conflict resolution in a multi-user environment, 
assessing and modeling situations and advising the best action to take. 
The design of a Bayesian Network is not an easy job, it requires that variables be identified and 
adequately modeled and then probability distributions for the root  nodes be specified a priori. 
This requirement of prior measures can be fulfilled either through experience (a subjective 
guess by the designer) or they must be extracted from a large database of cases (objective 
measure based on recorded cases). Thus the most difficult task in the design of a Bayesian 
network is the specification of these probability measures. As this task requires a lot of skill 
and time it is not possible to model all the functionalities of a ubiquitous system through 
Bayesian networks hence it is needed that they be used only where complex decision making is 
required. 
 

 
Location 

Time 

 
Chair 

 
Activity 

Every node represents a discrete random 
variable and each link contains the conditional 
probability, P(Child|Parent). 

 
Figure 2: A candidate Bayesian Network for the example. 

 
4.4 Bayesian Reasoning in Auto-CAMUS 

Context reasoning provided by the knowledge processing layer of Auto-CAMUS, has been 
designed to accommodate multiple reasoning paradigms, for reasoning about uncertain 
contexts [4]. The reasoning modules can be developed separately and then plugged into the 
context-reasoning layer. 
 

 
 

Figure 3: The design of Auto-CAMUS reasoning layer. 
 



As can be seen from figure-3 that Auto-CAMUS provides a Reasoning Manager for managing 
multiple reasoning modules and a context-aggregator for invoking the reasoning processes and 
also managing the storage and retrieval of the high-level context so formed.  
Another aspect to be considered is the knowledge-representation used in the context-
repository of Auto-CAMUS, currently Auto-CAMUS uses OWL for representing ontologies 
about domain entities. Every reasoning paradigm has its own knowledge-representation so 
there is a need for translating the native knowledge-representation of the system into a 
representation which can be understood by the individual module. Similar translation is also 
needed for storing the high-level context formed through reasoning into the native knowledge-
representation scheme of the system. 

4.4.1 Design of the core Bayesian reasoning module 

The main Bayesian reasoning module consists provides the basic operations for loading a 
Bayesian Network, absorbing evidences from the domain and providing the inferences on the 
basis of these evidences.  
 

+setFileName(in fileName : string)
+getBayesianNetworkName() : string
+setEvidence(in node : string, in attribute : string) : int
+initializeInference()
+initializeInference(in inferenceMethod : string)
+getMarginal(in node : string) : <unspecified>
+removeEvidence(in node : string)
+removeEvidence()

-currentBN
-inferenceMethod
-fileName

BNReasoner

 
 

Figure 4:  The core Bayesian Reasoning Module 
 

The core module is able to handle a single Bayesian at any time instance. The network is 
designed and stored in an XML format. Other functionalities provided by the reasoning 
module is the entry and removal of evidences at any node in the network.  
Various Inference mechanisms such as Pearl’s Message Passing Algorithm [1], Junction Tree 
Algorithm for belief propagation [2], and the Bucket Elimination algorithm [2,3]. The output 
of the inference algorithm is the marginal probability distribution of each variable. This 
marginal probability distribution represents the posterior odds (the belief in the variables’ state) 
corresponding to the evidence entered and the prior distributions. 

4.4.2 The Bayesian Reasoning Manager Module 

As the core reasoning module is able to manage only a single Bayesian network, the task of the 
manager module is to spawn new instances of the core module, so that multiple networks can 
be loaded into the memory and concurrent reasoning can be managed.  
The Bayesian reasoning manager module receives requests from applications, and spawns new 
instances of the core module in the form of JINI™ services. These services are then provided 
the necessary input such as the XML files for the network structure and the probability 
distributions. A sequence diagram which shows the complete working of the Bayesian 
Reasoning process in Auto-CAMUS is given in figure 5. 
 



 
Figure 5: Sequence diagram for the Bayesian Reasoning Process. 

 
The application can interact with the spawned reasoning service directly, and ask for any high-
level inference which it wants.  

4.4.3 Translation Modules  

As mentioned previously there is a need for translating the knowledge maintained in Auto-
CAMUS in the form of ontologies to a form that is required for creating a Bayesian Network. 
As an example consider the following piece of OWL: 
 
 

<owl:Class rdf:ID="InDoor_loc">
<rdfs:subClassOf> 

<owl:Class rdf:ID="Location"/> 
</rdfs:subClassOf> 

</owl:Class> 

 
 
 
 
 

 
Figure 6: Description of indoor location 

 
The above piece of description logic defines the ‘indoors’ as a sub-class of location. One way 
of modeling this piece of knowledge in a Bayesian Network would be to define a discrete 
random variable named location, and represent the “indoor” as a state of this variable.  
Similarly the context information is also represented as an ontology (in OWL) hence it is also 
needed that the higher-level inference generated by the reasoning module should also be 
converted back into the OWL format. Hence translation is needed twice in the reasoning 
process, once when the reasoning is to be initialized and again when the reasoning results are 
to be provided back to the application. 
This translation also defines a mapping for the incoming data from the sensors and devices 
registered with the middleware to the variables in the network. Thus a mapping client is 
needed which can map this incoming data directly to the network nodes and instantaneous 
evidence absorption and propagation can be performed in the Bayesian Network. 
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C h a p t e r  5  

USER PREFERENCE LEARNING  

5.1 Introduction 

The most famous application of Context-aware computing are smart environments, such as 
smart home, smart office, smart campus, etc. Absorbing and developing the key idea of 
ubiquitous computing as well as context-awareness, a smart environment contains a large 
number of invisible sensors and actuators which enable the system to “think and work” base 
on its perception of user’s context. 
 
The logic to go from input to output of a smart system or from the sensor data to context and 
then to control commands depends on each system, each user and each kind of service. 
However, because the most important purpose of a smart system is to satisfy a user, every 
decision will be based on the user’s preference. Therefore learning user preference becomes 
the most important task.  
 
Here we need a formal concept for user preference. User preference can be understood as 
what the user wants the system to do in certain situation. For example, when Alice enters the 
house in a hot sunny day, she wants the air conditioner to be started 10 minutes before that, 
maintain the temperature of 20oC, and the curtain should be closed, while in rainy days she 
likes to open the curtain to enjoy the rain. But as for Bob, he wants the curtain to be closed on 
rainy days, and opened in sunny days.  
 
The task of learning user preference has become very difficult due to many issues.  
First, the preference of user does not static. It changes quickly by time, which makes online 
learning (or adaptation) a crucial requirement.  
 

 
Figure 1: Problem when lack of adaptation.  



Second is the uncertainty, which comes not only from the inaccuracy of sensor data but also 
from the ambiguity of users about their own preference.  
Third, when there are many users in the smart environment, the desire of one user can be 
affected by others. It raises the challenges of distinguishing the preference of each user as well 
as resolving the conflicts among different user preferences.  
 

 
Figure 2: Conflict among user preferences.  

 

 
Figure 3: Distinguish among user preferences.  

To deal with uncertainty in ubiquitous environment, Bayesian network [7] and Bayes theorem 
are widely used. Martin Muhlenbrock et.al. [8] uses a Bayesian approach to infer the notions of 
activity and availability from labeled sensor data in an office environment. The approach is 
rather simple without considering the multi-user activities. In another ubiquitous system 
project, to resolve conflicts for Context-aware Media services in smart home environments, 
GIST [9] proposes Conflict Manager which applies Bayes theorem. In order to resolve 
conflicts among users, the Conflict Manager sums preferences of users who are collided with 
each other and recommends the specific contents ordered by the summed preference. It also 
resolves conflicts among Media services by selecting a Media service with the highest priority. 
Furthermore, Conflict Manager resolves conflicts among Media services occupied to users by 



recommending the Media services. However, this approach lacks of a comprehensive model 
for user preference. 
 
The Bayesian Metanetwork is first proposed by Vagan Terziyan et.al. [10], to select the 
appropriate substructure from the basic network level based on contextual features from user’s 
profile (e.g. user’s location). Two models of the Metanetwork are considered: C-Metanetwork 
for managing conditional dependencies and R-Metanetwork for modeling feature selection. An 
example of this approach is shown in Fig. 4. 
 

 
Figure 4: An combination example of R-Metanetwork and C-Metanetwork 

However, neither adaptation algorithms for Bayesian Metanetwork nor detailed application for 
these models are mentioned. One meta-levels of C-Metanetwork is merely described as second 
order conditional dependencies among probabilistic distributions in previous level (i.e. all the 
nodes are conditional dependencies), and the R-Metanetwork only model the relevant features 
selection in a “Nodes-exist-or-not” manner. The big drawback of this approach is that the 
selection of relevance features and the distribution of conditional dependencies are modeled 
separately in two different Metanetworks, while in real world the change in a Bayesian network 
structure often leads to changes in conditional dependencies. 
The limitations of current approaches raise the need of a method to learn user preference in 
ubiquitous environment which can satisfy following requirements:  
 
- Dealing with uncertainty;  
- Learning correctly and efficiently the preference of each user in a Multi-user environment;  
- Reusable;  
- Utilization of the domain knowledge and user-defined rules;  
- Online adaptation to the newest user preference. 
 
Besides, we see that when combining the preferences of many users, we often base on user 
priority. Priority can be fixed, but normally it changes by time, or by situation; for example a 
sleeping user will be considered more important than others. Hence the context-aware system 
should be able to learn and adapt to the changes of user’s situation-based priority.  
 
