
Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

I

Technical Report
On

Concepts and Architecture of Context-Aware Collaborative Smart
Objects for Ubiquitous Application

Version 0.4

July 16, 2007

By

Ubiquitous Computing Team,
Department of Computer Engineering,

Kyung Hee University,
Korea

In this technical report we propose mechanism for implementing context aware
communication and collaboration services between everyday appliances to support
ubiquitous application. Bridging the gap between the applications and hardware for smart
every items we used distributed Tuple Space based Middleware.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

II

"Ubiquitous computing names the third wave in computing, just now beginning. First
were mainframes, each shared by lots of people. Now we are in the personal computing
era, person and machine staring uneasily at each other across the desktop. Next comes
ubiquitous computing, or the age of calm technology, when technology recedes into the
background of our lives."

Mark Weiser

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

III

Abstract

Developments in wireless sensor networking have opened up new opportunities and
pushing scenarios where application’s intelligence is no longer relegated to the fringes of
the system (i.e., on a data sink running on a powerful node) rather it is distributed within
the WSN itself. The future will see the integration of everyday items with existing
specialized technology (e.g. Medical) with pervasive, wireless networks. Specialized
technology will collaborate with the installed infrastructure, augmenting data collection
and real-time response. Examples of areas in which future medical systems can benefit
the most from wireless sensor networks are in-home assistance, smart nursing homes, and
clinical trial and research augmentation.

In this technical report we provide mechanism for implementing context aware
communication and collaboration services between everyday items in order to provide
ubiquitous application that possesses the essential elements of each of the applications.
We used distributed Tuple space based Middleware to support Inter object collaboration
and context aware communication also to facilitate the development of application.

This technical report is organized as follows, in Chapter 1 we provide introductory
background ubiquitous computing and our vision towards ubiquitous computing. In
Chapter 2 we provide concepts of Smart Object and how Smart Objects can collaborate
in a smart environment. Our detailed architecture and introductory concepts of every
module can be found on Chapter 3. In Chapter 4 present our OS which is build on top of
sensors followed by Chapter 5, where we discussed our Ubiquitous Networks which
focuses on building energy-efficient sensor networks through the use of sensor platforms
and processors in order to support out collaborative architecture. We have discussed our
middleware on Chapter 6. In this chapter we also provide introductory concepts of Tuple
Space. Inter object collaboration mechanism with the help of Middleware is also a part of
this chapter. In Chapter 7 we discussed our distributed context repository which is based
on Tuple Space. Chapter 8 deals with knowledge-processing mechanisms that can
provide the same level of functionality as in the case of a centralized architecture. We
also discussed our reasoning mechanism in this chapter. Our security mechanism is on
Chapter 9 followed by conclusion on Chapter 10.

Smart collaborative everyday object networks may assist residents by providing memory
enhancement, control of home appliances, medical data lookup, and emergency
communication. We will present Ubiquitous Life Care as an application to show how this
context aware collaborative architecture can be used to control everyday life.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

IV

Table of Contents
1. INTRODUCTION .. 9

1.1 UBIQUITOUS COMPUTING VISION ... 9
1.2 CONTEXT-AWARE COMPUTING ... 9
1.3 OUR VISION .. 12
1.4 REFERENCES ... 13

2. CONTEXT AWARE COLLABORATIVE SMART ENVIRONMENT ... 14

2. 1 SMART EVERYDAY OBJECTS .. 14
2.2 COOPERATION WITH OTHER COMPUTING DEVICES .. 15
2.3 REFERENCES ... 15

3. OUR PROPOSED ARCHITECTURE ... 16

3.1 SENSOR HARDWARE ... 17
3.2 SENSOR OS ... 17
3.3 UBIQUITOUS SENSOR NETWORK ... 17
3.4 AUTONOMIC CONTEXT AWARE MIDDLEWARE FOR UBIQUITOUS COMPUTING SYSTEM (ACAMUS) . 17
3.5 UBIQUITOUS SECURITY ... 18

4. SENSOR OS .. 19

4.1 ABSTRACT .. 19
4.2 INTRODUCTION ... 19
4.3 OVERVIEW .. 20

4.3.1. Smart Sensor Nodes .. 20
4.3.2 Infrastructures .. 21
4.3.3 Technologies .. 22
4.3.4 Interaction .. 22
4.3.5 Context-Aware Collaboration .. 22
4.3.6 Dependability ... 22
4.3.7 Security Concerns .. 23
4.3.8 Applications of Smart Sensor Objects .. 23

4.4 INFRASTRUCTURE CONCEPTS ... 24
4.4.1 Introduction.. 24
4.4.2 Selected Applications ... 24

4.5 COMMON TASKS ... 25
4.5.1 Events ... 25
4.5.2 Event Generation ... 25
4.5.3 Context ... 25
4.5.4 Location ... 26
4.5.5 Composition ... 26
4.5.6 Time ... 26
4.5.7 State and Behaviour ... 26
4.5.8 History ... 27
4.5.9 Communication Infrastructure ... 27

4.6 MIDDLEWARE CONCEPTS .. 27
4.6.1 Virtual Counterparts .. 27
4.6.2 Counterpart events ... 27
4.6.3 Counterpart Management .. 28
4.6.4 Artefact Memory .. 28

4.7 KERNEL RELIABILITY IN SMART SENSOR OBJECTS ... 28
4.8 EXISTING SENSOR OPERATING SYSTEMS .. 29

4.8.1 T-kernel .. 29
4.8.2 TinyOS ... 31

4.9 DISCUSSION .. 33

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

V

4.9.1 Sensor Access Strategies .. 33
4.9.2 Process scheduling Algorithms .. 34
4.9.3 Data management (tuple space) ... 35

4.10 CONCLUSION AND FUTURE RESEARCH ... 35
4.11 REFERENCES ... 36

5. UBIQUITOUS SENSOR NETWORKS ... 37

5.1 MOBILITY-ASSISTED RELOCATION FOR SELF-DEPLOYMENT IN WIRELESS SENSOR NETWORKS 37
5.1.1 Introduction.. 37
5.1.2 Related Work and Taxonomy ... 38
5.1.3 Proposed Relocation Schemes ... 40
5.1.4 Performance Evaluations ... 50
5.1.5 Conclusion and Future Work ... 57
5.1.6 References .. 58

5.2 LOCALIZED ENERGY AWARE BROADCAST PROTOCOL FOR WIRELESS NETWORKS WITH ANTENNAS . 61
5.2.1 Introduction.. 61
5.2.2 System Model ... 62
5.2.3 Proposed Algorithm ... 64
5.2.4 Performance Evaluation .. 68
5.2.5 Conclusions .. 70
5.2.6 References .. 71

5.3 SWARM INTELLIGENCE INSPIRED AUTONOMIC ROUTING ... 72
5.3.1 Introduction.. 72
5.3.2 Comparison between Autonomic Computing and Swarm Intelligence 73
5.3.3 A-CAMUS Architecture .. 74
5.3.4 Swarm Intelligence inspired Autonomic Routing ... 75
5.3.5 Experimental Setup and Results ... 81
5.3.6 Conclusion and Future Work ... 83
5.3.7 References .. 84

5.4 CONDITIONAL QUERY AGGREGATION ALGORITHM .. 86
5.4.1 Introduction.. 86
5.4.2 Related Work .. 87
5.4.3 System Model ... 88
5.4.4 Conditional Query Aggregation (CQA) ... 90
5.4.5 Performance Evaluation .. 94
5.4.6 Conclusion and Future Work ... 98
5.4.7 References .. 99

5.5 FAST CONVERGING PULSE COUPLED OSCILLATOR SYNCHRONICITY MODEL IN SENSOR NETWORKS
 ..100

5.5.1 Introduction...100
5.5.2 Related Work ...101
5.5.3 Mathematic model of PCO ..102
5.5.4 Fast converging PCO..106
5.5.5 Theoretical analysis of FPCO ...108
5.5.6 Simulation result and discussion ...109
5.5.7 Future Direction ...111
5.5.8 References ...112

5.6 INTEGRATED SLEEP-SCHEDULING AND ROUTING ..113
5.6.1 Introduction...113
5.6.2. Background ..114
5.6.3 Sleep-Scheduling in a Single-hop Cluster based Network ..118
5.6.4. Integrated Sleep-Scheduling and Routing Algorithm ...121
5.6.5. Performance Evaluations ...125
5.6.6 Conclusions and Future Work ..128
5.6.7 References ...128

5.7 PRIMARY STUDY OF FSO ...130

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

VI

5.7.1 Introduction...130
5.7.2 Comparison of FSO and RF Communication ...130
5.7.3 Conclusion ..131
5.7.4 References ...131

6. AUTONOMIC CONTEXT AWARE MIDDLEWARE ...133

6.1 BACKGROUND AND MOTIVATION ..133
6.1.1 Middleware ...133
6.1.2 Functions of Middleware ..133
6.1.3 Setting and History behind this project ...134
6.1.4. Goal of the project ...136
6.1.5. Scope of the project ..136

6.2 MIDDLEWARE ARCHITECTURE ..136
6.2.1. Simplicity and Flexibility ...137
6.2.2. Pluggable and Upgradeable Modules..138
6.2.3. Vertical Context Propagation ..138
6.2.4. Horizontal Collaboration ...138

6.3. SENSING AGENT ...139
6.4. INTER OBJECT COLLABORATION ..139

6.4.1. Collaboration between smart objects/sensors ..140
6.4.2. Integrating handheld into environment [2] ..142

6.5 KNOWLEDGE PROCESSING ...145
6.6 ADAPTIVE, SCALABLE AND PROACTIVE CONTEXT DELIVERY ..145
6.7 PROJECT PLAN ...146

6.7.1 Summary of methodology ..146
6.7.2 Work breakdown structure and estimates ...147

6.8. REFERENCES ...149

7. UBIQUITOUS DATABASE MANAGER ...150

7.1 INTRODUCTION ..150
7.1.1 SCO Environment ..150
7.1.2 Our Objectives ...151
7.1.3 Challenges ..151

7.2 CONTEXT MODELING AND REPRESENTATION ..152
7.2.1. Context Modeling Approaches ...152
7.2.2 Context Representation ..154

7.3 CONTEXT STORING ..155
7.3.1 Ontology-oriented Approach for Context Storing ...155
7.3.2 Ontology-based Database ...156

7.4 OUR SOLUTION FOR CONTEXT REPOSITORY ..160
7.4.1 Distributed Tuplespace for Smart Objects and Smart Sensors ..160
7.4.2 Ontology-based Lightweight Database for users’ handhelds ..160

7.5 CONTEXT QUERYING INTERFACE ...164
7.5.1 Requirements and Design Principles ...164
7.5.2 Synchronous and Asynchronous Query Mode ...165
7.5.3 The Simple Query Interface – An Interoperable Application Service for Querying167

7.6 FIVE-YEAR PROJECT PLAN ...168
7.6.1 Phase I ...168
7.6.2 Phase II ..171

7.7 CONCLUSION..172
7.8 REFERENCES ..172

8. KNOWLEDGE PROCESSING ...174

8.1 INTRODUCTION ..174
8.1.1 Ubiquitous Computing Vision ...174
8.1.2 Context-aware Computing ..175

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

VII

8.1.3 Role of Knowledge Processing..177
8.2 DATA MANAGEMENT IN CAMUS ...179

8.2.1 Motivation ...179
8.2.2 Architecture...180
8.2.3 Meta Data Management ..180
8.2.4 Data and Knowledge Management ...180
8.2.5 Knowledge Sharing and Querying ..181
8.2.6 Provision of Summary Data ..181
8.2.7 Conclusion ..181

8.3 CONTEXT SUMMARIZATION & CONTEXT GARBAGE COLLECTION ...182
8.3.1 Introduction...182
8.3.2 Problem Definition ..182
8.3.3 Proposed Solution ...183
8.3.4 Context Summarization (CS) ...185
8.3.5 Techniques of Context Summarization ..189
8.3.6 Related Work ...193
8.3.7 Proposed Model for GCC and CS ...194

8.4 BAYESIAN REASONING IN CAMUS ...203
8.4.1 Introduction to Bayesian Reasoning ...203
8.4.2 Motivation ...204
8.4.3 Where to use Bayesian Networks in A Ubiquitous Environment..204
8.4.4 Bayesian Reasoning in CAMUS ..205

8.5 USER PREFERENCE LEARNING ...209
8.5.1 Introduction...209
8.5.2 Traditional Bayesian network ...212
8.5.3 The Drawback of Traditional Bayesian network in Preference Learning213
8.5.4 Bayesian RN-Metanetwork ...214
8.5.5 Probability Propagation and Adaptation for 2-layer Bayesian RN-Metanetwork218
8.5.6 Evaluation ...224
8.5.7 Implementation ...226
8.5.8 Conclusion ..233

8.6 LOCATION ESTIMATION ...235
8.6.1 Location Estimation in CAMUS ..235
8.6.2 WiFi Location Systems Overview ..236
8.6.3 Radio Map Knowledge Engineering Toolkit ...238
8.6.4 Parallel and Distributed Site Calibration System ...239
8.6.5 System Architecture...240

8.7 SEMI-SUPERVISED LEARNING FOR USER-ACTIVITY RECOGNITION ..256

9. SECURITY AND PRIVACY ASPECTS IN SCOS ..260

9.1 INTRODUCTION ..260
9.2 MOTIVATION ...260
9.3 SECURITY THREATS IN SCOS ..261
9.4 SECURITY ISSUES AND CHALLENGES ...262

9.4.1 Authentication ...262
9.4.2 Access Control ..263
9.4.3 Privacy Preservation...266
9.4.4 Trust Collaboration ..271
9.4.5 Security Policy ..273
9.4.6 Intrusion Detection System ...276
9.4.7 Smart Networking Sensors ..279
9.4.8 Key management ...279

9.5 FUTURE DIRECTION AND PLAN ..282
9.5.1 Current Research: Trust-based Security Infrastructure (TBSI) Project282
9.5.2 Lightweight TBSI (µTBSI) for SCOs ...284
9.5.3 Outline of 5-Years Plan ...285

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

VIII

9.6 CONCLUSION ...285

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

9

1. Introduction

1.1 Ubiquitous Computing Vision
The term "Ubiquitous Computing" was originally introduced by Mark Weiser [1] in the
year 1991. In his fundamental article "The Computer for the 21st Century" [2], he
elaborated about "the computer that disappears". For Weiser the way into the 21st century
was obvious: Computer and Network technologies are getting smaller, cheaper, and more
powerful. Therefore, more and more everyday artifacts are going to be equipped with a
reasonable amount of computing power and, maybe even more important, are networked
together into a virtually unique network of communicating "things that think". In the pure
sense of the word, computing gets "ubiquitous", anywhere, any time. Computers in every
thing that is calmly doing what we intend it to do, in a way that is non-obtrusive and user
friendly, in a sense that we do not have to focus our attention on the trivia of running an
electronic system.

Research on Ubiquitous Computing (Ubicomp) is related to many other disciplines from
Robotics and Embedded Systems, Networking and Distributed Systems, to Artificial
Intelligence and Psychology. Thus Ubiquitous computing is a very difficult integration of
human factors, computer science, engineering, and social sciences.

1.2 Context-aware Computing
One goal of Context-aware Computing is to acquire and utilize information about the
context of a device to provide services that are appropriate to the particular people, place,
time, events, etc. For example, a cell phone will always vibrate and never beep in a
concert, if the system can know the location of the cell phone and the concert schedule.
Often, the term "Context-aware Computing" is used in a sense synonymously to
Ubiquitous Computing. This is because almost every ubicomp application makes use of
some kind of context. Ubicomp is mainly about building systems which are useful to
users, which "...weave themselves into the fabric of everyday life until they are
indistinguishable from it" [2].

For ubicomp systems, Context is essential. How can a system be helpful for a user? Users
tend to move around often, doing new things, visiting new places, changing their mind
suddenly, and changing their mood, too. Therefore, a helpful system seems to need some
notion of Context.

In the Human point of view, we have a quite intuitive understanding of Context. Here,
Context is often referred to as "implicit situational understanding." In social interactions
Context is of great importance. A gesture, a laugh, or the tone of sentences builds up the
implicit "picture" of what is meant or what communication partner is thinking. The same
words can have a completely different meaning in different contexts.

In Computer Science, Context is quite a familiar concept, be it within the discipline of
Artificial Intelligence ("Thinking machines"), in Robotics ("Adaptive Systems"), in User
Interface Design (like adaptive UIs or office assistants like the Microsoft Office assistant

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

10

called "Clippy"), or basically any other discipline (to some extent). Especially, every
discipline dealing with human users tries to take into account human behavior one way or
the other, with the generated output loops back as part of the vector of input values.
From the variety of definitions commonly used by Ubicomp researchers we can imagine
how difficult it is to find a common ground. Context definitions are far away from
mathematical precision and a particular definition often strongly depends on an authors'
subjectiveness:

• Schilit and Theimer [3]: "Context is location, identities of nearby people and objects,
and changes to those objects."
• A. Dey and Abowd [4]: "Context is any information that can be used to characterize
the situation of an entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application, including the user and
applications themselves."
• Pascoe [5]: "Context is the subset of physical and conceptual states of interest to a
particular entity."

So what is this leading to? Are those definitions helpful or misleading? In the sense of a
functional definition they are only helpful as a general description of what to do. As an
application designer they are only stating what they are doing anyway: trying to figure
out what input is needed to produce the desired output. Hence, it is of topmost
importance to have some common ground or a common "vocabulary" when talking about
what Context is. We need some sort of formal approach towards handling and describing
Context.

Furthermore, in a software engineering sense, we need building-blocks for building
context-aware applications in a structured way. The Context Toolkit [6] by A. Dey is a
step into this direction and a good example for this principle (fig.1.1.) The Toolkit
includes building blocks called "Widgets", wrapper classes for Sensors which serve as a
hardware-abstraction layer, "Aggregators", which concentrate multiple input values to a
single output value, and "Interpreters", implementing some application logic and
generating application dependant "higher-level" output based on the input given. They
interpret the incoming data according to a pre-programmed scheme.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

11

Figure 1.1: The Context Toolkit Core Components

With the Context Toolkit, the development of Context-aware applications basically
consists of several distinguishable steps including

1) The real-world is sensed;
2) Context is detected, aggregated, "interpreted", and
3) Applications are custom-built to match the "context-detection" technology.

However, we believe that there is more tool-support necessary for software engineering
and the design of Context-aware applications than provided today.

We want to emphasize that the way applications are developed is very dependant on the
underlying technology used, which we consider as bad practice in the long run. Research
in the direction of decoupling applications from data acquisition seems to be important.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

12

1.3 Our vision
The continuous improvement of small devices capable of doing specific task and
improvement of wireless communication have simulated the development and use of
small wireless sensor network to perceive the physical environment. However, each
single device may not be able to handle resource-intensive software with reasonable
performance and quality. Therefore, we introduce an approach for this challenge which is
to combine several devices to perform such tasks together or via personal computer and
mobile agent technology.

That is, instead of running huge software like on a small device, one may connect several
smart appliances together to form an ad hoc system. Also, we use mobile agent (e.g.
handheld device) to join a distributed data structure (we call it distributed context
repository) shared by cooperating smart devices, which makes the location where data are
stored transparent for sensor applications. This allows smart appliance to transfer a
graphical user interface or processed information to a nearby handheld, and facilitates the
collaborative processing of sensory data because of the more elaborate storage and
processing capabilities of mobile user devices. Fig. 1.2 shows an example application of
collaborative processing of smart object and handheld.

Figure: 1.2: An application example.

Typically, a network is formed by hundreds to thousands of sensor nodes, low power
devices equipped with one or more sensors. Sensor nodes are responsible for collecting
environmental information and sending it towards a sink node, which receives the
information gathered by the network and delivers it to the final user.

These networks have been developed for a wide range of applications, such as habitat
monitoring, object tracking, precision agriculture, building monitoring and military
systems [2], [3], [4]. Common to these applications is the need of continuously collecting
and integrating data coming from a large number of sensor nodes. Hence, a basic issue is

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

13

how to satisfy applications’ requirements considering specific characteristics of sensor
networks such as constrained sensor power and network bandwidth [5].

In this technical report our vision was to provide how sensor, smart sensors and smart
everyday appliances can be used in collaborative approach for context aware for
ubiquitous application. We have concentrated on:

• Collaboration between Desktop PC, Handheld devices, Smart object and smart
sensors,

1.4 References
[1] Sungyoung Lee, Young Koo Lee, Anjum Shehzad, Hung N. Q., Kim Anh P. M. ,
Maria Riaz, Saad Liaquat. "Middleware Infrastructure For Context-Aware Ubiquitous
Computing Systems"
[2] I.F.Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, "A Survey on Sensor
Networks", IEEE Communications Magazine, pp. 102-114, August 2002.
[3] A. Cerpa et al., "Habitat Monitoring: Application Driver for Wireless
Communications Technology", ACM SIGCOMM Workshop on Data Communications in
Latin America and the Caribbean, Costa Rica, April 2001.
[4] G.J. Pottie, W.J. Kaiser, "Wireless Integrated Network Sensors", Communications of
the ACM, Vol. 43, no. 5, pp. 51-58, May 2000.
[5] Eduardo Souto, Germano Guimarães, Glauco Vasconcelos, Mardoqueu Vieira,
Nelson Rosa, Carlos Ferraz. "A Message-Oriented Middleware for Sensor Networks"
[6] Gelernter, David – “Generative communication in Linda” (published in ACM
Transactions on Programming Languages and Systems, Vol 7 No 1, January 1985)

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

14

2. Context Aware Collaborative Smart Environment

2. 1 Smart Everyday Objects
A smart everyday object is an arbitrary item from our everyday environment – such as a
chair, a hammer, a car, or an umbrella – augmented with information technology. Such
augmentation must meet these requirements:

• Unobtrusiveness. The computation embedded into an object must not distract people
from carrying out the task originally associated with it. The information technology
should be either embedded in the design of an object or completely invisible – and not
just a bulky add-on getting in the user’s way.

• Integrity. People using a smart everyday object should perceive it as a single
consistent unit. There should be a clear connection between the original purpose of the
everyday object and the additional services provided by the embedded technology.

Information technology can either be directly integrated into the object itself, be available
in a supporting background infrastructure, or both. If computation is provided by the
environment rather than by the object itself, there must be a mechanism to link the object
to a corresponding background infrastructure service that processes data and
communicates with peers on behalf of the object.

The terms smart object and smart everyday object are used interchangeably throughout
this thesis. However, considering definitions from the literature, there are significant
differences between these two terms. Kintzig et al. [KPPF03], for example, defines a
smart object as a “physical device equipped with a processor, memory, at least one
network connection, and various sensors/actuators, some of which may correspond to
human interfaces.” According to their definition, electronic tags and wireless-enabled
PDAs are all smart objects in their own right. This constitutes a major difference to our
understanding of smart everyday objects: A smart everyday object always consists of
both an everyday thing and information technology that augments it. PDAs and mobile
phones themselves are therefore not smart everyday objects.

In the work presented in this thesis we concentrate on everyday things that are augmented
by active sensor-based computing platforms. Such smart objects are able to perceive their
environment through sensors, can carry out local computations, and can collaborate with
other objects in their vicinity by means of wireless communication technologies.
Furthermore, they possess an autonomous power supply and hence do not rely on
external reader devices to supply energy.

Besides sensor-based computing platforms there are several alternative ways to link
things with computation. Achieving this linkage usually requires some sort of electronic
tag that is attached to ordinary objects. In the next section we present an overview of such
tagging technologies, review how related projects augment everyday objects, and

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

15

compare their work to the tagging approach underlying our work [6]. Figure 2.1 shows a
smart everyday object.

Figure 2.1: A smart everyday object: an everyday item augmented with a sensor-based computing platform.

2.2 Cooperation with other computing devices
Cooperation with other computing devices in smart environments helps smart objects to
implement their services for several reasons. The most prominent one is context
awareness. In smart environments, people expect applications to automatically adapt to
their current situation, which requires smart objects to obtain information about their real-
world environment and that of nearby users. The problem is that a single object can only
perceive a small subset of its environment with its own local sensors, and therefore often
needs to cooperate with other objects to more accurately derive context information.
Another reason for cooperation is that the resources of smart objects are restricted as
regards memory capacity and processing power. In order to carry out computationally
expensive algorithms or to store large amounts of data, smart objects need to cooperate
with other entities. Last but not least, the computing platforms attached to objects needs
to be as unobtrusive as possible when augmenting everyday things with computation. In
fact, prospective users should not even be aware of the integrated technology, and it must
not hinder the way in which people normally use their items. Consequently, smart objects
often have no sophisticated input/output interfaces such as displays or keys. This means
that when a smart object wants to provide services that rely on such interfaces, it needs to
cooperate with other computing devices – handhelds or mobile phones for example – that
provide such user interfaces [1].

2.3 References
[1] Frank Siegemund. “Cooperating Smart Everyday Objects – Exploiting Heterogeneity and
Pervasiveness in Smart Environments”

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

16

3. Our proposed architecture
Figure 3.1 shows our entire proposed architecture. It consists of five components which
are virtually wired together. These are,
1. Sensor Hardware,
2. Sensor OS,
3. Ubiquitous Sensor Network,
4. Autonomic Context Aware middleware, and
5. Ubiquitous security.

Figure 3.1: Our proposed architecture.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

17

3.1 Sensor Hardware
We use ZigBee Sensors as our Sensor Hardware. The reasons using ZigBee sensors are,

• Standard in a fragmented market
– Many proprietary solutions, interoperability issues

• Low Power consumption
– Users expect battery to last months to years!

• Low Cost
• High density of nodes per network
• Simple protocol, global implementation

3.2 Sensor OS
Technological progress in integrated, low-power, CMOS communication devices and
sensors makes a rich design space of networked sensors viable. They can be deeply
embedded in the physical world and spread throughout our environment like smart dust.
The missing elements are overall system architecture and a methodology for systematic
advance. To this end, we identify key requirements, develop a small device that is
representative of the class, design a tiny event-driven operating system, and show that it
provides support for e_cient modularity and concurrency-intensive operation. Our
operating system _ts in 178 bytes of memory, propagates events in the time it takes to
copy 1.25 bytes of memory, context switches in the time it takes to copy 6 bytes of
memory and supports two level scheduling. The analysis lays a ground work for future
architectural advances.

In chapter 4, we describe details about our Sensor OS.

3.3 Ubiquitous Sensor Network
Ubiquitous Sensor network is one of the most challenging parts due to their unlimited
potential. Ubiquitous Networks to support our collaborative context aware
communication between Smart Objects and with handhaded.

Ubiquitous sensor networks (USN) as the underground infrastructure to achieve
ubiquitous computing should be paid more attention.

The USN infrastructure provides a rich set of capabilities and exportable services to
enhance and augment ubiquitous sensor networks applications.

In Chapter 5, we describe details about our Ubiquitous Sensor Network.

3.4 Autonomic Context Aware Middleware for Ubiquitous
Computing System (aCAMUS)
Ubiquitous Sensor Network (USN) is evolving from centralized architecture to
decentralized architectures where the application’s intelligence is distributed among the
smart everyday objects. Our proposed decentralized network consists of a large number

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

18

of sensors and actuators where the latter base their actions on the data gathered by the
former. To support this decentralized network we proposed a distributed middleware
architecture which is an autonomic by nature and supports applications where sensing
and acting devices themselves drive the network behavior. In our proposed architecture
application is not confined in a powerful node, rather it is deployed on the devices
embedded within the physical environment.

In Chapter 6, we describe details about our aCAMUS architecture.

3.5 Ubiquitous Security
Generally, WSN devices are extremely limited in terms of power, computation, and
communication. They are often deployed in accessible areas, thus increasing security
vulnerabilities. The dynamic ad hoc topology, multicast transmission, location awareness,
critical data prioritization, and co-ordination of diverse sensors of different applications
further exacerbate the security challenges. We present an analysis of various WSN
security mechanisms from the demanding perspective applications, and consider the
importance of security in order to the successful accomplishment of Inter Object
Collaboration.

We will be discussing more about this on chapter 9.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

19

4. Sensor OS

4.1 Abstract
As we progress in time, computing devices are becoming essential part of human life. It
all started from simple mathematical calculations. Initially, programs were written to
assist human beings in carrying out simple and repetitive tasks. Intelligent tasks were
carried out by human beings themselves. Then we moved into an era where the
computing devices started taking up intelligent tasks also. From large computers, we
moved onto personal computers, then Laptops. In parallel, humans invented machines,
which can be used for communication e.g. Wireless phones. Wireless communication
devices evolved to incorporate intelligence and smartness. In parallel to all this, sensor
devices and their networks also paved their way into human needs. Combining all these
things, we are now heading towards a new era, in which all these technologies will be
merged together to form Smart Sensor Objects (SSOs). There is a need of having some
distributed or networked operating system to make most efficient use of these devices.

4.2 Introduction
Ubiquitous computing aims at making computers available throughout the environment,
while rendering them effectively invisible. One of the main goals is to incorporate
computing power into everyday objects in order to create "smart things" real-world
objects that provide novel ways of accessing information, react to their environment, or
provide new emergent functionality when interacting with other smart things.