To address these issues, we propose a Bayesian RN-Metanetwork (RN stands for Relevant 
Network). A Bayesian RN-Metanetwork consists of many levels. In each level, there are many 
sets of Bayesian networks; the distribution of each set depends on the local probability 



distributions associated with the nodes of the next level network. we use the Bayesian RN-
Metanetwork to learn both user preference and priority at the same time, as well as to resolve 
the conflict among many user preferences.  
 
My approach differs from the previous ones in at least four aspects.  
 
- First of all, by handling the relevant Bayesian network selection, the Bayesian RN-
Metanetwork models can cover both the relevant feature selection and conditional dependency 
distribution at the same time. Its computations are simpler than those of C-Metanetwork and 
R-Metanetwork, but it can be used very efficiently for learning in multi-user or multi-agent 
systems. It also inherits the propagation algorithms of traditional Bayesian network, why in 
case of C-Metanetwork and R-Metanetwork proposal, the old propagation algorithms can not 
be applied, and they also have not given any algorithm for it.  
 
- Second, the Bayesian RN-Metanetwork model is very suitable for multi-agent systems. 
Especially in ubiquitous environments, due to the complex, diverse and open-ended 
characteristic of the system, the multi-agent paradigm brings much more advantages than the 
single-agent paradigm.  
 
- Third, the adaptation algorithm for Bayesian RN-Metanetwork is fully described to adapt the 
model to the continuously changing preference of users.  
 
- Finally, no matter how many users are there in the environment, the priority and preference 
of each user is calculated separately. This is very useful for widening the scale of systems, as 
well as knowledge reuse. 
 
5.2 Traditional Bayesian network 

Probabilistic graphical models are graphs in which nodes represent random variables, and the 
(lack of) arcs represent conditional independence assumptions. Hence they provide a compact 
representation of joint probability distributions. Directed graphical models also called Bayesian 
Networks or Belief Networks [7]. 
 
In addition to the graph structure, it is necessary to specify the parameters of the model. For a 
directed model, we must specify the Conditional Probability Distribution at each node. If the 
variables are discrete, this can be represented as a table (CPT), which lists the probability that 
the child node takes on each of its different values for each combination of values of its 
parents. Consider the following example, in which all nodes are binary, i.e., have two possible 
values, which we will denote by T (true) and F (false).  



  
Figure 5: Example of Bayesian network.  

Bayesian network is widely used in probabilistic modeling and dealing with uncertainty in 
machine learning. Some ubiquitous systems are using Bayesian network to learn the user 
activity, availability, etc. However, this “traditional” approach is restricted to simple use cases 
such as single user activity or single user preference. The next session explains why we need to 
replace the traditional Bayesian network by a Metanetwork, by discussing an example of 
multimedia service preference learning in a Smart Home system. It also introduces the concept 
of Bayesian RN-Metanetwork. 
 

5.3 The Drawback of Traditional Bayesian network in Preference Learning 

Let consider an example of using traditional Bayesian network to learn user preference about 
multimedia service. we assume that the multimedia service preference of user depends on user 
location, current activity, time and is different from user to user. If there is only one user in a 
system, this user’s preference can be modeled by a basic Bayesian network as depicted in figure 
6.  
 

 
Figure 6: A simple Bayesian network to learn multimedia service preference of one single 

user. User’s current activity is also related to user location. 



In this case, it will be very easy for the system to learn the preference of user based on user’s 
commands to select services. Location is acquired from location sensors such as RFID or 
wireless LAN (PDA), and current activity can be inferred using another Bayesian network [8]. 
Then the conditional probabilities in this model will be calculated using Bayes theorem.  
 
However, when many users are present at the same time, there will be conflicts among the 
preferences. When a service is selected, the system can not know whose preference that service 
is. If there are three users in a smart home, one can think about another model to learn the 
user preference which is depicted in Fig. 7.  
 

 
Figure 7:  A Bayesian network to learn multimedia service preference of 3 users A, B, C. Each 

user’s activity can be affected by others’ location (in case of group activities) 

Although a model likes the one in Fig. 7 is easy to create, the size and complexity of the 
network increases exponentially with the number of users and number of features which affect 
the preference. Moreover, using this model the system can not learn the preference of each 
user. In next sub-sections we introduce our approach using Bayesian RN-Metanetwork.  
 
5.4 Bayesian RN-Metanetwork  

The Bayesian network model can be divided into many sub-models, each of which models the 
preference of one single user with no affection from others. Then a Bayesian RN-
Metanetwork will be used to manage the distribution of those sub-models and combine them 
in calculating the final preference.  
 
Definition of Bayesian RN-Metanetwork: The Bayesian RN-Metanetwork is a set of Bayesian 
networks, which are put on two levels in such a way that the distribution of probabilistic 
networks on first level depends on the local probability distributions associated with the nodes 
of the second level network. 
 
The Bayesian RN-Metanetwork is a triplet: 
 

RMBN = (BN0, BNS, R) 
 
where BNS = {BNS1, BNS2, ... BNSn} is a set of sets of Bayesian networks in first  layer and 
BN0 is the second level Bayesian networks; R = {R1 ... Rn} is a set of interlevel links. The 
probability distribution of each Bayesian network is included inside it. Each Ri is a link “vertex 
– network set” meaning that stochastic values of vertex vi in the network BN0 correspond to 
the distribution of one set of Bayesian networks in the first level.  
 



Bayesian RN-Metanetwork supports multi-agent systems. As depicted in Fig. 8, each set of 
Bayesian networks in the first level is hold by an agent. Each agent uses the distribution of its 
Bayesian networks to calculate some needed values, and they communicate with other agents 
through some interfaces. The interfaces consist of common nodes between agents’ networks. 
The mechanism for belief updating in a multi-agent Bayesian network system is described in 
[29].  
 

 
Figure 8: A Bayesian RN-Metanetwork structure.   

The RN-Metanetwork can be freely expanded because any Bayesian network included can be 
itself another Metanetwork.  

5.4.1 Modeling User Preference and Priority using Bayesian RN-Metanetwork  

When many users are present in a smart environment, and each user has his or her own 
preference about a certain service, the last decision to select the service is related to the 
priorities of the users. For example, grandparents have higher priority than their grandchildren, 
so when the grandfather and his grandson are present in a smart home, the room temperature 
is adjusted based on the grandfather’s temperature preference rather than that of the grandson.  
 
Therefore, when modeling the user preference, we also need to model the user priority.  
 
The user priority can be categorized into 2 types: situation-independent priority and situation-
de-pendent priority. Situation-independent priority means that the priority of a user does not 
change when situation changes, i.e. it does not change by time or by place or under any 
condition. In contrast, situation-dependent priority changes when situation changes, such as 
when user changes his place or activity. For example, normally the father has higher priority 
than his son, but when the son is sleeping, the audio volume and light are adjusted based on 
the son’s preference at that time (audio OFF and light OFF).  
 
The user preference in case of situation-independent priority can be modeled using the 2-level 
Bayesian RN-Metanetwork. Fig. 9 shows the Bayesian RN-Metanetwork for modeling user 
preference about Multimedia service in a 2-user system.  
 



 
Figure 9: A Bayesian RN-Metanetwork to learn multimedia service preference of 2 users A, B 

in case of situation-independent priority.  

The model is based on following idea: The priority of one user can be understood as how 
much that user can contribute into the final decision. In the model, the distribution of relevant 
Bayesian networks which model individual user preferences indicates the proportion of each 
user preference in the compound preference. Hence the meta-level of this Bayesian RN-
Metanetwork also models the user priority. We can see that the user priority in this case 
depends only on the user presence. Table 1 shows an example of value of the conditional 
distribution of relevant Bayesian networks (or user priority).  
 

Table 1 
Conditional probability of Used_BN node in 2nd level Bayesian network in Fig. 4. 

Presence_A Y N 
Presence_B Y N Y N 
Use_A_pref 0.5 1 0 0 
Use_B_pref 0.5 0 1 0 
Use_Nouser_pref 0 0 0 1 

 
From the conditional probability table, we see that the two users have same priority. When 
both users are present, each of them contributes 50% into the final preference decision.  
 
In case of situation-dependent priority, the 2nd (or meta) level is replaced by a metanetwork. 
In other words, one more level for learning priority based on situation is added. Fig. 15 depicts 
the Bayesian RN-Metanetwork for the multimedia services preference in situation-dependent 
priority case.  
 



 
Figure 10: A Bayesian RN-Metanetwork to learn multimedia service preference of 2 users A, B 

in case of situation-dependent priority. Priority depends on not only user presence but also user 
activity.    

Tables 2, 3 and 4 show the sample conditional probability of Used_Prio_BN node and 
Used_Pref_BN nodes. Note that the value range of Current activity nodes is reduced for easier 
demonstration (normally we have a lot of activities such as Reading, Walking, Eating, Working, 
etc.).  
 

Table 2 
Conditional probability of Used_Prio_BN node in 3rd level Bayesian network in Fig. 5. 

Presence_A Y N 
Presence_B Y N Y N 
Use_AB_prio 1 0 0 0 
Use_single_prio 0 1 1 1 

 
 

Table 3 
Conditional probability of Used_Pref_BN node when both A and B are present. 

CurrentActivity_
A 

Working Sleeping 

CurrentActivity_
B 

Wor
king 

Sleep
ing 

Wor
king 

Sleep
ing 

Use_A_pref 0.5 0.3 0.9 0.5 
Use_B_pref 0.5 0.7 0.1 0.5 
Use_Nouser_pref 0 0 0 0 

 
Table 4. 