This vision of ubiquitous computing is grounded in the belief that microprocessors and
advanced sensors will soon become so small and inexpensive that they can be embedded
in almost everything. For ubiquitous environments, it is required that they should not
render any change in the existing lifestyle of a user.

In SSOs, we have a certain hierarchy. At the lowest level, we have smart collaborative
sensors (SCS), which are severely limited in resources. These sensors can be attached to
crockery or even footwear. If we move a level higher, we find Smart Collaborative
Objects (SCO). These devices are not as limited as SCS. The reason is that their energy
resources can be replenished frequently.

However, SCOs are limited in other aspects like memory, computation and
communication capabilities. The reason for these limitations has always been the cost
associated with these devices. These devices are so large in number that these aspects
must be taken into consideration. SCS are miniature devices, which sense and
communicate with SCOs.

SCOs in turn communicate to higher level i.e. mobile devices like cellular phone.
Cellular phones can be programmed to communicate with either a back-end server or
some other device at some other place, to which it need to send information. The backend
can be any computing device, with enough capabilities to store relative information and
instruct the SCOs and SCS through mobile devices.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

20

We organize our report as follows. In the next section, we will give an overview of SSO.
In section 3, we will introduce some infrastructure concepts with respect to SSOs. In
section 4, we discuss some common tasks required by SSO applications. This will be
followed by a discussion on middleware concepts in SSOs in section 5. Kernel Reiability
concepts will be discussed in section 6. Section 7 will cover existing system software
techniques, which can be used in SSOs. We discuss incorporation of existing approaches
into SSO paradigm in section 8. Section 9 states the conclusion and future plans of our
team.

4.3 Overview

4.3.1. Smart Sensor Nodes
Smart objects are equipped with sensing, computation, and communication capabilities
and are able to perceive and interact with their environment and with other smart objects.

These Smart Nodes participated in the European Smart-Its project whose goal was to
develop unobtrusive, deeply interconnected smart devices that can be attached to
everyday items in order to support new functionality, novel interaction patterns, and
intelligent collaborative behavior. Smart-Its would be as cheap and as small as state-of-
the-art radio tags (RFIDs), but in addition they will also be able to communicate with
peers, and they will be customizable in their behavior. In order to facilitate a meaningful
integration in their environment, Smart-Its are equipped with various sensors providing
context information.

Figure 1: The Smart-Its project was one of 16 projects conducted under the European
Union's Disappearing Computer initiative, whose aim was to explore how everyday life
can be supported and enhanced through the use of collections of interacting artifacts.

Research groups at ETH Zurich and EPFL, are working on software architectures and
infrastructures for mobile networks of smart, location-aware devices. The BTnode
platform consists of a microprocessor, a Bluetooth radio, and various sensors. It is used
as the basis of several prototypes built within the scope of this project.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

21

Figure 2: The second generation of Smart-Its prototypes, called BTnodes, are based on an
Atmel microcontroller with 128 kB of in-system programmable flash memory and 64 kB
of SRAM. Bluetooth modules allow communication between different devices.

These groups are working on basic issues such as energy-efficient and scalable time
synchronization and localization of sensor nodes, as well as on higher-level mechanisms
for integrating these basic services into a common framework for the development of
applications for sensor networks.

Many of their research topics are centered on this main theme: What kind of
infrastructures is needed to support the interaction with and among smart objects? What
key technologies can be used to prototype these visions with today's hard- and software?
How to interact with smart objects, which might not have any perceivable user interface?
How can hundreds of smart devices collaborate without knowing where they are or what
exactly it is they do? And of course: How can security and dependability be provided at
an adequate level in a world full of tiny interacting devices?

4.3.2 Infrastructures
To enable communication and cooperation among smart objects, new information
infrastructures are required. These infrastructures have to cope with a highly dynamic
environment and should, among other things, provide location information to mobile
objects, represent context information, and enable reliable and scalable service creation.

Based on their experience with a collection of prototypical ubiquitous computing
applications, they identified a number of common basic tasks which led to the design of
some simple mechanisms that were found useful for structuring and implementing such
applications. Building upon these mechanisms, they created a software infrastructure to
support the application development of smart collaborating objects. Their framework was
targeted at applications where objects were tagged with Radio Frequency Identification
tags (RFIDs).

A central feature of their infrastructure is virtual counterparts. Virtual counterparts form
augmented representations of real-world objects and encapsulate object states and object
behavior in a computational entity. Virtual counterparts are a simple but powerful means
of bridging the gap between the physical and the virtual world.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

22

4.3.3 Technologies
Bluetooth: Bluetooth provides a standard wireless-communication interface and can
carry data and voice over short ranges with relatively low power. In their research, they
analyzed Bluetooth to suggest improvements and deduce requirements for emerging
wireless-communication standards suitable for Ubiquitous Computing. The BTnode is a
small, autonomous computing device combining computation, Bluetooth wireless
communication and sensing. Augmentation of real-world objects with BTnodes, turn
them into smart collaborating objects.

RFID: Their work on RFID was focused on the development of middleware concepts to
support RFID systems rather than to design RFID systems themselves. They investigate
how RFID can be used to bridge the gap between the physical and the virtual world.

4.3.4 Interaction
Interaction with the virtual aspects of an entity requires a device which is able to detect
the entity and display related information. Such a "symbolic magnifying glass" allows,
for example, to make object relations visible, to access virtual functions of an object, and
to virtually zoom into and out of an object in order to get to know the object details or the
object's context, respectively. Physical objects thus become "interactive" in a way which
formerly was only possible with purely virtual, computer-based objects.

4.3.5 Context-Aware Collaboration
Handheld devices such as mobile phones or PDAs, computer-augmented everyday
artefacts, RFID-enabled consumer products, and wall-sized displays are only some of the
devices that are likely to play role in future smart environments. However, as pointed out
by Mark Weiser, "the real power of the concept [of Ubiquitous Computing] comes not
from any one of these devices; it emerges from the interaction of all of them." One core
challenge in smart environments is therefore to exploit their heterogeneity by building
applications that make use of and combine the specific capabilities provided by different
types of computing devices.

Deriving the user's context from a set of collaborating smart objects distributed
throughout the environment does therefore constitute a major part of a smart object's
application behavior. Information about an object's own context makes it possible to
dynamically form groups of collaborating artefacts, and to form networking structures
that can make collaborative context recognition more efficient.

4.3.6 Dependability
However, with an ever growing number of smart devices and appliances, the probability
of failure for any single device increases proportionally. They are investigating the role of
redundancy and fault-tolerance in ubiquitous computing, with the goal to provide
concepts for reliable infrastructures and services. Their main research interests in the
field of dependable service infrastructures for ubiquitous computing include dependable
location systems, reliability in highly dynamic smart object environments, and the roles
of redundancy and connectivity in ubiquitous computing.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

23

4.3.7 Security Concerns
Security and privacy will be of prime concern in a world of highly interconnected,
invisible devices that will eventually permeate everyday life. They are working on a
privacy-aware infrastructure (based on P3P, a W3C Web standard for exchanging privacy
policies) that is able to keep track of any ongoing data exchange, while providing the user
with powerful means to selectively manage such collected personal information. The
operator of a wireless sensor network wants to make sure that outsiders cannot interfere
with the operation of the network or gain access to confidential (or valuable) sensor data.
Therefore, security mechanisms have to be implemented that protect the integrity,
confidentiality, and availability of the network. Due to their potentially large size,
existing security mechanisms are not always applicable to sensor networks. So they
concentrate their research on localized protocols and methods for assessing security
properties of sensor networks.

4.3.8 Applications of Smart Sensor Objects
• Smart Egg Carton
• Smart Medicine Cabinet
• Smart Product Packaging
• Smart Vacuum Cleaner
• Augmented Photoalbum
• RFID-Chef
• Smart Playing Cards
• Smart Surgical Kit
• Smart Toolbox

Website Reference: http://www.vs.inf.ethz.ch/res/show.html?what=sco can be visited for
more details about the introduction of smart sensor objects.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

24

4.4 Infrastructure Concepts
The ultimate goal is to develop concepts and software frameworks to ease the
development of ubiquitous computing applications. Researchers at ETH Zurich and
EPFL have collected their experiences from the development of prototypical ubiquitous
computing applications based on tagged physical objects. They have pointed out some
tasks common to such applications. They have also mentioned some design concepts
useful for structuring and implementing such applications. They have proposed an
infrastructure based on these concepts.

4.4.1 Introduction
Objects brought into the vicinity of an antenna can be identified using tag reader devices
working with tagging technologies like RFID. Some systems allow identification of
multiple tags within one cubic meter. In the first prototype system built in this lab, only
common thing was the RFID driver software. A number of tasks common to this type of
application have been identified, which led to the design of concepts, useful for
structuring and implementing applications using tagged physical objects..

4.4.2 Selected Applications
These are the applications that the researchers at ETH Zurich and EPFL have outlined
and intend to support with their infrastructure. They have developed some of the RFID-
based ubiquitous computing applications over the recent years. All the applications are
based on multiple interacting tagged physical objects. These applications will serve as a
basis for identifying common tasks that should be supported by a generic ubiquitous
computing infrastructure.

RFID Chef: Grocery items are equipped with RFID tags. When placed on the kitchen
counter, a nearby display suggests dishes that can be prepared with the grocery items
available, or shows missing ingredients. The suggested dishes not only depend on the
available ingredients, but also on the preferences of the cook, who might for example
prefer vegetarian or Asian dishes. To implement this functionality, the cook is identified
by an RFID tag attached to his wristwatch. When a person enters into the kitchen,
possible dishes are suggested in the order of his preference.

Smart Playing Cards: Ordinary playing cards are equipped with RFID tags. An RFID
antenna mounted beneath a table monitors the game moves of the players. A nearby
display shows the score, the winner, and a cheat alarm if one of the players does not
follow suit, and gives hints to beginners by assessing the players’ moves. Each card must
remember the contexts in which it was used and whether the trick in question was won or
lost.

Smart Agenda: Agendas are equipped with RFID tags. If two or more people want to
make an appointment, they place their agendas on the “appointment table”, which is
equipped with an RFID antenna. A nearby display shows possible dates that are
compatible with the schedules of all the participants.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

25

Smart Tool Box: Tools are equipped with RFID tags, and the tool box contains a mobile
RFID system. The tool box issues a warning if a worker attempts to leave the building
site (or a sensitive maintenance area such as an airplane) while any tools are missing
from his box. The box also monitors how often and for how long tools have been in use.
Based on this information, tools can be replaced before they wear out. Additionally, the
tool owner can charge for tool rental based on actual tool usage.

Smart Medicine: This application helps to avoid trouble with medication by monitoring
medicine from production to use. For this, medicine bottles are equipped with RFID tags.
The environmental temperature of the medicine is constantly checked in order to avoid it
going bad. Within the medicine cabinet, the bottle checks for other pharmaceuticals
which are not compliant if taken together. A warning is issued if such dangerous
situations are detected.

4.5 Common Tasks

4.5.1 Events
In order to enable an application to react to actions in the physical world, a link has to be
established between tagged physical objects in the real world and the application. Since
RFID systems detect presence and absence of tags in a certain physical space, this link
can be established by notifying the applications about tags entering and leaving this space.
A natural way to implement these notifications is by means of an event notification
system. Also, applications need a way of expressing their interest in a subset of all
possible tags, since a single antenna can be used by multiple applications at the same time.

4.5.2 Event Generation
Detection details for entering and leaving tags is a bit complicated. Periodic scanning
technique and technique of replying after certain time slots is used in present systems.
Not all scan results may be required. Only changes in the status of RFID tags are required.
Moreover, false detection may occur due to collision or corruption at lower levels. For
example, two replies of already present tags collide and both are not reported to the
applications as being present while they are. Systems software should be used, which
filter out such false detections.

Applications, such as smart playing cards, may require fast detection as the game is
played in real time. Delayed detection may not be useful at all. Algorithms need to be
designed and implemented, which are responsible for timely detection of entering/leaving
tags.

4.5.3 Context
Application’s action on entry/exit of a tag depends on the present context. For example, it
may depend upon the presence or absence of other devices in the range. For instance in
RFID chef application, when a new grocery item arrives, new list of dishes not only
depend upon the current grocery items. It also depends upon the person, who has come to
cook. Similarly, in smart playing cards, when a card is played, action also depends upon
the cards already present on the table.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

26

Sometimes, only a subset of current events is required in the context. For example in
smart playing cards application, only last four or eight (in some cases) playing cards’
presence will need to be known. This can be done at the application level, but it is better
to push it as low as possible. This will increase performance and scalability of the system
but it will come at some cost. May be, a proper expression of interest can make things
lighter and practical in smart sensor objects such as sensor nodes.

4.5.4 Location
In RFID systems, the reading range of an RFID antenna is the location of a smart object.
A tagged object is at this location if its tag can be read by the antenna. This idea is very
simple and useful as it makes groups of tagged based objects based on their locations. In
the Smart Tool Box application, for example, all the tools in the range of the tool box
antenna belong to the same tool box. As in this example, “cooperating” physical objects
are often located nearby to each other. For collocated objects to collaborate, they should
adequately support the concept of neighbourhood. This might not be so easy because
physically nearby objects may be on other sides of a wall and thus can’t be each other’s
neighbours.

4.5.5 Composition
Some smart sensor objects might be a part of other smart objects. For instance medicine
bottles can be smart objects and a medicine cabinet can also be a smart object. Medicine
bottles are a part of the medicine cabinets. Some applications might be interested in the
medicine cabinet as a whole i.e. it wants to perform certain operation on all objects inside
the medicine cabinet. Object relationships can also be defined for such applications. Note
that this is different from neighbourhood concepts as two neighbours might not be a part
of same Smart Sensor Object.

4.5.6 Time
Time may also be important in many cases. A smart tool box might need to calculate the
amount of time a tool was used so that its rent can be calculated. Smart playing cards may
also need to know the temporal order in which the cards were played. Timestamps can be
added by a common framework. There can be multiple tag readers. Framework should
also support timestamps so that entry or exit recorded from any reader can be compared.

4.5.7 State and Behaviour
There can be applications, which support states of objects. These applications include
smart tool box and smart agenda in which the states of tools and meetings are maintained.
There can be applications that are stateless. In some applications, behaviour of smart
objects is collective while in others, it is individual. For example in RFID chef, it is the
behaviour of all objects collectively that reveal the list of available dishes. However, in
case of applications like smart tool box, behaviour of individual tools also matter. In
smart playing cards, individual behaviour of a card influences the context of all other
cards on the table. This means that a flexible platform is required to handle the states and
assign behaviour to physical objects.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

27

4.5.8 History
Some applications may also need to know the history of entering/leaving of a smart
sensor object. For example, tools might be queried about their usage history based upon
their entrance/exit from tool box. This history can be maintained in a common
infrastructure for all applications that require it.

4.5.9 Communication Infrastructure
Communication infrastructure might not be like the internet i.e. always connected. The
application should be able to support offline operations. For example, tools might be
connected to tool box through RFID infrastructure and the tool box can be offline. When
it is taken back to the workshop and connected to a background communication
infrastructure, it sends the collected information. This and any other sort of
communication infrastructure should also be supported in the system software.

4.6 Middleware concepts
Following are some infrastructure concepts that support the above mentioned common
tasks.

4.6.1 Virtual Counterparts
A virtual counterpart (VC) is a logical object that encapsulates the state and behaviour of
a physical object such as a smart playing card. A virtual meta-counterpart is a logical
object that collectively encapsulates the state and behaviour of a group of tagged physical
objects such as grocery items. Some VCs are specialized to depict the range of an antenna.
These are called Virtual Locations (VL). VLs are useful in measuring temperature and
also Location management. There are also virtual meta-locations, representing a set of
locations.

4.6.2 Counterpart events
Virtual Counterpart Event Services (VCES) is used to inform a virtual counterpart about
an event of its physical counterpart. Physical counterparts produce events, virtual
counterparts consume events. VCES forwards events from producers to consumers based
upon their subscriptions i.e. events they are interested in. In the infrastructure software
handling the physical events is the producer. More than one consumer can be interested
in an event from a physical counterpart. Also, a consumer can be interested in the events
of more than one physical counterpart. So m-to-n relationship needs to be managed
between physical and virtual counterparts in the system.

Applications can also mention the context, in which they are interested in an event. The
context will be implemented using a rule based mechanism in VCES. The event service
will see both the event and the context, in which it is important to a consumer. If both
match the rules, then the event is forwarded to the virtual counterpart. For example, a
smart playing card application will need to see an event once a round in complete i.e. all
four cards have been played. So other three events will not be forwarded in this case.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

28

4.6.3 Counterpart Management
Counterpart management consists of Life-cycle management, location support and
composition.

In Lifecycle management, a VC has to be instantiated when an object enters into the
antenna range. It should be maintained i.e. its states should be managed with events that
take place with the passage of time. The life-cycle management should also destroy the
VC once the object leaves the vicinity for a long period of time. If the object comes up
later, VC should also be re-instantiated from the saved state. Virtual locations are never
destroyed after the first enter event from any of the participating RFID systems in the
virtual location or virtual meta-location.

In location support, each VC is associated with its Virtual Location. Several physical
locations can be grouped into a logical location using virtual meta-location mechanisms.
VC can find out their neighbours using VLs.

Composition of VC is supported by arranging them in a hierarchy. Applications can use
this hierarchy to perform operations on all objects contained in a composite object or to
automatically update a composite object based on the changes in its contained objects.

4.6.4 Artefact Memory
Artefact Memory (AM) fulfills the task of maintaining the history of VCs. A very little
number of states can be saved in tag memory. Larger histories are maintained in some
database-like system. Using a database-like system, AM provides an interface for queries
regarding tags and their locations at different times. AM can be useful to finding other
counterparts and also depict behavioural patterns of certain tagged objects.

[1] Has detailed description about the infrastructure concepts of wireless sensor networks.

4.7 Kernel Reliability in Smart Sensor Objects
System software for SCOs should be able:

• Cope with highly dynamic environment.
• Provide location information to mobile objects.
• Represent context information.
• Enable reliable and scalable service creation.
• The developed framework should be targeted at applications where objects are

tagged with Radio Frequency Identification tags (RFIDs)
• Device should be able to detect the entity, interact with it and display the related

information.
• It should also be able to virtually zoom into and out of an object in order to get to

know the object details or the object's context, respectively.
• Physical objects thus become "interactive" in a way which formerly was only

possible with purely virtual, computer-based objects.
• Should be able to exploit the heterogeneity of the devices

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

29

• Should be able to combine the specific capabilities provided by different types of
computing devices.

• Should be able to dynamically form groups of collaborating artifacts, and to form
a network in a more efficient manner.

• As the number of smart devices grows, probability of failure of a single device
increases proportionally, thus system software should be reliable, dependable and
redundant to cope with the highly dynamic smart objects environments.

• Should provide privacy-aware infrastructure that is able to keep track of any
ongoing data exchange, while providing the user with powerful aggregation
features.

• Should implement Security mechanisms that protect the integrity, confidentiality,
and availability of the network.

• Existing security mechanisms are not always applicable, so the research is aimed
at localized protocols.

4.8 Existing Sensor Operating Systems
There may be many existing system software techniques that can be used in SSOs or
tailored accordingly. However, we have found tinyOS as the most appropriate solution
that can be used in this paradigm. Of course, we will need to do some tailoring before
using it in SSO paradigm. We also think that it is necessary to mention about t-kernel. T-
kernel provides us with some improvements over tinyOS’s mate module. We can tailor
and use t-kernel, where we have lesser limitations.

4.8.1 T-kernel
 [2] has identified three features, which if incorporated in the wireless sensor networks
(WSN), can improve the reliability. They will also facilitate the application development
for the sensor nodes. In our opinion, these features can be of more interest to the kernel of
Smart Sensor Objects (SSO) than wireless sensor networks. The reason is that energy
constraints may not be as stringent in SSO as in WSN. Small computation overhead is the
only concern in t-kernel as describes in [2].

The three features include OS protection, virtual memory and pre-emptive scheduling. In
t-kernel, application and OS collaborate with each other to support the three features.
With t-kernel, applications with typical workload in sensor networks, does not degrade
much. T-kernel provides efficient binary translation, provides virtual memory without
repeatedly writable swapping devices. It also protects from OS from application error
without any memory protection or privileged execution hardware.

Load time modification approach is used to provide enhanced system abstraction. T-
kernel has been implemented and studied on Berkeley MICA2 motes. T-kernel is found
to be an order of magnitude faster than the virtual machine based approach.

Sensor Networks typically have 4 KB of RAM, which can not support needs for many
applications. This emphasizes the use of virtual memory. With long running computation

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

30

tasks, periodic tasks will have to remain in queues longer. This will lead to timing
discrepancies.

T-kernel is considered as not the only option for SSO. Since t-kernel is a flavor of
TinyOS with some extra features, hence we are also motivated to study TinyOS keeping
in mind the characteristics and limitations of smart collaboration environments. This will
help us in developing a new flavor of TinyOS which can be considered as the best kernel
for SSO.

4.8.1.1 Assumptions, challenges and approach of t-kernel
They have assumed that the hardware on which t-kernel will be deployed is
reprogrammable. Large, non-volatile external storage and some RAM is available is
available. It is recommended to have at least 4KB of RAM for efficient indexing and
swapping.

T-kernel has a few challenges also. It has no hardware support and it is low in resources.
Additionally, it also has potentially write-unfriendly external non-volatile storage.
Keeping these constraints in mind, traditional design of protection, preemption and
virtual memory is not viable. So, Lin Gu et. Al. has proposed a new design.

Load time processing is used to enhance the system abstraction. There are three reasons
for this approach. First of all, we can’t assume that a correct compiler has generated the
code. Secondly, compilers can only perform static checks. Lastly, run-time techniques
such as virtual machines have a lot of overhead.

4.8.1.2 Design of t-kernel
Application, in native instructions of the host node, resides in the external flash memory.
T-kernel loads and runs from external flash and the application can be updated via
wireless programming. T-kernel modifies the application code when loading the
application. Each page of a program is modified i.e. naturalized before being dispatched.
Modified code is called natin. Reason behind naturalization is that the code behaves
properly and does not pose any threat to the operating system or the device. Application
code is naturalized only once in its lifetime except if it is in a bridging process i.e. some
branch destination address is rewritten.

Whenever a natin page is executed, it returns the control to the kernel, along with the
information about next page. Within each natin page, cascading branch chain is used to
speed up the search in jump instructions. In some cases, instead of transferring control to
another natin via kernel, control is directly transferred. This process called bridging is
done for speeding up transitions. Only 255 such transitions can be specified as 8-bit
counter is used. This makes sure that the kernel does get hold of the CPU frequently.

Three level lookup is used for locating natins or kernel program counter. Virtual Program
Counter (VPC) look-aside buffer is the fastest memory used. If there is a miss, a 2-
associative VPC table is used following which is physical program memory as shown in
Fig. 3. Whenever a kernel transition happens, it establishes a new stack on top of the

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

31

current stack for execution. Kernel heap is also isolated from program memory.
Naturalization process ensures that the kernel area is protected.

Swapping is not very much encouraged in write-unfriendly memory systems. Normally, a
flash area is useless after 10,000 writes. T-kernel provides flexibility to the developers to
handle interrupts. It only catches the interrupt and services it using application provided
handler. User is also provided a choice of using any instruction that is supported on the
system directly.

Figure 3: Three Level lookup scheme in t-kernel. Original figure can be found in [2].

4.8.2 TinyOS
TinyOS is a tiny (fewer than 400 bytes), flexible operating system built from a set of
reusable components that are assembled into an application-specific system. TinyOS
supports an event-driven concurrency model based on split-phase interfaces,
asynchronous events, and deferred computation called tasks. TinyOS is implemented in
the NesC language [24], which supports the TinyOS component and concurrency model
as well as extensive cross-component optimizations and compile-time race detection.
TinyOS has enabled both innovations in sensor network systems and a wide variety of
applications. TinyOS has been under development for several years and is currently in its
third generation involving several iterations of hardware, radio stacks, and programming

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

32

tools. Over one hundred groups worldwide use it, including several companies within
their products.

The design of TinyOS, particularly its component model and execution model, addresses
our four key requirements: limited resources, reactive concurrency, flexibility and low
power. This section quantifies basic aspects of resource usage and performance,
including storage usage, execution overhead, observed concurrency, and effectiveness of
whole-system optimization.

4.8.2.1 Limited Resources
A TinyOS program’s component graph defines which components it needs to work.
Because components are resolved at compile time, compiling an application builds an
application-specific version of TinyOS: the resulting image contains exactly the required
OS services. TinyOS goes beyond standard techniques to reduce code size (e.g., stripping
the symbol table). It uses whole-program compilation to prune dead code, and cross-
component optimizations remove redundant operations and module-crossing overhead.
To be efficient, TinyOS must minimize the overhead for module crossings. Since there
are no virtual functions or address-space crossings, the basic boundary crossing is at most
a regular procedure call.

4.8. 2. 2 Reactive Concurrency
TinyOS’s component model makes it simple to express the complex concurrent actions in
sensor network applications. The approach of allowing sophisticated handlers has proven
sufficient for meeting these requirements; typically the handler performs the time-critical
work and posts a task for any remaining work. With a very simple scheduler, allowing
the handler to execute snippets of processing up the chain of components allows
applications to schedule around a set of deadlines directly, rather than trying to coerce a
priority scheme to produce the correct ordering.

4.8.2.3 Flexibility
TinyOS allows applications to be constructed from a large number of very fine-grained
components. This approach is facilitated by cross module inlining, which avoids runtime
overhead for component composition. Bidirectional interfaces and explicit support for
events enable any component to generate events autonomously. In addition, the static
race detection provided by NesC removes the need to worry about concurrency bugs
during composition.

4.8.2.4 Low Power
The application-specific nature of TinyOS ensures that no unnecessary functions
consume energy, which is the most precious resource on the node. The use of split-phase
operations and an event-driven execution model reduces power usage by avoiding
spinlocks and heavyweight concurrency (e.g., threads). The scheduler alone cannot
achieve the power levels required for long-term applications; the application needs to
convey its runtime requirements to the system. TinyOS address this requirement through
a programming convention which allows subsystems to be put in a low power idle state.
Components expose a StdControl interface, which includes commands for initializing,

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

33

starting, and stopping a component and the subcomponents it depends upon. Calling the
stop command causes a component to attempt to minimize its power consumption, for
example, by powering down hardware or disabling periodic tasks. The component saves
its state in RAM or in nonvolatile memory for later resumption using the start command.
It also informs the CPU about the change in the resources it uses; the system then uses
this information to decide whether deep power saving modes should be used.

The component model of TinyOS can be exploited to build a new kernel flavor that can
best suit the requirements of SSO and can help us transforming the vision of smart
collaboration devices into a reality.

4.9 Discussion
We have discussed in the introduction that SSOs have a hierarchy that needs to be
followed in order to make it usable in smart homes or smart offices. If we are unable
devise a system software, that incorporate all devices from SCS to the mobile devices,
then we might either put too much load on the lower level devices or we might not get
best out of the higher level devices. We will have to make a lot of choices during the
design phase.

One of such choices might be that either we design a distributed operating system or we
choose to design a networked operating system. Former one will result in ease of
application development and the later one will reduce the OS overhead, as it will not hide
anything from higher level applications. We might have to use a mixture of both
approaches due to the heterogeneity in SSO paradigm. In order to decide the design of the
operating system for each level, we need to consider sensor access strategies, process
scheduling algorithms and database management.

4.9.1 Sensor Access Strategies
There are many strategies, which can be applied to schedule the sensing issue in the
nodes. These strategies clearly depend upon two things: capability of a node and
requirements of the applications or middleware running on the node. Main sensor access
strategies are briefly described as follows. They are described in much greater detail in
the technical report of the aCamus team.

• Best Effort: In this case, the device accesses sensors as often as feasible. Most of
the time, power considerations are taken into account in this strategy.

• Fixed Effort: In this case, time intervals are defined between which the sensor
operating system polls for the input from sensors.

• Random Interval: In this case, the sensor operating system schedules the sensing
based upon a random interval. Random interval is based upon a random number
generated by the operating system.

• Event Driven: Sensor operating system schedules sensing events based upon
certain events that occur in or around the sensor nodes. On one hand, this strategy
may result in reduced power consumption. While on the other hand, it may also
result in under-sampling i.e. not sufficient sampling to produce correct results.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

34

4.9.1.1 Smart Collaborative Sensors
If we have to consider the power consumption only, we might consider the last strategy
for lowest level smart collaborative sensors. However, this is not safe as it may result in
under-sampling. Best effort strategy seems to be more viable for designing a sensor
operating system kernel at this level. Perhaps, a mix of both these strategies can also be
used. We can use best effort strategy in normal circumstances and event driven approach
at the time when the smart collaborative sensors go below a certain energy level.