Conditional probability of Used_Pref_BN node in 2nd level Bayesian network when there is 
no conflict. 

Presence_A Y N 



Presence_B Y N Y N 
Use_A_pref - 1 0 0 
Use_B_pref - 0 1 0 
Use_Nouser_pref - 0 0 1 

 
When the priority model is simple and we don’t want to make it redundantly complicated, we 
can use a traditional Bayesian network for the priority model, instead of using 2 layers of 
Bayesian RN-Metanetwork. The traditional Bayesian network for priority model in Fig. 10 is 
illustrated in Fig. 11.  
 

 
Figure 11: Simple Bayesian network for situation-dependent user priority 

The algorithms for calculating the combined preference and learning user preference and 
priority are explained in next sections.  
 
5.5 Probability Propagation and Adaptation for 2-layer Bayesian RN-

Metanetwork  

In this session, we will explain the algorithms for Probability Propagation and Adaptation for 
the basic 2-layer Bayesian RN-Metanetwork. The algorithms are illustrated by computations on 
the model in Fig. 9. 

5.5.1 Notations and Definitions 

The Bayesian RN-Metanetwork in Fig. 14 has parameters: 
 
+ 1st level:  
 
- This level has only one set of Bayesian networks: 2 Bayesian networks modeling the 
preferences of 2 users and one Bayesian network for the case of no user.  
 
- The attributes of the Bayesian networks: Time (denoted T), Location_A/B (denoted Li, i=1, 
2 corresponding to A and B), CurrentActivity _A/B (denoted CAi), ServiceCategory (denoted 
Sx, x=1, 2, 3 for its duplications in 3 networks) and has the values {SV1, ....SVj}.  
 
- The prior probabilities: P(T); P(Li); P(CAi), P(Sx).  
 
- The conditional probability P(Si|T, Li, CAi), i=1, 2 and P(S3|T). 
 
+ 2nd level:  
 



- The attributes: Present_A/B (denoted Pri) represents the Presence of user A/B with the 
values {yes/no}; Pr denotes the set of all Pri.  
 
- The relevance node: Used_BN (denoted BN) holds the probability to have each Bayesian 
model in the predictive level with the values {BN1, ... BN3}.  
 
- The prior probabilities: P(Pr) denotes the probability distribution of the set Pr and P(Pri)  
denotes that of each item in the set.  
 
- The relevance probability: P(BN). The conditional probability P(BN|Pr) 

5.5.2 Probability Propagation  

Given the evidence P(Pr), P(BNx) is calculated as: 
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Then the probability of the target attribute ServiceCategory can be estimated: 
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In other words, the probability of ServiceCategory preference of each user will be calculated 
separately, and then combined with the weight coefficients which are the distributed 
probabilities of the Bayesian networks in Predictive level.  
 
The target ServiceCategory SVj with highest P(S=SVj) will be selected.  
 
The Bayesian RN-Metanetwork provides an easy but efficient method for modeling many 
kinds of user preferences, from multimedia services such as music, television, radio, web page, 
public information, etc. to the environment parameter such as light, temperature, etc. All we 
have to do is identify the features which affect the preference of users, build the preference 
model for each user (a rather simple task if we consider the current development of Bayesian 
network research) and finally combine them by a RN-Metanetwork. When the system learns, 
each preference model is updated separately so that they can be reused in other systems.  

5.5.3 Adaptation  

Even though some approaches address learning issue as the initial of the conditional 
probabilities from example data sets, the true meaning of learning in a ubiquitous system is 
online learning. When a ubiquitous system starts working, there is no example data but only 
the domain knowledge and user-defined rules. For example, the contextual level network can 



be initialized by the users’ initial priorities. However, the task of online learning, or adaptation, 
is crucial.  
 
Each time the system makes a decision about which service category to be selected, it then 

wait a time interval  for the response of users. There are 2 cases of user responses:  wt
 
Approval: If there is no response, then the system assumes that the users are pleased with the 
decision. In this case, the decision together with the evidences will be considered a single 
sample and be used to update the Bayesian networks conditional probabilities.  
 
Denial: If one user gives a control command to the system to change the selected service 
category, it means that the user may not satisfy with the decision of the system. This is a 
serious case, and the system should not make the same wrong prediction again. So the user’s 
selection together with the evidences will be considered N samples (N>>1) and be used to 
update the Bayesian networks conditional probabilities.  
 
The adaptation algorithm is based on two assumptions:  
 
Assumption 1: The contribution of one user preference in the combined preference is equal to his contribution 
in making a decision.  
 
The assumption means: When the system estimates the preference of many users, it gives each 
user’s preference a weight. In the other hand, whenever a control command is given by a 
group of user, each user has his contribution in that command. The weight in first case and the 
contribution in second case are assumed to be equal. 
 
Assumption 2: Every user has the tendency of selecting the option which has highest probability calculated by 
his preference model. This option is called the most favorite option.  
 
The assumption means: Given the evidences, calculate the posterior distribution of a 
preference using the preference model of one single user (one of 2 Bayesian networks for 2 
users A and B in the previous example, for instance), the option with highest probability can 
be considered that user’s most favorite, and is most likely to be selected by the user himself.  
 
Assumption 2 leads to a definition:  
 
Definition: a decision matches user preference if it matches the most favorite option of that user.  
 
Based on the above assumptions and definition, the adaptation algorithm for RN-
Metanetwork is introduced:  
 
Adaptation Algorithm  
 
Step 1: update the meta-layer network 
- In Approval case, there is no need to update the meta-layer network (users satisfy with the 
current priority) 
- In Denial case:  



+ Find the most favorite option of each user 
 

))(max(arg ii SPSV =∗  
 
where SV*i denotes the most favorite service of user i. 
+ Count 1 for the value of relevant node related to the user’s preference model if the final 
decision is the same with user’s most favorite option. We use the sequential updating 
introduced in [30]. Do the following adaptation:  
 
If SV*i = SV*  then   
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with SV*: the finally selected services, Pre: the set of evidences of the presences of users, q: the 
fading factor, q 　 (0,1), s: the effective sample size which is calculated by:  
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Step 2: update the preference model of each user based on the contribution of that user into 
the decision 
For each user i: Calculate wi, the distribution probability of that user’s preference model: 

)( ii BNPw = . Count wi for the final selected option and update the user’s preference model 
1 or N times, in approval or denial case respectively. 
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where Te, Lei, CAei denote the evidences of the Time, user location, user current activity of 
user i, Pi(S | Te, Le, CAe) denotes the distribution of conditional probabilities in preference 
model of user i   qi: the fading factor which is calculated separately for each preference model, 
to maintain the same experience size. 

s
ws

q i
i

−
=

 

5.5.4 Probability Propagation and Adaptation for multi-layer Bayesian RN-
Metanetwork  

In nature, multi-layer Bayesian RN-Metanetwork is a 2-layer Bayesian RN-Metanetwork with 
the meta-layer is a Bayesian RN-Metanetwork itself.  
 



 
Figure 12: The first 2 levels of a 3-level Bayesian RN-Metanetwork equals with a Bayesian 
network with same input and output nodes and the intermediate node User_Prio_BN is omitted.    

Therefore, the probability propagation algorithm and adaptation algorithm which were 
described in the previous section can be applied for multi-layer Bayesian RN-Metanetwork in a 
recursive manner.  
 
The probability propagation process for the Bayesian RN-Metanetwork in Fig. 10: 
 
Step 1: applying the probability propagation algorithm for the first 2 layers to calculate the 
marginal of User_Pref_BN 
 
Step 2: use the marginal of User_Pref_BN as the distribution for the Bayesian networks in 
third layer to calculate the marginal for Service_Category.  
 
The adaptation process for the Bayesian RN-Metanetwork in Fig. 10: 
 
Step 1: in case of denial, applying the adaptation algorithm for the first 2 levels of the Bayesian 
RN-Metanetwork.  
 
Step 2: calculate the marginal of User_Pref_BN and use it to do adaptation for the third level.  
 
In general, the recursive probability propagation and adaptation mechanism for multi-level 
Bayesian RN-Metanetwork are illustrated in Fig. 13.  
 



 
Figure 13: The recursive probability propagation and adaptation mechanism for multi-level 

Bayesian RN-Metanetwork.    

5.6 Evaluation  

One can argue that the traditional Bayesian network is still faster than the Bayesian RN-
Metanetwork, because for Bayesian RN-Metanetwork we have the overhead of the meta-layer 
propagation, as well as all the preference models and the priority models should be propagated. 
In fact, the Bayesian RN-Metanetwork is slower just in case the distribution of every Bayesian 
network in the first layer is not equal to 0, or by other words, when all users are presented in 
the system.  
 
Let estimate the calculation time for the Multimedia preference example above when using the 
traditional Bayesian network and Bayesian RN-Metanetwork. 
 

Analysis in [31] shows the runtime for the brute force method of enumeration is , 
where q is the size of the alphabet (in our example: q = number of values for Service Category 
i for the preference model, or number of users + 1 in the meta network) and m is the number 
of unknown variables.  

( )mO q

 
We have seen that Pearl's algorithm, for the special case of a polytree, has an efficient runtime 

of , where e is the maximum number of parents on a vertex [32]. It can be seen that in 
that in the case of the turbo-decoding algorithm [33], the runtime is linear in the size of the 
network, as evidence is propagated a constant number of times. 