4.9.1.2 Smart Collaborative Objects
We can use better strategies at this level. Fixed effort sensor access strategy can also be
introduced at this level if it improves sampling procedure. However, we can’t go any
further to introduce random interval strategy. This is because generating a random
number requires considerable computation and storage overhead. Best effort and fixed
effort strategies might compete for usage at this level. Decision might depend upon the
energy limitations or computation, communication and storage capabilities of a device.

4.9.1.3 Mobile Devices
Sensor access strategies are not really applicable at this level. Mobile devices need not
schedule sensor accesses. Rather, these devices will need to schedule communications
with smart collaborative objects. There is a good chance that the original operating
system of the mobile device has an optimized channel access or communication strategies.

4.9.2 Process scheduling Algorithms
Among the existing strategies, tinyOS has a very small image and simple process
scheduling algorithm. Applications are compiled with this code to produce simpler
images. Apart from that, we know about t-kernel that allows us to implement certain
operating system features, which are found in conventional operating systems. Now we
see application of such scheduling in each flavor of the sensor operating systems.

4.9.2.1 Smart Collaborative Sensors
Simplest process scheduling algorithms will be required at this level. We can’t even think
about adding a little bit of overhead. Original strategy of tinyOS might be the best to be
used on this level, due to limited power resources.

4.9.2.2 Smart Collaborative Objects
As these devices have greater capabilities as compared to the smart collaborative sensors,
we might choose to use some of the t-kernel features at this level. Protection and pre-
emptive scheduling can be introduced in the design of sensor operating system at this
level. All improvements might not be feasible, but can choose to have a go at some
performance improvement strategies. These performance improvement strategies might
depend upon any one factor, combination of more than one factor or even all the factors.
The factors include storage, communication, computation and power resources.

4.9.2.3 Mobile Devices
We are relatively free to make design choices at this stage. This freedom is due to the fact
that mobile devices are not as limited in resources as our SCOs or SCS. However, we are

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

35

not as free because we will have to use the existing devices. Existing devices have their
own operating systems. Their existing operating systems might be good enough to relieve
us from design considerations of scheduling algorithms at this level

4.9.3 Data management (tuple space)
Operating systems are designed to support higher layer applications or middleware.
Likewise, sensor operating systems also have the same purpose. Data management is
required at all levels. We might have to prune the required knowledge as we down in the
hierarchy. This is mainly because of the limited capabilities of devices as we go down in
the hierarchy. According to the knowledge processing team, this data management is
based upon tuple spaces. Tuple spaces are better described in the knowledge processing
part of this technical report. Management of data can be discussed in each flavor as
follows.

4.9.3.1 Smart Collaborative Sensors
Smart Collaborative sensors are the lowest level devices. They have very limited power,
storage, computation and communication capabilities. It is required that tuple spaces
should be allocated to such devices in such a way that all these requirements are taken
into account. Smart optimization strategies are required to carry out this complex task.

4.9.3.2 Smart Collaborative Objects
Smart Collaborative Objects are somewhat less limited in storage, computation,
communication and energy capabilities. We can put more responsibility on such devices
and relieve smart collaborative sensors from complexities. However, we should keep in
mind that we smart collaborative sensors are not relieved in storage so much that
communication takes away the lions share of available power.

4.9.3.3 Mobile Devices
System software design for mobile devices is not in our hands completely. We will need
to take into consideration the original tasks that the device is designed to perform.
However, we can give suggestions regarding the tailoring that can be done in the original
operating system of the device. These changes will be completely dependent upon the
capabilities of the devices working in such paradigm. At least, we can bring forward the
requirements of our system from time to time, based upon the existing technologies used
in the mobile devices.

4.10 Conclusion and Future Research
The simple operating system architecture, shown in the figure below, provides a research
framework to support future research. A five year work plan is developed in this section
specifically targeting SCO development. We have tried to identify the related tasks and
then organized them into a five year plan.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

36

Task 1: Conduct a detail survey of the necessary components of SCO sensor based
networks including the technologies, infrastructures, roles and capabilities of these
components. This survey should address all the layers shown in the above model with the
integrated security and power management issues. It will also result in addition or
subtraction of layers from the above initial model with respect to the requirements of
SCO sensor based networks.

Task 2: Existing SCO applications will be studied in detail particularly their architecture,
weaknesses and strengths. This survey will help us in proposing new applications with
architectures lacking the previous weaknesses.

Task 3: Study an existing light weight sensor operating system in detail and analyze the
feasibility of its application in SCO sensor based networks. The completion of this task
will result in a deep understanding of TinyOS at different levels of our proposed design
i.e. the outcome of the previous task. This survey will help us in designing different
flavors of TinyOS for different levels of our architecture i.e. for Smart Cooperative
Obejcts, Smart Cooperative Sensors and Mobile Devices.

Task 4: Developing the proposed application and the suggested new flavors of the sensor
operating system.

4.11 References
[1] Kay Römer, Thomas Schoch. “Infrastructure Concepts for Tag-Based Ubiquitous
Computing Applications”. Workshop on Concepts and Models for Ubiquitous Computing
at Ubicomp 2002, Göteborg, Sweden, September 2002.
[2] L. Gu and J. A. Stankovic. “t-kernel: Providing reliable OS support wireless sensor
networks”. In Proceedings of the Fourth ACM Conference on Embedded Networked
Sensor Systems (SenSys), 2006.
[3] Kay Römer, Thomas Schoch, Friedemann Mattern, Thomas Dübendorfer “Smart
Identification frameworks for Ubiquitous Computing Applications”. Wireless Networks,
Vol. 10, No. 6, pp. 689-700, December 2004.
[4] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J.
Hill, M. Welsh, E. Brewer, and D. Culler, "TinyOS: An operating system for wireless
sensor networks," in Ambient Intelligence. New York, NY: Springer-Verlag,

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

37

5. Ubiquitous Sensor Networks

5.1 Mobility-assisted Relocation for Self-deployment in Wireless
Sensor Networks

5.1.1 Introduction
 Sensor networks which are composed of tiny and resource constrained computing
devices, have been widely employed for monitoring and controlling applications in
physical environments [1]. Due to the unfamiliar nature of such environments,
deployment of sensors has become a challenging problem and has received considerable
attention recently.

Sensor deployment cannot be performed manually when the environment is unknown or
inhospitable such as remote inaccessible areas, disaster fields and toxic urban regions. To
scatter sensors by aircraft is one possible solution. However, using this scheme, the actual
landing position cannot be predicted due to the existence of wind and obstacles such as
trees and buildings. Consequently, the coverage may not be able to satisfy the application
requirements. Some researchers suggest simply deploying large amount of static sensors
to increase coverage; however it often ends up harming the performance of the network
[5]. Moreover, there are situations where sensor deployment is restricted by the
environment, for example, during in-building toxic-leaks detection [6] chemical sensors
must be placed inside a building from the entrance of the building. In such cases it is
necessary to take advantage of mobile sensors which can move to the appropriate places
to provide the required coverage. This approach is different from the some of the work
[2~4] which assume that the environment is sufficiently known and under control.

In this chapter, we introduce a comprehensive taxonomy framework for wireless sensor
networks (WSN) self-deployment in which three sensor relocation algorithms are
proposed according to the mobility degree of sensor nodes. The first one, particle swarm
optimization based algorithm (PSOA), regards the sensors in the network as a swarm, and
reorganizes the sensors by the particle swarm optimization (PSO) algorithm, in the full
sensor mobility case. The other two, relay shift based algorithm (RSBA) and energy
efficient fuzzy optimization algorithm (EFOA), assume relatively limited sensor mobility,
i.e., the movement distance is bounded by a threshold, to further reduce energy
consumption. Simulation results show that our approaches greatly improve the network
coverage as well as energy efficiency compared with related works. The contributions of
this chapter include the comprehensive collection of algorithms for mobile sensor
network self-deployment within the context of a generally applicable taxonomy.

The rest of this chapter is organized as follows. Section 2 introduces related work and a
comprehensive taxonomy framework integrating the different deployment schemes.
Section 3 thoroughly explains the proposed three sensor relocation algorithms. In Section
4, extensive experiments and performance evaluations of the proposed method are
presented. We conclude with a summary and discuss future work in Section 5.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

38

5.1.2 Related Work and Taxonomy
In this section, we present a brief overview of the previous work on the coverage driven
deployment of both stationary and mobile sensor networks that is most relevant to our
study. A more thorough survey of the sensor network coverage is provided by [7].

We introduce a taxonomy framework (Fig 1) for WSN self-deployment in this section.
We take the initial deployment as the first level, in which most of the existing research
work makes an assumption of random distribution. Three categories of the full, limited
and zero mobility are then considered as the top 2nd level of Fig. 1. The three relocation
and scheduling cases for sensor network self-deployment corresponding to the three
categories of sensor nodes mobility degree are extensively studied and integrated.

Random
Deployment

Mobility Degree

Initial
Deployment

Full Limited Zero

Relay shift
based
[22]

Best and
worst

coverage
[2], [8~11]
Optimal
cluster

formation

PSO based
[16]

GA based
[20]

Fuzzy logic
based [21]

Vitual force
based [19,14]

Voronoic
based

[13, 15]

Relocation
Scheme

Fuzzy
logic
based

Scan based
[12]

Game
theoretic

approach[17]
Proxy based

[18]

minimum-
cost

maximum-
flow based

[24]

Fig. 1 Taxonomy framework integrating different deployment schemes.

In WSNs with zero mobility, i.e., stationary sensor networks, there are many previous
studies which have focused on characterizing coverage. The authors of [8] consider a
grid-based sensor network and derive the conditions for the sensing range and failure rate
of sensors to guarantee that an area is fully covered. In [9], the authors propose several
algorithms to find paths that are most or least likely to be detected by sensors in a sensor
network. Path exposure of moving objects in sensor networks is formally defined and
studied in [2], where the authors propose an algorithm to find minimum exposure paths,
along which the probability of a moving object being detected is minimized. The best and
worst coverage problem is explored in [10]. They propose an optimal polynomial time
worst and average case algorithm for coverage calculation for homogeneous isotropic
sensors. They also present several experimental results and analyze potential applications,
such as using best and worst-case coverage information as heuristics to deploy sensors to
improve coverage. In [11], the authors define several important coverage measures for a
large-scale stationary sensor network, namely, the area coverage, detection coverage, and
node coverage. Under the assumption that sensor location follows a Poisson point process,
the authors obtain analytical results for the coverage measures under a Boolean sensing
model and a general sensing model.

While the coverage of stationary sensor networks has been extensively studied and
relatively well understood, a class of work has only recently appeared where full mobility
of sensors is utilized to achieve desired deployment [12~21]. Typically in such works, the
sensors detect lack of desired deployment objectives, then estimate new locations, and
move to the resulting locations. In [19, 14], the authors propose a virtual-force-based

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

39

sensor movement strategy to enhance network coverage after an initial random placement
of sensors. The virtual forces repel the nodes from each other and from obstacles to
ensure that the initial configuration of nodes quickly spreads out to maximize coverage
area. However they assume that global information regarding other nodes is available.
Several distributed energy-efficient deployment algorithms are proposed in [15]. In order
to achieve an energy-efficient node topology for a longer system lifetime, they employ a
synergistic combination of cluster structuring and a peer-to-peer deployment scheme.
Besides that, an energy-efficient deployment algorithm based on Voronoi diagrams is
also proposed there. In [13], the authors propose several algorithms that identify existing
coverage holes in the network and compute the desired target positions where sensors
should move in order to increase the coverage. The main difference among all of their
proposed algorithms is how the desired positions of sensors are computed. In [18], the
authors propose a proxy-based sensor deployment protocol. Instead of moving iteratively,
sensors calculate their desired positions based on a distributed algorithm, move logically,
and exchange new logical locations with their new logical neighbors. Actual movement
occurs at one time when sensors determine their final locations. The proposed protocol
can greatly reduce the energy consumption while maintaining similar coverage. In [12], a
scan-based movement-assisted sensor deployment method that uses scan and dimension
exchange to achieve a balanced state is proposed. Using the concept of load balancing, it
achieves good performance especially when applied to uneven distribution sensor
networks. The authors of [17] study the dynamic aspects of the coverage of a mobile
sensor network that depend on the sensor movement process. The results show that
sensor mobility can be exploited to improve network coverage. For mobile targets, they
take a game theoretic approach and derive optimal mobility strategies for sensors and
targets from their own perspectives. In [20], the authors examine the optimization of
wireless sensor network layouts using a multi-objective genetic algorithm (GA) in which
two competing objectives are considered, total sensor coverage and the lifetime of the
network. However the computation of this method is not inexpensive. In [21], fuzzy logic
theory is applied to handle the uncertainty in full mobility sensor deployment problem.
Their approach achieves fast and stable deployment and greatly increases the field
coverage as well as communication quality. However, their fuzzy inference rules only
consider two aspects, number of neighbors of each sensor and the average Euclidean
distance between sensor node and its neighbors, without energy consumption included at
all, which is one of the most critical issues in sensor networks.

In fact, the mobility of sensors is limited in most cases, as we have earlier discussed in
[22]. To this extent, a class of Intelligent Mobile Land Mine Units (IMLM) [23] to be
deployed in battlefields have been developed by Defense Advanced Research Projects
Agency (DARPA). The IMLM units are employed to detect breaches, and move with
limited mobility to repair them. This mobility system is based on a hopping mechanism
and the hop distance is dependent on the amount of fuel and the propeller dynamics.
Some other techniques can also provide such kind of mobility, for instance, sensors
supplied by spring actuation etc. This type of model normally trades off mobility with
energy consumption [24]. Moreover, in many applications, the latter goals outweigh the
necessity for advanced mobility, making such mobility models quite practical in the
future. In fact, [24] is one of the very few papers which deal with the mobility limited

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

40

deployment optimization. The mobility in the sensors they consider is restricted to a flip.
However coverage is the only considered objective in their paper and their approach is
not feasible in network partition case.

With the same goal as the existing research work in mind, that is, to improve the sensing
coverage in a predefined area with low energy consumption and with connectivity
guaranteed, we propose three different relocation algorithms, PSOA, RSBA and EFOA,
in the cases of full sensor mobility and limited sensor mobility. We also indicate in the
diagram that, in the zero mobility case, static topology control and scheduling schemes
such as optimal number of cluster heads selection and cluster formation may be used. In
general, cluster formation allows individual sensors to be grouped together for either
communication or power efficiency. Cluster head is a node which manages the
processing and relaying the information from its cluster members. In the next section, we
will describe our proposed sensor relocation approaches in detail.

5.1.3 Proposed Relocation Schemes
We propose three different relocation methods for movement assisted self-deployment of
sensors according to the mobility degree of sensor nodes. The common goal of the
suggested schemes is to improve the sensing coverage in a predefined area with low
energy consumption.