( eO Nq )



 
Here because both the number of unknown variables and the number of maximum parents 
will increase when the node number increase, we assume that in general the runtime is 

( )xO q with x is proportional to the size of the network. 
From Fig. 12, the size S of the network in traditional case is proportional to the number of 
user. So with N = number of user and q = number of values for Service Category i for the 

preference model, the propagation time is  with α is proportional to the number of 
node in a single user preference model.  

)O(q Nα

 
From Fig. 13, the size S’ of each preference network in Bayesian RN-Metanetwork remains the 
same for every user. S’ = S / N. We have the propagation time of each preference network is 

and the propagation time of meta network in Fig. 13 is O(1) given that we know the 
location of all the users.  

)O(qα

 
Then the numbers of preference model should be propagated k has the binomial distribution, 
because this is the distribution of obtaining exactly k (Presence = Yes) out of N trials.  
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Where p is the mean probability of one user is presented in the location.  
The expected value of k:  
 

N.p  E[k]=  
 

Then the expected propagation time is:   )O(Npqα

 

We have  < . The Bayesian RN-Metanetwork is still more efficient.  )O(Npqα )O(q Nα

 
In case of situation-dependent priority, the propagation runtime is added with the time for 
calculating the priority given the evidences about situation.  
 

The runtime for each priority model is with N* is the mean of the binominal 
distribution of taking k users from N users. We have N* = N.p. Hence the expected 

propagation runtime for a priority model is . 
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Then the total propagation runtime is:  
 

)qO(Npq Npαα +  
 



In this case, it is hard to tell whether the Bayesian RN-Metanetwork is faster or slower. 
However, besides the speed, the advantages of Bayesian RN-Metanetwork come from at least 
two aspects:  
 
- First, with the division of a large network into small and single-user models, the design of any 
Bayesian RN-Metanetwork becomes much easier, especially when we have to assign the 
conditional probabilities for the network.  
 
- Second, we have the separate models for priority and preference. We also have separate 
models for each user. This dramatically increases the reusability of the models.  
 



5.7 Implementation 

To illustrate the use of this proposed approach, we will describe in details some models of user 
preference, which are implemented in Hugin Tool [39]. These are the most common user 
preferences in smart home systems, such as the preference for light, temperature, curtain, 
multimedia service category. The models go along with some numerical examples to show 
how they work.  
 
This chapter will also contain the implementation details for the Bayesian RN-Metanetwork, as 
well as the user preference learning mechanism in Auto-CAMUS. 

5.7.1 Implementation of User Preference models for Smart-Home Systems 

Every system has its own input-output and hence has specific kinds of user preference. One of 
the famous scenarios is a smart home system where various sensors, controls (actuators) are 
installed, and many users are involved. In our implementation, we assume that there are 2 
users in the house. The preference and priority models which are presented in this chapter are 
implemented in Hugin, a tool for building Bayesian networks [39]. 
 

Categories of User Preference in a Smart Home System 
As previously said, user preference is what the user want the system to do in certain situation. 
In more details, it is the relation between the context of user, which consists of sensor data and 
other input information, and the control commands which the system give to the actuators 
inside it. Therefore, to know what kind of user preference we have in a system, we should 
know all the input information / sensor data as well as command controls a system should 
have.  
 
The preference learning module in a Smart home system takes as it input the time, the location 
of user, home environment sensor data, including indoor/outdoor light intensity, audio 
intensity, indoor/outdoor temperature, current weather, etc. It also receives the current activity 
of the user from the activity reasoner, which can be implemented using a Bayesian network [8]. 
Light preference may consider the affection range of each light, while Temperature preference 
takes into account the duration of user staying in the room (for example, if the user has just 
enter the room and the outside is hot, he will need cooler temperature than the user who has 
stayed in the room for a long time.  
 
The outputs of the preference learning module in a Smart home system are the preferred light 
intensity level (commands for the light control), temperature level (commands for air 
conditioner and heater control), multimedia service categories (such as television channel, 
music genre and audio broadcasting channel), curtain control (close / open), etc. Because the 
multimedia service has already discussed above, in this section we will only describe the 
models for curtain control, light and temperature preference.  
 
There is an assumption that there is no body sensor to tell about the user health status or 
emotions. Otherwise, the preference will depend a lot on user emotion and health.  
 
 
 



Curtain Control Preference 
In some systems, a curtain can have only 2 statuses CLOSE and OPEN. In other system, the 
curtain control can open the curtain to some levels. Assume that we have 3 levels for curtain 
control: CLOSE, OPEN and HALF_OPEN.  
 
Normally, user wants to open or close the curtain depending on the outside weather, light 
intensity, sunlight direction and the activity which is happening in the room. For the weather, 
we can have some rain sensors to detect rain, and sunlight sensor to detect whether the 
sunlight enters the room or not.  
 

 
Figure 14: The curtain control preference model of one user  

 
Figure 15: The priority model for curtain control preference (for 2 users) using traditional 

Bayesian network. 

The priority of curtain control is related to the presence and the current activity of the user.  
 
Initial the priority model:  
 
To initialize the CPT, we can learn the conditional probability from the history data, or enter 
the probability manually, or use expression.  This is an example of Hugin expression for the 
CPT of User_CurtainPref_BN node:  
 
if (and (UserA__presence == "NO", UserB__presence == "NO"),  
Distribution (0, 0, 1), Distribution (0.5, 0.5, 0)) 

 
The Distribution function in this expression is the distribution of the states of 
User_CurtainPref_BN node, which are BN1, BN2 and BN0. These states are the preference 
models of user A, user B and the model in case no user is presented.   



 
This expression gives the equal priority for both users without concerning the current activity 
of each user. If we allow the user who is sleeping to have higher priority, the expression would 
be like this:  
 

if (and (UserA__presence == "NO", UserB__presence == "NO"),  
Distribution (0, 0, 1),  
if (and (UserB__hasActivity__type == "SLEEPING", 
 not (UserA__hasActivity__type == "SLEEPING")),  
Distribution (0.2, 0.8, 0),  
if (and (not (UserB__hasActivity__type == "SLEEPING"),  
UserA__hasActivity__type == "SLEEPING"),  
Distribution (0.8, 0.2, 0),  
Distribution (0.5, 0.5, 0))))2 
 

Using the function “Transfer to table” of Hugin [39], we will have a CP table, a part of which 
is showed in the following figure.  
 

 
Figure 16: CPT of the curtain control priority model 

Light Control Preference 
Most lights have 2 common states: ON and OFF. Assume that there are 4 levels of light 
intensity in the room: BRIGHT, NORMAL, DIM and DARK. The intensity levels which each 
light can produce range among BRIGHT, NORMAL and DIM.  
 
The light control preference of one user will be related to the current activity of all the users 
involved, current light intensity in the room, outside light intensity and the curtain status. All 
the lights which have the same affective range with the user location will be considered in the 
model.  
 

 
Figure 17: The Bayesian network models for the light control preference of one user 

                                                 
2 The expression is in the format of Hugin expression, building by the Hugin tool [39]. 



The priority of the light intensity control also depends on the current activity of user. For 
example if the user is sleeping, light should not be bright.  
 

 
Figure 18: The priority model for curtain control preference (for 2 users) using traditional 

Bayesian network. 

The initial of priority model is similar to the previous session.  
 
Temperature Preference 
Every air conditioner has its own types of control. However, the control can be mapped into 
some certain level of temperature. Assume that there are 3 levels: High, Moderate and Low.  
 
The temperature preference of user depends on inside and outside temperature, user activity 
and the occupation duration. The temperature preference priority depends on the occupation 
duration. A user who has just been walking outside needs the help of the air conditioner or the 
heater more than a user who has stayed in the room for a long time. 
 

 
Figure 19: The Bayesian network models for the air conditioner control preference of one user 

 
Figure 20: The priority model for air conditioner control preference (for 2 users) using 

traditional Bayesian network. 



5.7.2 Adding more user preference models into a Bayesian RN-Metanetwork 

When a new user joins the system, the preference model should be updated. The process for 
integrating a user into a multi-user preference model has 3 steps: 
 
Step 1 (optional): create the preference model for that user based on the common preference 
model for a single user.  
 
From the common preference model, we make a copy and then rename the nodes related to 
user to the name of that user.  
 
For example, the air conditioner control preference model for UserA will be:  
 

 
Figure 21: Air conditioner control preference model of UserA 

This step can be omitted if the user preference model has already built before. 
 
Step 2: add the new preference model into the set of preference model in the predictive level 
(first level) of the Bayesian RN-Metanetwork. 
 
Step 3: update the priority model: 
 
- Add the nodes related to the new user into the priority model 
 
- Add one more state which is equivalent to the new user preference model  
 
- Update the CPT:  
 
+ Where new user presence has value NO, the conditional probability can remain the same, 
and 0 is filled for the probability of the new state.  
 

P(BNN|X,Y,PrN=NO) =  0 
P(BNi|X,Y,PrN=NO) = Po(BNi|X) 

 
with N denotes the current number of users,  

X denotes the set of nodes which related to old users  
Y denotes the set of nodes which are related to new user except the presence,  
PrN denotes the Presence of user number N, 
P: new conditional probability  



Po: old conditional probability 
 
+ Where the new user presence has value YES, the conditional probability is recalculated. 
Normally the calculation is based on the priority mechanism of the system. If the system is 
first-equal-priority, i.e. all at the beginning all the users have same priority, the calculation will 
be:  
 
New state:  

N N
1P(BN |X,Y,Pr =YES) =  
N  

 
Old state: the old priority order among the old users is maintained by: 
 

i N i
N-1P(BN |X,Y,Pr =YES) = P(BN |X)*
N  

 

5.7.3 Bayesian RN-Metanetwork Reasoner Implementation 

The Bayesian RN-Metanetwork is implemented as a reasoner inside Auto-CAMUS.  
The programming language is Java. The library of Hugin [39] is utilized as a core for Bayesian 
network computations.  

 
Figure 22: Class diagram of Bayesian RN-Metanetwork 

By wrapping the Bayesian RN-Metanetwork in an interface which inherits the BNReasoner 
interface, the Bayesian RN-Metanetwork reasoners as well as the traditional Bayesian reasoner 
can be accessed in a unified manner. Because a Bayesian RN-Metanetwork includes the 
BNReasoners as its metanetwork and prediction-level networks, each of the sub-network can 
be a Bayesian RN-Metanetwork itself, or in other words, the Bayesian RN-Metanetwork can 
be multiplied into many layers.  



5.7.4 User Preference learning implementation in Auto-CAMUS 

We have a ReasonerManager service to take care of creating the reasoners as well as managing 
those reasoners. A ContextDataManager manages the context repository, receives the queries 
and registrations for context data. Inside the ContextDataManager, the rule-based reasoning is 
implemented to infer the high-level context data from low-level context data. When new 
context data comes from sensors, the ContextDataManager service does the inference for 
high-level context data, then matches the registrations and notifies the handler services if the 
registrations are matched.  
 
A PreferenceContextAggregator service works as the preference learning module for the 
middleware. It reads the model files, calls the ReasonerManager service to create the Bayesian 
RN-Metanetwork reasoner, and registers to the ContextDataManager service for the needed 
context data. When it is notified about the new context data, it will give the new evidence for 
the Bayesian RN-Metanetwork reasoner by setEvidence method, then asks the reasoner to do 
inference and finally gets back the marginal for the nodes related to the preferences.  
 
Any application can send request to PreferenceContextAggregator service to get the 
preference of user. After making the decision and receive the feed back from user, the 
application will tell the PreferenceContextAggregator service the result of feedback. Based on 
user feedback (approval or denial), PreferenceContextAggregator service will set the evidence 
and call the Bayesian RN-Metanetwork reasoner to do adaptation.  
 
Fig. 23 shows the sequence diagram of all process. 
 

 
Figure 23: The sequence diagram of user preference learning process in Auto-CAMUS 



5.8 Conclusion 

Context-aware computing poses interesting issues for information system researches. Among 
those issues, learning user preference in order to adapt the system automatically to the need of 
user is a crucial task. Many challenges have risen in this are due to the uncertain, 
heterogeneous, distributing characteristic of a context-aware system. Especially when there are 
many users involve in an intelligent environment, the system has to cope with conflict 
resolution and distinguishing among the user preferences. A solution for learning user 
preference in a multi-user context-aware environment which can efficiently resolve the above 
mentioned problems is the main contribution of our work.  
 
We have first presented the Bayesian RN-Metanetwork which can be used to model the user 
preference as well as user priority for many users, while still maintain separate preference 
model for each user. The propagation algorithm showed how to calculate the composite 
preference of all the users in the system and make decision of service to provide. To actively 
and continuously adapt the models to the newest preferences and priorities of the users, the 
adaptation algorithm for Bayesian RN-Metanetwork was described.  To illustrate the use of 
Bayesian RN-Metanetwork, some common models for various kinds of user preference in a 
smart home system were presented.  
 

However, this is just the first step to make the system intelligent. There are still a lot of 
challenges such as user behavior routine learning, in which the prediction of the future actions 

of user is the most important task. 



Chapter 6 

 LOCATION AWARE COMPUTING 

6.1 Introduction 

Position of client is very important parameter for mobile computing applications. Positioning 
using Wireless LAN received signal strength (RSS) is increasingly popular choice. Reliability 
and performance of WLAN based positioning systems is directly related to the correctness of 
radio map of the site. We present a distributed component architecture based radio map 
generation system to facilitate development of accurate and comprehensive radio maps for 
Location Aware systems. Besides, our system allows real time visualization of RSS of all 
available wireless base stations, giving more insight into the nature of wave propagation at 
different locations. Thus, providing an efficient way to analyze the properties of WLAN and 
achieve optimal coverage, enhancing the positioning system performance. 
 
Widespread deployment of Wireless Local Area Networks (WLAN), so called WiFi (Wireless 
Fidelity), has given a rise to development of WLAN based Location awareness in modern 
context-aware ubiquitous computing environments. Most significant advantage of this method 
is pervasive coverage of WiFi and no special hardware requirment, enhancing the value of 
WLAN.  
WiFi location awareness applications include, but not limited to, a wide range of services to the 
end user like automatic call forwarding to user’s location, robotic global localization, and 
exploration and navigation tasks. [Andrew], Finder, Guiding and Escorting systems, liaison 
applications, location based advertisement and positing of entities in large warehouses.   
WiFi signal strength (RSS) based Systems for Location Awareness require a mapping of spatial 
points of interest with received signal strength at that point. This technique is gaining 
increasing attention for indoor applications mainly because other popular techniques e.g. GPS 
do not perform well in indoor environments. This mapping is referred to as location map, 
radio map, location fingerprints or calibration data in various Location Awareness systems. 
[RADAR][Horus], [Pehlvan]. We will refer this entity as “radio map” in rest of this paper. 
Figure 1 shows typical methodology for generating radio map.  
 

 
Figure1: Typical generation of radio map 

 



The Received Signal Strength (RSS), carrier signal Phase of Arrival (POA), and Time of Arrival 
(TOA) of the received signal are the metrics used for building a radio map for later estimation 
of location. As a matter of fact, the accuracy and precision of location estimation is directly 
linked with the correctness of radio map. As the measurements of metrics become less reliable, 
the complexity of the position algorithm increases. Despite an extensive research being put 
into location estimation techniques, no dedicated effort is made to ensure correctness and 
evaluate the reliability of radio map.  
 
6.2 Related Work 

Recently, some researchers have proposed statistical manipulation of RSS data to reduce the 
effort and time required for building a radio map. [Microsoft] [Trento] [Trento2] 
Binghao Li et al employ kriging interpolation used in mining variograms to reduce the number 
of calibration locations for building a radio map and used 12 samples for each location. 
[Binghao] [Horus] [HKUST] proposed a method of using unlabeled samples for reducing the 
sampling rate at each location and number of locations.  
 
Despite reducing the number of calibration points, these techniques still need to calibrate the 
area. One subtle dependency of these approaches is that, they calibrate the denser set of 
reference points first, and then remove less influential points out them. It is still hard to 
calibrate only the few reference points without the knowledge of signal strength at un-
calibrated points. Since radio map is foundation of any positioning technique, no work is 
suggested a systematic approach for site calibration using distributed component technology. 
Furthermore, since number of samples taken at each location and number of locations 
calibrated affect the accuracy of positioning technique, an extensive calibration of each point 
should be made possible unlike current approaches.  Still, the need for having a reliable system 
to build such map is not yet met.  
 
6.3 Our Approach 

Nature of indoor radio wave propagation is very complex and non-deterministic due to multi-
path effects, building structure, materials, and other devices using the same frequency 
spectrum as 802.11 protocol devices (2.4, 5 GHz). Moreover multiple temporal factors cause 
the RSS to fluctuate like activity, people, even opening and closing of doors during the day 
hours.  RSS observations show that the signal strength tends to vary even at the same location 
due to above mentioned factors. Taking few samples at location is not sufficient enough for 
building a reliable location estimation technique for real world scenario. Insufficiently 
calibrated point might lead to misleading conclusions about the location at the time of 
positioning. 
 
Most of the work has oversimplified the complex nature of radio wave propagation by using 
few samples of signal strength for a target location. It gets more hypothetical when one tries to 
interpolate un-calibrated locations using the insufficiently calibrated set of locations. Following 
table shows the extent to which different location estimation techniques have employed signal 
strength sampling. 
Performance of Every location positioning system is tightly coupled with propagation 
characteristics in particular setup. That makes the positioning accuracy of a system strongly 
relative to particular environment. If any of the environmental factors or change in WLAN 



layout parameters, rendering the reference radio map ineffective, can directly reduce the 
accuracy of positioning system. Thus, besides developing a positioning system, maintaining its 
precision and accuracy for long time, even in the face of significant environmental changes, 
becomes a critical issue. Therefore an accurate and comprehensive radio map is not only 
unavoidable and means to build such map should be easy so that it can be reconstructed when 
ever environmental factors change in a significant manner. Creating a denser radio map by 
interpolating sparsely calibrated locations implies critical trade offs between accuracy and 
precision, how much right and how often right, of Location estimation technique and 
complete radio map. This paper suggests facilitating the radio map building by using a 
sophisticated distributed system that can support multiple roaming devices to take part in 
calibration effort simultaneously.  
In this paper we first elaborate the key requirements that such a system should provide to the 
Location aware system developers and secondly we present our Location-Ware tool kit for 
building such a system to achieve those requirements. 

6.3.1 RF analyzer 

Commercially available and open source like netstumbler and ministumbler [NetStumb]  meet 
this requirement but these systems are more focused on network traffic analysis, intrusion 
detection and layout management. While radio map building require a subset of there 
capabilities, still these systems fall short of providing for capture, store and analysis 
requirements in a distributed Client Server architecture.  