5.1.3.1 Relocation in Full Mobility Environment: PSOA
In the full sensor mobility case, we propose particle swarm optimization (PSO) based
algorithm for movement assisted relocation. PSO, originally proposed by Eberhart and
Kennedy [25] in 1995, and inspired by social behavior of bird flocking, has come to be
widely used as a problem solving method in engineering and computer science [26~29].

All of particles have fitness values, evaluated by the fitness function to be optimized.
PSO is initialized with a group of random solutions and then searches for optima by
updating generations. In every iteration, each particle is updated by following two "best"
factors. The first one, called pbest, is the best fitness it has achieved so far and it is also
stored in memory. Another "best" value obtained so far by any particle in the population,
is a global best and called gbest.

The PSO formulae define each particle in the D-dimensional space as Xi = (xi1, xi2,
xi3,……,xiD) where i represents the particle number. The memory of the previous best
position is represented as Pi = (pi1, pi2, pi3……piD), and the index of the best particle
among all the particles in the population is represented by the symbol g. A velocity along
each dimension is denoted as Vi = (vi1, vi2, vi3……viD). Let d∈[1, 2, …, D], the updating
equation [30] is as follows,

)(())(() 21 idgdidididid xprandcxprandcvv −××+−××+×=ϖ (1)

ididid vxx += (2)
where ω is the inertia weight, and c1 and c2 are acceleration coefficients.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

41

The role of the inertia weight ω is considered to be crucial for the convergence of PSO. A
suitable value for the inertia weight ω balances the global and local exploration ability
and, consequently, reduces the number of iterations required to locate the optimum
solution. Generally, it is better to initially set the inertia to a large value, in order to make
better global exploration of the search space, and gradually decrease it to get more
refined solutions. Thus, a time-decreasing inertia weight value is used.

PSO shares many similarities with genetic algorithm (GA). Both algorithms start with a
group of a randomly generated population, have fitness values to evaluate the population
with random techniques. Compared with GA, PSO is easier to implement, has fewer
parameters to adjust, and requires only primitive mathematical operators. Because of its
inexpensive computation and fast convergence rate, PSO is a potential algorithm to
optimize deployment in a sensor network.

We assume that each node knows its position in the problem space, all sensor members in
a cluster are homogeneous and cluster heads (CHs) are more powerful than sensor
members. Sensing and communication coverage of each node are assumed to have a
circular shape without any irregularity. The design variables are 2D coordinates of the
sensor nodes, {(x1, y1), (x2, y2), …}. Sensor nodes are assumed to have certain mobility.
PSOA includes two stages, the first is to optimize coverage by relocating sensors and the
second is cluster formation when nodes have settled down during the first stage and don't
move again.

5.3.1.1 Optimization of Coverage
We consider coverage as the first optimization objective. It is one of the measurement
criteria of Quality of Service (QoS) of a sensor network.

(a) (b)

Fig. 2 Sensor coverage models (a) Binary sensor and (b) probabilistic sensor model.

The coverage of each sensor can be defined either by a binary sensor model or a
probabilistic sensor model as shown in Fig. 2; both are used in this chapter. In the binary
sensor model, the detection probability of the event of interest is 1 within the sensing
range; otherwise, the probability is 0. In this case coverage is defined as the ratio of the
union of areas covered by each node and the area of the entire Region Of Interest (ROI),
as shown in Eq. (3) [15]. Generally ROI indicates the area in which sensor nodes need to
be deployed. Here, the covered area of each node is defined as the circular area within its
sensing radius. Perfect detection of all interesting events in the covered area is assumed.

A
A

C iNi ,...,1==
U (3)

where
Ai is the area covered by the ith node;

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

42

N is the total number of nodes;
A stands for the area of the ROI.

In order to prevent recalculating the overlapped area, the coverage here is calculated
using Monte Carlo method by creating a uniform grid in the ROI [16]. All the grid points
located in the sensing area are labeled 1 otherwise 0, depending on whether the Euclidean
distance between each grid point and the sensor node is longer or shorter than sensing
radius, as shown in Fig 3. Then the coverage can be approximated by the ratio of the
summation of ones to the total number of the grid points.

Fig. 3 Sensing coverage calculation (dashed circle indicating the sensing area boundary).

If a node is located well inside the ROI, its complete coverage area will lie within the
ROI. In this case, the full area of that circle is included in the covered region. If a node is
located near the boundary of the ROI, then only the part of the ROI covered by that node
is included in the computation.

Although the binary sensor model is simpler, it is not realistic as it assumes that sensor
readings have no associated uncertainty. In reality, sensor detections are imprecise, so
that the coverage needs to be expressed in probabilistic terms. In many cases, cheap
sensors such as omnidirectional acoustic sensors or ultrasonic sensors are used. Some
practical examples [14] include AWAIRS at UCLA/RSC, Smart Dust at UC Berkeley,
the USC-ISI network, the DARPA SensIT systems/networks, the ARL Advanced Sensor
Program systems/networks, and the DARPA Emergent Surveillance Plexus (ESP). For
omnidirectional sensors, a longer distance between the sensor and the target generally
implies a greater loss in the signal strength or a lower signal-to-noise ratio. This suggests
that we can build an abstract sensor model to express the uncertainty in sensor responses.
In other words, a sensor node that is closer to a target is expected to have a higher
detection probability about the target existence than the sensor node that is further away
from the target.

cij(x, y) =

if
if
if

e a

⎪
⎩

⎪
⎨

⎧
−

1
,

0
βλ

).,(
;),(

);,(

yxdrr
rryxdrr

yxdrr

ije

eije

ije

≥−
+<<−

≤+
 (4)

The sensor field is represented by a grid. An individual sensor node s on the sensor field
is located at grid point (x, y). Each sensor node has a detection range of r. For any grid
point P at (i, j), we denote the Euclidean distance between s at (x, y) and P at (i, j) as dij(x,

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

43

y), i.e., dij(x, y)= 22)()(jyix −+− . Eq. (4) expresses the coverage cij(x, y) of a grid point
at (i, j) by sensor s at (x, y), in which re(re<r) is a measure of the uncertainty in sensor
detection, a = dij(x, y)−(r−re), andλandβare parameters that measure detection probability
when a target is at a distance greater than re but within a distance from the sensor. The
distances are measured in units of grid points. In fact, the sensing behavior of almost all
the omnidirectional range sensing devices including not only chemical sensors but also
infrared, ultrasound, and acoustic sensors etc., can be modeled by probabilistic sensor
detection model which is shown in Fig. 2(b). Fig. 2(b) also illustrates the translation of a
distance response from a sensor to the confidence level as a probability value about this
sensor response. The coverage for the entire grid sensor field is calculated as the fraction
of grid points that exceeds the threshold cth.
5.1.3.1.2 Optimization of Energy Consumption

After optimization of coverage, all the deployed sensor nodes move to their own
positions. Our goal then becomes to minimize energy usage in a cluster based sensor
network topology by finding the optimal cluster head (CH) positions. So cluster
formation used to optimize energy consumption here is actually in a static sensor network
manner. We are now in the second stage of PSOA.

According to the radio energy dissipation model, in order to achieve an acceptable
Signal-to-Noise Ratio (SNR) in transmitting an l bit message over a distance d, the
energy expended by the radio is given by [31]:

⎪⎩

⎪
⎨
⎧

>+

≤+
=

0
4

0
2

),(
ddifdllE

ddifdllE
dlE

mpelec

fselec
T ε

ε (5)

where Eelec is the energy dissipated per bit to run the transmitter or the receiver circuit,

fsε and mpε are amplifier constants, and d is the distance between the sender and the

receiver. By equating the two expressions at d=d0, we have mpfsd εε /0 = . Here we set
electronics energy as Eelec=50nJ/bit, whereas the amplifier constant is taken as

fsε =10pJ/bit/m2, mpε = 0.0013pJ/bit/m2.

In both cases, to receive l bit message, the radio expends:

elecR lElE =)((6)

Assume that the sensor nodes inside a cluster have short distance dis to CH but each CH
has long distance Dis to the base station. For each sensor node inside a cluster, to transmit
an l-bit message a distance dis to CH, the radio expends

2),(disllEdislE fselecTS ε+= (7)

For CH, however, to transmit an l-bit message a distance Dis to base station, the radio
expends

4),(DisllEDislE mpelecTH ε+= (8)

So the energy loss of a sensor member in a cluster is
)01.0100(),(2disldislEs += (9)

The energy loss of a CH is

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

44

)103.1100(),(46 DislDislECH ××+= − (10)

Since the energy consumption for computation is much less than that for communication,
we neglect computation energy consumption here.

Assume m clusters with nj sensor members in the jth cluster Cj. The total energy loss Etotal
is the summation of the energy used by all sensor members and all the m CHs:

∑∑
=

−

=

×
+++=

jn

i j

j

j
ij

m

j
total n

Dis
n

dislE
1

46
2

1
)

103.110001.0100((11)

Because only two terms are related to distance, we can just set the fitness function as:

∑∑
=

−

=

×
+=

jn

i j

j
ij

m

j n
Dis

disf
1

46
2

1
)

103.1
01.0((12)

From Eq. (12) we can minimize the energy dissipation in the sensor network by reducing
the distance from each node to its CH and the CH to the remote base station. We use the
PSO algorithm to find the optimal CH positions in the sensor field when the minimized
energy consumption is achieved.

5.1.3.2 Relocation in Limited Mobility Environment
5.1.3.2.1 Relay Shift Based Algorithm (RSBA)

Let G(V, E) be the graph defined on V with edges uv E iff ∈ uv ≤R. Here uv is the
Euclidean distance between nodes u and v, R is the communication range. We assume
that sensor nodes know their locations using one of the GPS-less localization techniques
mentioned in [13] such as received signal strength so that CH can get the position
information of its sensor members.

We have 4 steps for implementing RSBA:

Step 1: Randomly deploy nodes in the network.

Step 2: Detect coverage holes and redundant sensor nodes. We set two distance threshold
value T1 and T2. If the longest linear distance between two nodes A and B along the
uncovered area perimeter is larger than T1, regard it as a coverage hole, and create a
virtual node point at the center of the straight line AB. If the distance between two
neighbors is less than T2, regard them as redundant nodes. Choose a redundant node
nearest to the virtual node point in coverage hole.

Step 3: Use A* algorithm [32] to find a shortest path n0-n1-n2-…-nn-1 from a redundant
sensor n0 to the destination nn-1 (added virtual node) in a coverage hole. The distance
between nn-2 to nn-1 is bounded by R. A* algorithm is the most popular choice for
pathfinding, because it is fairly flexible and can be used in a wide range of contexts. A*
was developed to combine heuristic approaches like Best-First-Search (BFS) and formal
approaches like Dijsktra's algorithm. It is like Dijkstra's algorithm in that it can guarantee
a shortest path, while BFS cannot; and it is like BFS in that it works as fast as BFS which
is faster than Dijsktra's algorithm. Take the advantage of A* algorithm, we can solve our
problem more efficiently than our previous work [22] in which Dijsktra's algorithm was
applied.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

45

Step 4: Move sensor node nn-2 to the virtual node nn-1, move nn-3 to nn-2 … finally move
the redundant sensor n0 to n1, and leave the original location of sensor n0 empty. The
nodes coordinates can be updated by Eq (13):

2,,1,0),()(1 −== + ninNetLocnNetLoc ii L (13)

ni ∈nodes on shortest path from source to destination
n0=source node
nn-1 =destination (virtual node)

The process is illustrated in Fig. 4 using an example of four sensors and one virtual node
along the shortest path. Sensor node n3 moves to the virtual node point n4, n2 moves to
n3 … finally the redundant sensor n0 moves to n1, and leave the original location of n0
empty. The network coverage is defined and calculated the same using Eq (3).

n0

n1
n2

n3 n4

n0
n1

n2 n3

empty

empty

Fig 4. Illustration of sensor nodes relay shift along the shortest path

5.1.3.2.2 Energy-efficient Fuzzy Optimization Algorithm (EFOA)

A. Preliminaries of Fuzzy Logic System

The model of fuzzy logic system consists of a fuzzifier, fuzzy rules, fuzzy inference
engine, and a defuzzifier. We have used the most commonly used fuzzy inference
technique called Mamdani Method [33] due to its simplicity.

The process is performed in four steps:

1) Fuzzification of the input variables energy, concentration and average distance to

neighbors - taking the crisp inputs from each of these and determining the degree to
which these inputs belong to each of the appropriate fuzzy sets.

2) Rule evaluation - taking the fuzzified inputs, and applying them to the antecedents of

the fuzzy rules. It is then applied to the consequent membership function.

3) Aggregation of the rule outputs - the process of unification of the outputs of all rules.

4) Defuzzification - the input for the defuzzification process is the aggregate output

fuzzy set moving distance and the output is a single crisp number.

B. Energy-efficient Fuzzy Optimization Algorithm

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

46

The same energy dissipation model as Eq. (5) and Eq. (6) is used here for calculation of
energy consumption. Assume an area over which n nodes are uniformly distributed. For
simplicity, assume the sink is located in the center of the field, and that the distance of
any node to the sink or its CH is 0d≤ as explained in Section 3.1.2.

Two main procedures are carried out in our algorithm: 1) Determine the next-step move
distance for each sensor. 2) Determine the next-step move direction for each sensor.
Expert knowledge for deployment problem is represented based on the following three
descriptors:

 Node Energy - energy level available in each node, denoted by the fuzzy variable
energy,

 Node Concentration - number of neighbors in the vicinity, denoted by the fuzzy
variable concentration,

 Average distance to neighbors - average Euclidean distance between sensor node and
its neighbors, denoted by the fuzzy variable dn.

The linguistic variables used to represent the node energy and node concentration, are
divided into three levels: low, medium and high, respectively, and there are three levels to
represent the average distance to neighbors: close, moderate and far, respectively. The
outcome to represent the moving distance dm is divided into five levels: very close, close,
moderate, far and very far. The fuzzy rule base includes rules like the following: IF the
energy is high and the concentration is high and the distance to neighbor is close THEN
the moving distance of sensor node i is very far.

Thus we use 33 = 27 rules for the fuzzy rule base. We use triangle membership functions
to represent the fuzzy sets medium and moderate and trapezoid membership functions to
represent low, high, close, vclose, far, and vfar fuzzy sets. The membership functions
developed and their corresponding linguistic states are represented in Table 1 and Figures
5 through 8.

For the defuzzification, the Centroid is calculated and estimated over a sample of points
on the aggregate output membership function, using the following formula:

() ∑∑ ∗=)(/)(xxxCen AA μμ (14)
where, μA (x) is the membership function of set A.