6.3.2 Distributed Architecture:  

Most of the commercial WiFi surveying tools and are designed to run on single machine. 
Typically mobile terminals possess limited processing storage capabilities to support Site 
Surveying and Calibration components. Secondly, our concept of enabling multiple devices to 
simultaneously calibrate the site can be realized only in distributed component architecture.  

6.3.3 Real Time Capture  

Capturing wireless signal from available Access Points remains the fundamental task in 
building site calibration systems. Reliability of source of signal strength is vital for both 
building radio map and positioning technique. Careful attention should be payed to the signal 
capturing component’s interfacing with Wireless NIC. Most of the commercially available 
wireless NICs provide received signal properties to the user mode applications. A standard 
library for signal capture should be employed that can hide different hardware vendor specific 
details of signal capture. 

6.3.4 Real Time Visualization of RF Propagation 

Visualizing the radio wave properties like Signal to Noise Ratio (SNR), Received Signal 
Strength (RSS), transmitter id (BSSID), transmitter channel etc is important for not only site 
surveying but calibration also. A very unique feature of indoor positioning applications is that 
the size of the coverage area is much smaller than outdoor applications. This makes it possible 
to conduct comprehensive planning of the placement of Wireless Access Points. Careful 
planning of a Wireless network can significantly reduce measurement errors of location metrics 
caused by NLOS propagation. The structural information of the Access Points can also be 
employed in intelligent positioning algorithms. Furthermore adjustment of frequency channels 
to be used by each Access Point in order to minimize the adjacent channel noise is very helpful 



for maximum coverage. Furthermore graphical representation of radio wave shall give visual 
clues to mapping function between location and received signal properties. Therefore a real 
time visualization of captured radio signals presents a very useful capability of such systems. 

6.3.5 Storage 

When the area of coverage becomes large and a large number of sensors are involved, the size 
of the location signature database increases dramatically. [Pehlvan] Simultaneous calibration of 
site shall produce large amount of data. This magnitude depends on how detailed location map 
is required to be built. Two fundamental factors are the number of locations to be calibrated 
and the time period for which is location is calibrated. This requires a database server system 
to collect incoming data from all mobile devices and assemble it into a radio map. Schematic 
view of the calibration data that Location-Ware uses is presented in next section. 

6.3.6 Support for Statistical Analysis of RF data:  

Inside the building Radio Frequency (RF) propagation follows in a very complex model that 
depends on geometry, infrastructure, neighboring devices and activity going inside the building. 
Location predictive element of received radio signal is not as simple as triangulation in case of 
GPS positioning. Still at different locations, radio signal exhibits certain properties special to 
that location. Therefore only capturing the received signal strength is not enough for location 
estimation inside the buildings. It requires an extensive analysis of the properties and patterns 
that radio wave exhibits at a particular location. A sophisticated statistical analysis component 
of site calibration system is important property.  

6.3.7 Interactive 

As site surveying is physical task that requires a person to take the handheld device and note 
down the received signal strengths from all APs while roaming around the area. This whole 
process should be as easy possible. Interactivity of Site Calibration system is as important 
feature that effects quality of remote wireless data collection and integration into one whole. 
As all reference matrices at each location are going to be used by positioning techniques, the 
foundation for building tools should be user friendly and interactive. 
 
6.4 System Architecture 

Our System architecture follows distributed component approach to realize the concept of 
distributed simultaneous site calibration. Following block diagram shows entities of the system 
and core components of Mobile Unit (MU) devices and Stationary Unit (SU) workstation. 
Since component based approach is used in building up the whole system and each 
component provides specific feature while stand alone. This feature allows on demand 
addition or removal of the components from the system. That means MU can use only WiFi 
scanning component as classical site surveying tool. And combined with Visualization 
component charting of the WiFi signal patterns is possible. Similarly at the SU end, Statistical 
analysis component can be used for statistical analysis of any time series. And SU Visualization 
component provides charting of the radio map stored in the database. All components expose 
their functions through standard API (Application Programming Interfaces) that allows the 
programmer not only to plug in/out these components from there applications but also use its 
features without knowing the internal details of the implementation. 
 



 
Figure: System Architecture of Distributed Wireless LAN Calibration System  

 
In the next section we will present details about the core components involved in entities of 
this system at both ends. 
 
6.5 Core Components 

6.5.1 Mobile Unit System 

For actual calibration task, we used TOSHIBA M-30 note book with built in Intel 
PRO/Wireless 2200 BG Network card. But these components can be deployed on other small 
handheld devices also. MU system is provided with NIC (Network Interface Card) interfacing, 
WiFi signal scanning capability, and device specific visualization of radio wave propagation 
components.  
 
Wireless NIC Interfacing 
All Mobile Units involved in calibration process need to interact with Wireless NIC in order to 
capture the wireless signal. We used NDIS (Network Driver Interface Specification) API for 
detecting the installed hardware on MU and load a suitable driver for it. Following figure 
shows the available drivers for installed NIC hardware on MU being used. 
 

 
 Figure: Available drivers for installed NIC hardware 
 
 



WiFi Signal scanner 
802.11 MAC (Media Access Control) layer specifies the mechanism for the radio NIC to scan 
the channels. This scanning can be done passively, by listening to the periodic broadcast or 
beacons of wireless access points, or actively by initiating the probe process itself. Our WiFi 
signal scanner component uses active mode of scanning that allows MU to initiate the probe 
and receive the response immediately. Radio NIC of MU broadcast a probe frame and all 
Access Points within range send probe response frame. The probe response frames contain 
information about the access point, including service set identifier, supported data rates, etc. 
 MAC driver then interprets the response frame and takes note of the corresponding signal 
strengths.  Following figure shows the list of Wireless Access Points in range of MU after a 
probe.  
 

 
 Figure: List of Wireless Access Points and their Configuration properties 

 
We used rawehter API for Windows XP for capturing the wireless packets. It allows a user-
mode application to "directly" access NDIS network interface card (NIC) drivers from Win32 
applications. Rawether uses a NDIS protocol driver that acts as a "relay" between an 
application and the NDIS miniport driver. Network Driver Interface Specification (NDIS) is a 
common programming interface. Media-access controller (MAC) device drivers "directly" 
access NDIS network interface card (NIC) drivers from Win32 applications using a NDIS 
protocol driver. 
 
Scanning Rate Controller 
Active scanning mechanism allows MU to scan network at desired rate. Our scanner 
component exposes this capability through standard programming interface. Client mode 
applications can choose their preferred rate of network scanning. This capability is 
implemented in our system as GUI control.  
 



 
 Figure: Controlling WiFi signal scanning rate 
 
 
 Visualization 
An open source charting library ZedGraph is employed to visualize received signal strength of 
each Wireless Access Point. [ZedGraph] Following figure shows the pattern of received signal 
strength of WiFi signal. Each point of the graph correspond to the scanning frequency set by 
the user.  
 

 
 Figure: Received Signal Strength visualization 
 
Location Map 
Every MU calibration application is featured with active location map of the site. This map is 
provided to allow the user to pinpoint the current location of observation. Following figure 
shows experimental Location map used in our system. Location of all reference Access points 
is marked as red circle. And different calibration points are marked with green circles. 
 



 
Figure: Location Map 

 
Network Communication 
WinSock is used to implement the MU side and Stationary system side network components 
[WinSock]. Peer to peer network model is considered for collaboration of MU and server work 
station. Both ends communicate using TCP/IP protocol using WinSock API. Network 
communication component on MU side registers itself with the SU and get and MU-ID 
response from SU. Later this ID is used to report WiFi signal information, acquired from all 
Access Points in range, back to the SU. At the SU side, network communication component 
registers every MU roaming in site and manages all the incoming information using 
multithreaded client management system. Asynchronous Communication model is 
implemented to allow multiple MU work simultaneously.  

6.5.2 Stationary Unit workstation 

On the other hand, stationary unit performs the important task of managing simultaneous 
incoming information of every MU.  
 
Radio Location Map Schema 
For representation of spatial co-ordinate’s information with respective radio wave propagation 
characteristics in integrated form, we used following schema model. 

 
 Figure: Schematic view of Radio location map 
 
Statistical Analysis 



As radio map does not serve any objective of Location-Aware System. Analysis of radio map 
data for, developing a mapping function between location and signal properties is an important 
task. Statistical Analysis component produce most of the important statistical measures and 
allows graphic representation of these measures. Measures of dispersion are used for analyzing 
the range and pattern of signal strength spread on a location and between two locations. 
Similarly measures of central tendency are used for generating smoothing filters, building 
different histograms and removing outliers. Moving average Smoothing Filters are applied to 
remove the temporal variations due to transitory environmental conditions like people 
movement. One important measurement that we compute is Fluctuation frequency of every 
Access Point signal at one location. This measure allows measuring the stability of signal 
strength relative to moving or stationary mobile unit and generating sophisticated probability 
distribution functions (p.d.f) for location to signal mapping function.  
 

6.5.3 Data Storage 
Currently the radio map data is stored in Excel spread sheets. As the volume of radio map 
increases, same schematic representation can be implemented in any DBMS like MySql.  
 
6.6 Conclusion 

Wireless site calibration for location awareness is fundamental task in the process of WiFi 
based positioning systems. Time and effort required for site calibration is major tradeoff for 
accuracy and precision of such systems. 





C h a p t e r  7  

ARTIFICIAL NEURAL NETWORKS FOR LOCATION ESTIMATION 

7.1 Introduction to Neural Network for Location Estimation 

Interacting with noisy data or data from the environment, Non-stationary processing of data 
from a complex (e.g. chemical, manufacturing, or commercial) process, is very difficult using 
classical mathematical and engineering methods. Neural networks provide massive parallelism, 
fault tolerance, adaptation to circumstances. There may be an algorithm, but it is not known 
nor has too many variables. It is easier to let the neural network learn from examples. 

7.1.1 Draw Back 

It is virtually impossible to "interpret" the solution in traditional, analytic terms, such as those 
used to build theories that explain phenomena. 

7.1.2 Issues in ANN 

Two main training paradigms have emerged: batch learning, in which optimization is carried 
out with respect to the entire training set simultaneously, and on-line learning, where network 
parameters are updated after the presentation of each training example (which may be sampled 
with or without repetition). Although batch learning is probably faster for small and medium 
training sets and networks, it seems to be more prone to local minima and is very inefficient in 
the case of training large networks and for large training sets. On-line learning is also the more 
natural approach for learning non-stationary tasks, whereas batch learning would require re-
training on continuously changing data sets. 

• The main difficulty with on-line training is the sensitivity of most training methods to 
the choice of training parameters. This dependence may not only slow down training, 
but may also have bearing on its ability to converge successfully to a desired stable 
fixed point.  

• Most advanced optimization methods (e.g., conjugate gradient, variable metric, 
simulated annealing etc) rely on a fixed error surface whereas on-line learning produces 
an inherently stochastic error surface.  

• The Bayesian approach provides an efficient way of training and has been applied quite 
naturally and successfully within the framework of batch learning. Extensions to the 
on-line case, where explicit information on past examples is not stored, have been 
limited so far.  

 



7.2 Candidate NN Structures 
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Figure: Candidate Neural net Structure 3-6-2 

 

RF Source 1

RF Source 3

RF Source 2
LocationID

 
Figure: Candidate Neural net Structure 3-6-1 

 
 



7.2.1 Activation Function 

 

7.2.2 Feed Forward Back Propagation 

"Back-Propagation" is a mathematical procedure that starts with the error at the output of a 
neural network and propagates this error backwards through the network to yield output error 
values for all neurons in the network.  
A common form of learning is "trial and error". A "trial" is the output of a system in response 
to particular stimuli. An "error" is the external reaction to the output of the system that is 
supplied to the system as some other kind of stimulus. A system capable of "trial and error" 
learning relies on receiving feedback that describes the nature and severity of mistakes. The 
system can use the error information to make corrections in the way it responds to that 
particular combination of stimuli in the future. Back-Propagation yields neuron error values 
throughout a neural network. Learning occurs when neuron input weights and bias values are 
adjusted in an attempt to reduce the output error for the same stimuli. It should be noted that 
defining a mechanism for learning implicitly defines the nature of phenomena that will 
frustrate learning. 

7.2.3 Back-Propagation Formulae  

The goal is to compute output errors for every neuron in a network. The output errors for 
neurons at the output layer of a network is particularly easy to compute: 

 
The error value for a neuron in an arbitrary layer that is not an output layer is computed using 
the following formula: 

 
The following diagram illustrates concept expressed by the formula: 



 
In a sense, all of the output errors at the next layer leak backwards through the input weights 
and accumulate at the output of a neuron in a previous layer. This accumulated value is 
multiplied by a value that is greatest when the current output of the neuron is most neutral 
(most "undecided") and is least when the output of the neuron is most extreme (very "certain"). 

7.2.4 Weight Change and Bias Change Formulae  

The basis of learning is the adjustment of weights and bias values in an attempt to reduce 
future output errors. "Learning Rate" is a numerical value that essentially indicates how quickly 
a neuron adjusts weight and bias values according to error values. The following formula 
indicates how to change the weights of a neuron with a particular set of input values and its 
output error value:  

FIGURE: Weight changes for a neuron. 

The following formula indicates how to change the bias of a neuron given the current output 
error for the neuron:  

 

 
FIGURE: Bias change for a neuron. 

 

7.3 Modeling Data and Training Vectors 

Training Vectors are a subset of calibration data. Training Vectors are selected very carefully to 
make Neural Network generalize for cases of signal strength instances. 

7.3.1 Artificial Noise  

Noise in the actual data is never a good thing, since it limits the accuracy of generalization that 
can be achieved no matter how extensive the training set is. On the other hand, injecting 



artificial noise (jitter) into the inputs during training is one of several ways to improve 
generalization for smooth functions when you have a small training set.  

7.3.2 Permutations 

Probability distributions of RSS of each AP at each location are available as a result of 
calibration process. Permutations are generated from these probability distributions to cover all 
the possible combinations. This allows the neural network to generalize for all possible RSS 
values at a given location.  
 
Normalization 
Before training, it is often useful to scale the inputs and targets so that they always fall within a 
specified range. The function premnmx can be used to scale inputs and targets so that they fall 
in the range [-1,1]. The following code illustrates the use of this function. 
[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t); 
net=train(net,pn,tn); 
The original network inputs and targets are given in the matrices p and t. The normalized 
inputs and targets, pn and tn, that are returned will all fall in the interval [-1,1]. The vectors 
minp and maxp contain the minimum and maximum values of the original inputs, and the 
vectors mint and maxt contain the minimum and maximum values of the original targets. After 
the network has been trained, these vectors should be used to transform any future inputs that 
are applied to the network. They effectively become a part of the network, just like the 
network weights and biases. If premnmx is used to scale both the inputs and targets, then the 
output of the network will be trained to produce outputs in the range [-1,1]. If you want to 
convert these outputs back into the same units that were used for the original targets, then you 
should use the routine postmnmx. In the following code, we simulate the network that was 
trained in the previous code, and then convert the network output back into the original units. 
Algorithm: pn = 2*(p-minp)/(maxp-minp) - 1; 
Another approach for scaling network inputs and targets is to normalize the mean and 
standard deviation of the training set. This procedure is implemented in the function prestd. It 
normalizes the inputs and targets so that they will have zero mean and unity standard deviation. 
The following code illustrates the use of prestd. 
 

7.4 Training / Tuning 

Following block diagram shows the system components involved in training and tuning of 
neural network. 
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7.4.1 Learning Methodology 

Two different methodologies are suggested in literature; Offline and Online. Since we collect 
training data in a separate phase of development and it is available as a component, we apply 
offline training phase to train neural networks. 

7.4.2 Variable Learning Rate (traingda, traingdx) 

With standard steepest descent, the learning rate is held constant throughout training. The 
performance of the algorithm is very sensitive to the proper setting of the learning rate. If the 
learning rate is set too high, the algorithm may oscillate and become unstable. If the learning 
rate is too small, the algorithm will take too long to converge. It is not practical to determine 
the optimal setting for the learning rate before training, and, in fact, the optimal learning rate 
changes during the training process, as the algorithm moves across the performance surface. 
The performance of the steepest descent algorithm can be improved if we allow the learning 
rate to change during the training process. An adaptive learning rate will attempt to keep the 
learning step size as large as possible while keeping learning stable. The learning rate is made 
responsive to the complexity of the local error surface. An adaptive learning rate requires some 
changes in the training procedure used by traingd. First, the initial network output and error 
are calculated. At each epoch new weights and biases are calculated using the current learning 
rate. New outputs and errors are then calculated. As with momentum, if the new error exceeds 
the old error by more than a predefined ratio max_perf_inc (typically 1.04), the new weights 
and biases are discarded. In addition, the learning rate is decreased (typically by multiplying by 
lr_dec = 0.7). Otherwise, the new weights, etc., are kept. If the new error is less than the old 
error, the learning rate is increased (typically by multiplying by lr_inc = 1.05). This procedure 
increases the learning rate, but only to the extent that the network can learn without large error 
increases. Thus, a near-optimal learning rate is obtained for the local terrain. When a larger 
learning rate could result in stable learning, the learning rate is increased. When the learning 
rate is too high to guarantee a decrease in error, it gets decreased until stable learning resumes. 
Try the Neural Network Design Demonstration nnd12vl [HDB96] for an illustration of the 



performance of the variable learning rate algorithm. Backpropagation training with an adaptive 
learning rate is implemented with the function traingda, which is called just like traingd 
 

7.5 Post Processing 

The network output ‘an’ will correspond to the normalized targets ‘tn’. The un-normalized 
network output ‘a’ is in the same units as the original targets‘t’. If premnmx is used to 
preprocess the training set data, then whenever the trained network is used with new inputs 
they should be preprocessed with the minimum and maximums that were computed for the 
training set. This can be accomplished with the routine tramnmx. In the following code, we 
apply a new set of inputs to the network we have already trained. 
pnewn = tramnmx(pnew,minp,maxp); 
anewn = sim(net,pnewn); 
anew = postmnmx(anewn,mint,maxt); 
 

7.6 Testing Validation 

For testing and Validation extensive site calibration data is used. A permutation generating 
component is planned to allow generating all possible sets of data in required amount. Once 
this component is available, more exhaustive testing of Neural Net shall be possible. 
 

7.7 Execution 

Neural network is developed and trained in MATLAB. After testing and validation of results, 
it is required to be implemented as a software system. Following is the block diagram of how 
different components shall collaborate for making such system. 
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7.8 Conclusion 

This work is in progress. After implementing the software ANN system, different other neural 
network architectures, recurrent models, shall be considered.  