Table 1. Fuzzy rule base

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

47

No. En Con dn dm

1 low low close close

2 low low moderate vclose

3 low low far vclose

4 low med close moderate

5 low med moderate close

6 low med far vclose

7 low high close moderate

8 low high moderate close

9 low high far close

10 med low close moderate

11 med low moderate close

12 med low far close

13 med med close far

14 med med moderate moderate

15 med med far close

16 med high close far

17 med high moderate moderate

18 med high far moderate

19 high low close far

20 high low moderate moderate

21 high low far moderate

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

48

22 high med close vfar

23 high med moderate far

24 high med far moderate

25 high high close vfar

26 high high moderate far

27 high high far far

Legend: vclose=very close, vfar=very far, med=medium, En=Energy,
Con=Concentration

The control surface, or decision surface, is central in fuzzy logic systems and describes
the dynamics of the controller and is generally a time-varying nonlinear surface. From
Fig 9 and Fig 10 obtained by computation in Matlab Fuzzy Logic Toolbox [34], we can
see that although the concentration for a certain sensor is high, the moving distance can
be smaller than some sensor with higher energy or sensor with fewer neighbors but more
crowded. With the assistance of control surface, the next-step moving distance can be
determined.

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

energy

D
eg

re
e

of
 m

em
be

rs
hi

p

low med high

Fig. 5 Fuzzy set for fuzzy variable energy.

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

concentration

D
eg

re
e

of
 m

em
be

rs
hi

p

low med high

Fig. 6 Fuzzy set for fuzzy variable concentration.

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

dn

D
eg

re
e

of
 m

em
be

rs
hi

p

close moderate far

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

dm

D
eg

re
e

of
 m

em
be

rs
hi

p

vclose close vfarfarmoderate

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

49

Fig. 7 Fuzzy set for fuzzy variable dn. Fig. 8 Fuzzy set for fuzzy variable dm.

The next-step moving direction is decided by virtual force. Assume sensor i has k
neighbors, k=k1+k2, in which k1 neighbors are within threshold distance dth to sensor i,
while k2 neighbors are farther than dth distance to sensor i. The coordinate of sensor i is
denoted as Ci = (Xi, Yi) and that of neighbor sensor j is Cj = (Xj, Yj). The next-step move
direction of sensor i is represented as Eq. (15) and (16), thus sensor i clearly knows its
next-step moving position by getting distance dm and direction (angle α).

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−

−
= ∑∑

==

21

11
2)()(1 k

j
ij

k

j
ji

ji

CCCC
CC

v
vvvv

vv
v (15)

)(
)()tan(

vX
vY
v

v
=α (16)

0

50

100

0

5

10

0.5

1

1.5

energyconcentration

dm

Fig. 9 Control surface (concentration, energy vs dm)

0

5

10

00.511.52
0.5

1

1.5

concentration
dn

dm

Fig. 10 Control surface (dn, concentration vs dm)

The threshold distance dth here is set to a proper value r3 which is proved as follows.
We attempt to make distance between two sensor nodes moderate, i.e., not very close and
not very far. This kind of stable structure is illustrated in Fig. 11. Non-overlapped sensor
coverage style is shown in Fig. 11(a), however, an obvious drawback here is that a
coverage hole exists which is not covered by any sensor. Note that an alternative way is
to allow overlap, as shown in Fig. 11 (b) and it ensures that all grid points are covered.
Therefore, we adopt the second strategy.

In Fig. 11(b), it is obvious that △S1S2S3 is equilateral triangle. Because the sensing radius
is r, through some steps of simple geometry calculations, we can easily derive the

distance between two sensor nodes in the latter case rrSSSSSS 3
2
32313221 =×=== .

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

50

S1

S2 S3

 (a)

S1

S3S2

r

r
3/π

(b)

Fig. 11. Non-overlapped and overlapped sensor coverage cases

5.1.4 Performance Evaluations

5.1.4.1 Performance Evaluation of PSOA
5.1.4.1.1 Optimization of Coverage

A. Binary Model Case

The PSO starts with a “swarm” of sensors randomly generated. As shown in Fig. 12 is a
randomly deployed sensor network with coverage value 0.4484 calculated using Eq. (3).
A linear decreasing inertia weight value from 0.95 to 0.4 is used, decided according to
[30]. Acceleration coefficients c1 and c2 both are set to 2 as proposed in [30]. For this
performance study, we select a large scale deployment of 50×50 square sensor network.
For optimizing coverage, we have used 20 particles, which are denoted by all sensor
nodes coordinates and the maximum number of generations we are running is 500. The
maximum velocity of the particle is set to be 50. The sensing range of each sensor is set
to be 5 units. An upper bound on the coverage is given by the ratio of the sum of the
circle areas (corresponding to sensors) to the total area of the sensor field. In this
simulation, the upper bound evaluates to be 0.628, which is calculated from the perfect
uniform distribution case without any overlapped area. The coverage is calculated as a
fitness value in each generation.

Fig. 13 is the coverage optimization results. The coverage improvement verses number of
iterations in one run is shown in Fig. 13 (a) and the final achieved coverage values for six
runs are shown in Fig. 13 (b). Compared with the upper bound 0.628, the difference
between the average value 0.58 for six runs and upper bound is small.

0 10 20 30 40 50
0

10

20

30

40

50

X-Coordinate

Y
-C

oo
rd

in
at

e

Fig. 12 Randomly deployed sensor network (Coverage value=0.4484).

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

51

0 5 10 15 20
0.4

0.45

0.5

0.55

0.6

Number of iterations of PSO algorithm
S

en
so

r f
ie

ld
 c

ov
er

ag
e

(a) Coverage improvement

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

No. of runs

S
en

so
r f

ie
ld

 c
ov

er
ag

e

(b) Coverage for six runs

Fig. 13 Optimal coverage results (binary sensing model)

B. Probabilistic Model Case

In probabilistic model case, we use a randomly deployed sensor network as shown in Fig.
14, with coverage value 0.31 calculated by Eq. (4) and approximate method mentioned in
section 3.1.1. PSO algorithm parameters are set the same as binary model case, however,
the other parameters of sensor models are set to be r=5, re=3, λ=0.5, β=0.5, cth=0.7.

0 10 20 30 40 50

0

10

20

30

40

50

X-Coordinate

Y
-C

oo
rd

in
at

e

* Sensor

Fig. 14. Randomly deployed sensor network with r=5 (Coverage value=0.31)

0 5 10 15 20 25
0.3

0.32

0.34

0.36

0.38

Number of iterations of PSO algorithm

S
en

so
r f

ie
ld

 c
ov

er
ag

e

(a) Coverage improvement

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

No. of runs

S
en

so
r f

ie
ld

 c
ov

er
ag

e

(b) Coverage for six runs

Fig. 15 Optimal coverage achieved using PSO algorithm (probabilistic sensing model)

Fig. 15 (a) shows the improvement of coverage during the execution of the PSO
algorithm. Note that the upper bound for the coverage for the probabilistic sensor
detection model (roughly 0.38) is lower than the upper bound for the case of binary
sensor detection model (roughly 0.628). This is due to the fact that the coverage for the
binary sensor detection model is the fraction of the sensor field covered by the circles.
For the probabilistic sensor detection model, even though there are a large number of grid
points that are covered, the overall number of grid points with coverage probability
greater than the required level is fewer. We also show the achieved coverage for six runs

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

52

in Fig. 15 (b), and the average is nearly 0.37 which has little difference from the upper
bound.
5.1.4.1.2 Optimization of Energy Consumption

After the optimization of coverage, all sensors move to their final locations in setup phase.
Now the coordinates of potential CHs are set as particles in the sensor network. The
communication range of each sensor node is 15 units with a fixed remote base station at
(25, 80). We start with a minimum number of clusters acceptable in the problem space to
be 4. The node, which will become a CH, will have no restriction on the transmission
range. The nodes are organized into clusters by the base station. Each particle will have a
fitness value, which will be evaluated by the fitness function (12) in each generation. Our
purpose is to find the optimal location of CHs. Once the position of the CH is identified,
if there is no node in that position then a potential CH nearest to the CH location will
become a CH.

We also optimized the placement of CH in the 2-D space using GA. We used a simple
GA algorithm with single-point crossover and selection based on a roulette-wheel process.
The coordinates of the CH are the chromosomes in the population. For our experiment
we use 10 chromosomes in the population. The maximum number of generations allowed
is 500. In each evolution we update the number of nodes included in the clusters. The
criterion to find the best solution is that the total fitness value should be minimal.

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80
PSO
GA

No. of iterations

Fi
tn

es
s

va
lu

e

Fig. 16 Comparison of convergence rate between PSO and GA based on Eq. (12).

Fig. 16 shows the convergence rate of PSO and GA. We ran the algorithm for both
approaches six times and in every run PSO converges faster than GA which was used in
[20] for coverage and lifetime optimization. The main reason for the fast convergence of
PSO is due to the velocity factor of the particle.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

53

0 10 20 30 40 50
0

10

20

30

40

50

X-Coordinate

Y
-C

oo
rd

in
at

e

Fig. 17. Final cluster formation by
PSO (Binary model case)

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

X-coordinate

Y-
co

or
di

na
te

Fig. 18 Final cluster formation by
PSO (Probabilistic model case).

Fig. 17 and Fig. 18 show the final cluster topology in the sensor network space after
coverage and energy consumption optimization when the number of clusters in the sensor
space is 4. We can see from the figure that nodes are uniformly distributed among the
clusters compared with the random deployment as shown in Fig 12 and 13. The four red
stars denote CHs, the blue tiny circles and diamonds are sensor members, and the dashed
circles are communication range of sensor nodes. The energy saved is the difference
between the initial fitness value and the final minimized fitness value. In this experiment,
it is approximately 16.

5.1.4.2 Performance Evaluation of RSBA
The performance of the proposed movement assisted algorithm RSBA is evaluated by
simulation. For the convenience of comparison with related work, we set the initial
parameters the same as in [15]: 30 randomly placed nodes in a region of size 10×10 are
used for initial deployment; the r and R used in the experiment are 2 and 4 m,
respectively. In Fig. 19, the coverage and connectivity of the initial random deployment
before running the algorithms are shown. The green circles are used to show the sensing
range r of the nodes. Communications are possible within the R between nodes that are
connected by a dashed line.

Fig. 20 shows the detected virtual node points (labeled as 31 and 32) in coverage hole
and the redundant nodes nearest to 31 and 32 are 14 and 17 respectively. Both the
coverage holes and the redundant nodes are judged by CHs. This information is then
broadcasted by CHs to the whole network. The parameter values needed are: threshold
value T1=1.2 and T2 = r/4.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

54

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15

16

17

18

19

2021

22

23

24

25

26

27

2829

30

X axis

Y
 a

xi
s

Initial position of 30 sensors, covered area: 0.9273

Fig. 19 Initial random deployment with
sensing range 2m and communication
range 4m.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

31

32

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15

16

17

18

19

2021

22

23

24

25

26

27

2829

30

X axis

Y
 a

xi
s

Fig 20 Determine virtual node point in
uncovered area and redundant nodes.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

31

32

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15

16

17

18

19

2021

22

23

24

25

26

27

2829

30

X axis

Y
 a

xi
s

Shortest Path Found

Fig. 21 Find shortest path by A*
algorithm from redundant node to
virtual node point.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15

16

17

18

19

2021

22

23

24

25

26

27

2829

30

X axis

Y
 a

xi
s

Final Node Position after Moving (relabeled)

Fig. 22 Final node positions after
executing proposed movement-assisted
deployment algorithm

Fig. 21 shows the two shortest paths found (14→19→31 and 17→32) by A* algorithm
from redundant nodes to virtual node points. This is also the actual path of individual
nodes as they move by relay shift, in which sensor node move only one hop at a time
which can guarantee the connectivity. For the initial distribution of Fig. 19, each node
moves a distance of 2.6157 on average and the standard deviation of distance traveled is
0.5714. When the average distance traveled is small, the corresponding energy for
locomotion is small. Also, when the standard deviation of distance traveled is small, the
variation in energy remaining at each node is not significant and a longer system lifetime
with desired coverage can be achieved. Fig. 22 shows the final node positions with
desired coverage=0.9923 after executing RSBA. Note that the original 30 sensor nodes
are finally reorganized and relabeled.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

55

Next, the performances of RSBA are compared with DSSA, IDCA, and VDDA [15] in
terms of coverage, movement distance until convergence, and time. Results are presented
in Figures. 23–25. These results are obtained for different number of nodes dispersed
over a fixed ROI of size 10×10, i.e., for different node densities to examine the relation
between node densities and the performance metrics. The number of nodes varies from
20 to 40 and results are averaged over 10 runs (initial random distributions) for each node
density.

20 25 30 35 40
0.9

0.92

0.94

0.96

0.98

1

of Nodes

C
ov

er
ag

e RSBA
DSSA
IDCA
VDDA
Rand

Fig. 23 Coverage comparison.

20 25 30 35 40
0

10

20

30

40

50

60

of Nodes

D
is

ta
nc

e

RSBA
DSSA
IDCA
VDDA

Fig. 24 Total distance traveled
comparison.

20 25 30 35 40
0

5

10

15

20

25

30

35

of Nodes

Ti
m

e

RSBA
DSSA
IDCA
VDDA

Fig. 25 Termination time comparison.

Fig. 23 shows the improvement in coverage area from the initial random deployment for
RSBA, DSSA, IDCA, and VDDA. All four algorithms exhibit a similar performance.
Although the coverage of RSBA (99%~1) is not always the highest among the four
algorithms, this number is often satisfactory for many application requirements.

Fig. 24 shows the significant reduction of total distance traveled by RSBA compared with
other three algorithms. In fact, distance moved here is used as the indicator of energy
consumption. In RSBA, only very few numbers of nodes need to move and each sensor
movement is bounded by only one hop. However, almost every node needs to move in
the other three algorithms. So it is obvious that our proposed algorithm can save much

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

56

more energy compared with related methods. Fig. 25 shows that RSBA leads to faster
deployment than DSSA, IDCA, and VDDA. Termination time is measured in the number
of iterations until the algorithms stop.

5.1.4.3 Performance Evaluation of EFOA
For the convenience of comparison between EFOA and related work FOA [21], we set
the initial parameters the same as in [21]: various number of sensors deployed in a field
of 10×10 square area are investigated; the r and R used in the experiment are 1m and 2m
(2m and 4m) respectively. So dn should be ranged as 0~2 (0~4), not 0~10 as set by [21].
We assume each sensor is equipped with an omni antenna to carry out the task of
detection and communication. Evaluation of our EFOA algorithm follows three criteria:
field coverage, energy consumption and convergence. Results are averaged over 100
Monte Carlo simulations.