APPENDIX 

 
Appendices A: VB Component code for Statistical Analysis 

Attribute VB_Name = "Module1" 
Sub Frequency() 
' 
' Macro recorded by Uzair Ahmad 
' 
    Dim pre, nex, i, Min, Max, Var, SD, Jmpngfrqncy 
     
    Cells(1, 8).Value = "JF" 
    Cells(1, 9).Value = "Variance" 
    Cells(1, 10).Value = "StDev" 
    Cells(1, 11).Value = "Min" 
    Cells(1, 12).Value = "Max" 
     
    Cells(5, 7).Value = "Bins_Kite_1" 
    Cells(5, 8).Value = "FD_Kite_1" 
    Cells(5, 9).Value = "Bins_Kite-2" 
    Cells(5, 10).Value = "FD_Kite_2" 
    Cells(5, 11).Value = "Bins_Kite_3" 
    Cells(5, 12).Value = "FD_Bins_Kite" 
     
    i = Range("Kite_1").Rows.Count 
    For Count = 2 To i 
       pre = Cells(Count, 4).Value 
       nex = Cells(Count + 1, 4).Value 
       If (pre <> nex) Then 
          Jmpngfrqncy = Jmpngfrqncy + 1 
       End If 
    Next Count 
    Cells(2, 8).Value = Jmpngfrqncy / i * 100 
                     
    Cells(2, 9).Value = "=Var(Kite_1)" 
    Var = Cells(2, 9).Value 
    Cells(2, 10).Value = "=Stdev(Kite_1)" 
    SD = Cells(2, 10).Value 
    Cells(2, 11).Value = "=Min(Kite_1)" 
    Min = Cells(2, 11).Value 
    Cells(2, 12).Value = "=Max(Kite_1)" 
    Max = Cells(2, 12).Value 
     
    Cells(6, 7).Value = Max 
    i = (Abs(Min) - Abs(Max)) / SD 
    For Count = 7 To 18 
        If (Cells(Count - 1, 7).Value <= Min) Then 
            GoTo Here 
        Else 
Cells(Count, 7).Value = Cells(Count - 1, 7).Value - SD 
        End If 
    Next Count 



     
Here: 
    Range("G6:G" & Count - 1).Name = "kite_1_Bins" 
    Range("H6:H" & Count - 1).Name = "kite_1_FD" 
    Range("H6:H" & Count - 1).FormulaArray = ("=Frequency(kite_1, kite_1_Bins)") 
     
    i = Range("Kite_2").Rows.Count 
     
    For Count = 2 To i 
       pre = Cells(Count, 5).Value 
       nex = Cells(Count + 1, 5).Value 
       If (pre <> nex) Then 
          Jmpngfrqncy = Jmpngfrqncy + 1 
       End If 
    Next Count 
    Cells(3, 8).Value = Jmpngfrqncy / i * 100 
    Cells(3, 9).Value = "=Var(Kite_2)" 
    Cells(3, 9).Value = "=Var(Kite_2)" 
    Var = Cells(3, 9).Value 
    Cells(3, 10).Value = "=Stdev(Kite_2)" 
    SD = Cells(3, 10).Value 
    Cells(3, 11).Value = "=Min(Kite_2)" 
    Min = Cells(3, 11).Value 
    Cells(3, 12).Value = "=Max(Kite_2)" 
    Max = Cells(3, 12).Value 
     
    Cells(6, 9).Value = Max 
    i = (Abs(Min) - Abs(Max)) / SD 
    For Count = 7 To 18 
        If (Cells(Count - 1, 9).Value <= Min) Then 
            GoTo There 
        Else 
            Cells(Count, 9).Value = Cells(Count - 1, 9).Value - SD 
        End If 
    Next Count 
     
There: 
    Range("I6:I" & Count - 1).Name = "kite_2_Bins" 
    Range("J6:J" & Count - 1).Name = "kite_2_FD" 
    Range("J6:J" & Count - 1).FormulaArray = ("=Frequency(kite_2, kite_2_Bins)") 
         
    'Selection.FormulaArray = 
End Sub 
 
Appendices B: Capturing the wireless Signal Code 

private void listen(){ 
// Make a call to get a BSSID list 
int excelRowCount = 2; 
int graphcount = 0; 
if(btnListenRadio.Text == "Scan Network") 
{ 
// change btn label 
btnListenRadio.Text = "Stop Scanning"; 
stopListening = false; 
// listen till stoplistening is false 
 



do 
{ 
BssidList bssidList = new BssidList(); 
uint returnValue = adapter.QueryInformation( bssidList ); 
 
if( returnValue == 0 ) 
{ 
foreach( BssidListItem bssidItem in bssidList ) 
{ 
string apName = bssidItem.Ssid; 
string ss = bssidItem.Rssi.RSSI+ ""; 
if (worksheet == null) 
{ 
MessageBox.Show("Excel sheet can not be created"); 
return; 
} 
if( (apName == "Kite-1") | 
(apName == "Kite-2") | 
(apName == "Kite-3") ) 
{ 
worksheet.Cells[excelRowCount,1] = excelRowCount+""; 
worksheet.Cells[excelRowCount,2] = DateTime.Now.Hour +":"+ DateTime.Now.Minute +":"+ 
DateTime.Now.Second; 
if(locationChanged == true){ 
locationChanged = false; 
worksheet.Cells[excelRowCount,3] = mapForm.getLocation(); 
} 
if(apName == "Kite-1") 
worksheet.Cells[excelRowCount,4] = ss; 
if(apName == "Kite-2") 
worksheet.Cells[excelRowCount,5] = ss; 
if(apName == "Kite-3") 
worksheet.Cells[excelRowCount,6] = ss; 
 
graphWnd.updateGraph(Convert.ToDouble(graphcount++),Convert.ToDouble(ss),apName); 
if (graphcount == 200) 
{ 
graphcount = 0; 
graphWnd.clearGraph(); 
} 
} 
} 
} 
else 
MessageBox.Show("  BSSID List: Query Failed; Status: {0}"+" PcaUsa.Ndis.Status" +" "+ returnValue ); 
excelRowCount ++; 
 
System.Threading.Thread.Sleep(Convert.ToInt16(comboSamplingFreq.Text)*1000); 
}while(! stopListening); 
return; 
} 
} 
 
Appendices C: Data Storage Component 

 
private void intializeExcel(){ 



try 
{ 
workbooks = excel.Workbooks; 
workbook = workbooks.Add(Microsoft.Office.Interop.Excel.XlWBATemplate.xlWBATWorksheet); 
sheets = workbook.Worksheets; 
 
worksheet = (Microsoft.Office.Interop.Excel.Worksheet) sheets.get_Item(1); 
if (worksheet == null) 
{ 
Console.WriteLine ("ERROR: worksheet == null"); 
} 
} 
catch(Exception ex) 
{ 
Console.WriteLine(ex.Message); 
} 
 
Appendices D: Loading the NDIS Driver Code 

// Create an Instance of the Desired Rawether Driver Object 
// -------------------------------------------------------- 
// This may throw exceptions if the specified driver is not present or has faults. 
PcaUsa.Ndis.BssidList bssidList = new PcaUsa.Ndis.BssidList(500); 
uint itemsCount = bssidList.NumberOfItems; 
bssidList.GetEnumerator(); 
PcaUsa.Rawether.Drivers.DriverObject ndisDriver = null; 
try 
{ 
ndisDriver = new PcaUsa.Rawether.Drivers.PcaMprProtDriver(); 
} 
catch( PcaUsa.Rawether.Exceptions.DriverNotPresent ) 
{ 
MessageBox.Show( "NDIS driver is not present"); 
return; 
} 
// Create The Adapter Collection 
PcaUsa.Rawether.Adapters.AdapterCollection adapterList = ndisDriver.GetAdapterCollection(); 
// Perform The Adapter Enumeration 
foreach( BindingName adapterName in adapterList ) 
{ 
// Display AdapterName Information 
listNDISDrivers.Items.Add((object)adapterName.InstanceName); 
 
PcaUsa.Rawether.Adapters.AdapterObject adapter; 
// Open an AdapterObject on the found AdapterName 
try 
{ 
adapter = ndisDriver.OpenAdapter( adapterName ); 
} 
catch( PcaUsa.Rawether.Exceptions.OpenAdapterFailedException ) 
{ 
MessageBox.Show( "OpenAdapter: FAILED." ); 
continue; 
} 
 
if (adapterName.InstanceName == "Intel(R) PRO/Wireless 2200BG Network Connection") 
{ 



this.adapter = adapter; 
PcaUsa.Ndis.MediaState connectState = PcaUsa.Ndis.MediaState.Unknown; 
adapter.QueryInformation( ref connectState ); 
// NOTE: Rawether .NET reports "Disconnected" only if the adapter actually supports 
// the OID_GEN_MEDIA_CONNECT_STATE query. If the OID is not supported the state 
// will be "Unknown". 
if( connectState == PcaUsa.Ndis.MediaState.Disconnected ) 
{ 
MessageBox.Show("  This AdapterObject is in Disconnected state" + "  It is probable that no packets will be 
received" + 
"   * Skipping test receive test on this adapter *" ); 
//adapter.CloseAdapter(); 
continue; 
} 
else if( connectState == PcaUsa.Ndis.MediaState.Unknown ) 
{ 
MessageBox.Show( "  This AdapterObject is in UNKNOWN connect state" + "  It is possible that no packets 
will be received  Continuing receive test on this adapter, but it may hang..." ); 
} 
//adapter.CloseAdapter(); 
break; 
} 
// Get Media Connect State 
} 
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