20 25 30 35 40 45 50 55 60
0.4

0.5

0.6

0.7

0.8

0.9

1

of Nodes

C
ov

er
ag

e

Random
FOA
EFOA

Fig. 26 Coverage vs. Number of
Nodes (R=2, r=1).

20 25 30 35 40 45 50 55 60
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

of Nodes

C
ov

er
ag

e

Random
FOA
EFOA
RSBA
Ramdom-Prob
EFOA-Prob
RSBA-Prob

Fig. 27 Coverage vs. Number of
Nodes (R=4, r=2).

Fig. 26 shows that the coverage of the initial random deployment, FOA and EFOA when
r=1m and R=2m. The FOA and EFOA algorithms have similar results that both of them
can improve the network coverage by 20% ~ 30% in average.

Fig. 27 gives the results when r=2m and R=4m, the coverage comparison of 1) random
deployment, FOA, EFOA and RSBA with binary sensing model and 2) random
deployment, EFOA and RSBA with probabilistic sensing model (denoted as Random-
Prob, EFOA-Prob, and RSBA-Prob). In the case of binary sensing model, when 20
sensors are deployed, initially the coverage after random deployment is around 86%.
After FOA and EFOA algorithm are executed, the coverage reaches 97%. RABA even
has higher coverage ratio up to 99%. The coverage is dramatically improved in the low
density network. The coverage ratio in case of probabilistic sensing model has similar
improvement pattern by EFOA and RSBA compared with random deployment. The
above two figures indicate that instead of deploying large amount of sensors, the desired
field coverage could also be achieved with fewer sensors.

Fig 28 shows the total number of nodes that remain alive over time where each node
begins with 2J of energy and when R=4 and r=2. The number of nodes in EFOA remains
same for a long time and they die out quickly almost at the same time, while the first

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

57

node dies the earliest in FOA and RSBA in between. The reason is that after some
operation time, the network display heterogeneous characteristics, however, FOA doesn’t
consider the residual energy of nodes, so the energy difference among sensors becomes
significant as time goes on. Network lifetime is the time span from the deployment to the
instant when the network is considered nonfunctional. When a network should be
considered nonfunctional can be generally considered as the instant when the first sensor
dies or a percentage of sensors die and the loss of coverage occurs. In RSBA, the
uniformity is worse than EFOA but better than FOA. Thus the lifetime is prolonged in
EFOA compared with FOA.

Fig. 29 shows EFOA has much lower standard deviation of distance compared with FOA
in both cases when R=4, r=2 and R=2, r=1 while slightly higher than RSBA in the former
case with various number of nodes. When the standard deviation of distance traveled is
small, the variation in the energy remaining at each node is not significant and thus a
longer system lifetime with desired coverage can be achieved. However, in case many
sensors don’t need to move in RSBA, although the standard deviation is low, it causes
lower uniformity and thus slightly shorter lifetime compared with EFOA.

0 200 400 600 800
0

5

10

15

20

25

30

35

40

Time(s)

of

 n
od

es
 a

liv
e

FOA
RSBA
EFOA

Fig. 28 # of nodes alive over time
where each node begins with 2 J of
energy. (R=4, r=2).

20 25 30 35 40 45 50 55 60
0

0.5

1

1.5

2

2.5

3

3.5

4

of nodes

st
d

of
 d

is
ta

nc
e

FOA,R=2,r=1
EFOA,R=2,r=1
FOA,R=4,r=2
EFOA,R=4,r=2
RSBA,R=4,r=2

Fig. 29 Standard deviation of
distance traveled verses number of
nodes.

5.1.5 Conclusion and Future Work
In this chapter, we firstly introduced a comprehensive taxonomy for WSN self-
deployment in which three sensor relocation algorithms were proposed according to the
mobility degree of sensor nodes. The first one, PSOA, regards the sensors in the network
as a swarm and reorganizes the sensors by PSO, in the full sensor mobility case. The
other two, relay shift based algorithm (RSBA) and energy-efficient fuzzy optimization
algorithm (EFOA), assume relatively limited sensor mobility, i.e., the movement distance
is bounded by a threshold, to further reduce energy consumption. We also indicate in the
diagram that in the zero mobility case static topology control and scheduling schemes can
be used such as optimal cluster formation. Simulation results show that our approaches
greatly improve the network coverage as well as energy efficiency compared with related
works.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

58

However in this chapter, only the discrete mobility metric cases were discussed. In the
future work, we plan to study the abstraction of mobility degree in which both the
physical factors (such as the friction of movement) and environmental factors (such as
obstacles) will be included, so that the continuous mobility metric can be generated.
Based on this metric we plan to design general deployment scheme. In addition,
according to different situations, different types of initial deployment distribution such as
Gaussian distributions can be further studied.

5.1.6 References
[] Xiaoling Wu, Hoon Heo, Riaz A. Shaikh, Jinsung Cho, Oksam Chae, and Sungyoung
Lee, “Individual contour extraction for robust wide area target tracking in visual sensor
networks”, Proc. 9th IEEE International Symposium on Object and component-oriented
Real-time distributed Computing, Gyungju, Korea, pp. 179 – 185, Apr. 2006.
[2] S. Meguerdichian , F. Koushanfar, G. Qu and M. Potkonjak, “Exposure in wireless
ad-hoc sensor networks”, Proc. of International Conference on Mobile Computing and
Networking (Mobicom), Rome, Italy, pp. 139 – 150, 2001.
[3] S. Dhillon, K. Chakrabarty and S. Iyengar, “Sensor placement for grid coverage under
imprecise detections”, Proc. International Conference on Information Fusion, Annapolis,
USA, Vol. 2, pp. 1581 – 1587, Jul. 2002.
[4] T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan and Kewal K. Saluja, “Sensor
deployment strategy for detection of targets traversing a region”, ACM Mobile Networks
and Applications, Vol. 8, Issue 4, pp. 453 – 461, Aug. 2003.
[5] Sameer Tilak, Nael B. AbuGhazaleh, and Wendi Heinzelman, “Infrastructure
tradeoffs for sensor networks”, Proc. 1st ACM International Workshop on Wireless
Sensor Networks and Applications (WSNA), Atlanta, Georgia, USA, pp. 49 – 58, 2002.
[6] A. Howard, M. J. Mataric and G. S. Sukhatme, “An incremental self-deployment
algorithm for mobile sensor networks”, Autonomous Robots, Special Issue on Intelligent
Embedded Systems, Vol. 13, Issue 2, pp. 113 – 126, Sept. 2002.
[7] M. Cardei and J. Wu, “Coverage in wireless sensor networks”, in Handbook of Sensor
Networks, M.Ilyas and I. Mahgoub (eds.), CRC Press, ISBN: 0-8493-1968-4, 2004.
[8] S. Shakkottai, R. Srikant, and N. Shroff, “Unreliable sensor grids: coverage,
connectivity and diameter”, Proc. IEEE Conference on Computer Communications
(INFOCOM), San Francisco, Vol. 2, pp. 1073 – 1083, Mar./Apr. 2003.
[9] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava, “Coverage
problems in wireless ad-hoc sensor networks”, Proc. IEEE Conference on Computer
Communications (INFOCOM), Anchorage, Alaska, USA, pp. 1380 – 1387, Apr. 2001.
[10] Seapahn Megerian, Farinaz Koushanfar, Miodrag Potkonjak, and Mani B. Srivastava,
"Worst and best-case coverage in sensor networks", IEEE transactions on mobile
computing, Vol. 4, No. 1, pp. 84 – 92, Jan. /Feb. 2005.
[11] B. Liu and D. Towsley, “A study on the coverage of large-scale sensor networks”,
Proc. 1st IEEE International Conference on Mobile Ad-hoc and Sensor Systems
(MASS’04), Fort Lauderdale, Florida, USA, pp. 475 – 483, Oct. 2004.
[12] J. Wu and S. Wang, “Smart: A scan-based movement-assisted deployment method
in wireless sensor networks”, Proc. IEEE Conference on Computer Communications
(INFOCOM), Miami, Vol. 4, pp. 2313 – 2324, Mar. 2005.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

59

[13] G. Wang, G. Cao, and T. La Porta, “Movement-assisted sensor deployment”, IEEE
Transactions on Mobile Computing, Vol. 5, Issue 6, pp. 640 – 652, June 2006.
[14] Y. Zou and K. Chakrabarty, “Sensor deployment and target localization in
distributed sensor networks”, ACM Transactions on Embedded Computing Systems, Vol.
3, No. 1, pp. 61 – 91, Feb. 2004.
[15] Nojeong Heo and Pramod K. Varshney, “Energy-efficient deployment of intelligent
mobile sensor networks”, IEEE Transactions on Systems, Man, and Cybernetics—Part A:
Systems And Humans, Vol. 35, No. 1, pp. 78 – 92, 2005.
[16] Xiaoling Wu, Shu Lei, Yang Jie, Xu Hui, Jinsung Cho and Sungyoung Lee, “Swarm
based sensor deployment optimization in ad hoc sensor networks”, Proc. 2nd
International Conf. on Embedded Software and Systems (LNCS 3820), Xi’an, China, pp.
533 – 541, 2005.
[17] B. Liu, P. Brass, and O. Dousse, “Mobility improves coverage of sensor networks”,
Proc. 6th ACM International Symposium on Mobile Ad Hoc Networking and Computing,
Urbana-Champaign, Illinois, USA, pp. 300 – 308, May 2005.
[18] Guiling Wang, Guohong Cao, Tom La Porta, “Proxy-based sensor deployment for
mobile sensor networks”, Proc. 1st IEEE International Conference on Mobile Adhoc and
Sensor Systems (MASS’04), Fort Lauderdale, Florida, USA, pp. 493 – 502, Oct. 2004.
[19] A. Howard, M. Mataric, and G. Sukhatme, “Mobile sensor network deployment
using potential fields: A distributed, scalable solution to the area coverage problem”, Proc.
of DARS'02, Fukuoka, Japan, pp. 299 – 308, June 2002.
[20] Damien B. Jourdan, Olivier L. de Weck, “Layout optimization for a wireless sensor
network using a multi-objective genetic algorithm”, Proc. IEEE 59th Vehicular
Technology Conference (VTC 2004-Spring), Milan, Italy, Vol.5, pp. 2466 – 2470, May
2004.
[21] Haining Shu, Qilian Liang, “Fuzzy optimization for distributed sensor deployment”,
Proc. of IEEE Wireless Communications and Networking Conference, New Orleans,
USA, pp. 1903 – 1907, 2005.
[22] Xiaoling Wu, Yu Niu, Lei Shu, Jinsung Cho, Young-Koo Lee, and Sungyoung Lee,
“Relay shift based self-deployment for mobility limited sensor networks”, Proc. 3rd
International Conf. on Ubiquitous Intelligence and Computing (LNCS 4159), Wuhan and
Three Gorges, China, pp. 556 – 564, Sept. 2006.
[23] Defense Advanced Research Projects Agency (DARPA),
“http://www.darpa.mil/ato/programs/shm/index.html”
[24] Sriram Chellappan, Xiaole Bai, Bin Ma, and Dong Xuan, “Sensor networks
deployment using flip-based sensors”, Proc. of IEEE International Conference MASS,
Washington, DC, pp. 291 – 298, Nov. 2005.
[25] Kennedy J. and R. C. Eberhart, “Particle swarm optimization”, Proc. IEEE
International Conference on Neural Networks, Perth, Australia, pp. 1942 – 1948, 1995.
[26] Ioannis N. Kassabalidis, Mohamed A. El-Sharkawi, Robert J. Marks, II, Luciano S.
Moulin, and Alexandre P. Alves da Silva, “Dynamic security border identification using
enhanced particle swarm optimization”, IEEE Transactions on Power Systems, Vol. 17,
No. 3, pp. 723 – 729, Aug. 2002.
[27] Ganesh K. Venayagamoorthy and Sheetal Doctor, “Navigation of mobile sensors
using PSO and embedded PSO in a fuzzy logic controller”, Proc. 39th IEEE IAS Annual
Meeting on Industry Applications, Seattle, WA, USA, pp. 1200 – 1206, Oct. 2004.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

60

[28] B. A. Kadrovach, G. B. Lamont, “A particle swarm model for swarm-based
networked sensor systems”, Proc. ACM symposium on Applied computing, Madrid,
Spain, pp. 918 – 924, 2002.
[29] T. Hardin, X. Cui, R. K. Ragade, J. H. Graham, and A. S. Elmaghraby, “A modified
particle swarm algorithm for robotic mapping of hazardous environments”, Proc. the
World Automation Congress, Spain, pp. 31 – 36, 2004.
[30] Yuhui Shi, Russell C. Eberhart, “Empirical study of particle swarm optimization”,
Proc. the 1999 Congress on Evolutionary Computation, Washington DC, Vol. 3, pp. 1948
– 1950, 1999.
[31] Wendi B. Heinzelman, Anantha P. Chandrakasan, and Hari Balakrishnan, “An
application-specific protocol architecture for wireless microsensor networks”, IEEE
Transactions on Wireless Communications, Vol. 1, No. 4, pp. 660 – 670, 2002.
[32] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein,
“Introduction to algorithms”, 2nd Edition. MIT Press and McGraw-Hill, 2001.
[33] Indranil Gupta, Denis Riordan and Srinivas Sampalli, “Cluster-head election using
fuzzy logic for wireless sensor networks”, Proc. 3rd Annual Communication Networks
and Services Research Conf., Halifax, Canada, pp. 255 – 260, May 2005.
[34]The MathWorks, Inc.，Fuzzy Logic Toolbox 2.2.3,
“http://www.mathworks.com/products/fuzzylogic/”, 2006.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

61

5.2 Localized Energy Aware Broadcast Protocol for Wireless
Networks with Antennas

5.2.1 Introduction
In wireless networks which have limited resources such as sensor network,
communication ranges are limited, thus many nodes must participate to the broadcast in
order to have the whole network covered. The most important design criterion is energy
and computation conservation, as nodes have limited resources. All the protocols that
have been proposed for broadcast can be classified into two kinds of solutions:
centralized and localized. Centralized solutions mean that each node should keep global
network information and global topology. There exist several centralized energy-aware
broadcast algorithms for the construction of broadcast trees with omni-directional
antennas in the literature. In addition, the well-known energy-aware algorithm of
Broadcast Incremental Power (BIP) [1] is “node-based” algorithm and exploits the
“wireless broadcast advantage” property associated with omni-directional antennas,
namely the capability for a node to reach several neighbors by using a transmission
power level sufficient to reach the most distant one. Applying the incremental power
philosophy to network with directional antennas, the Directional Broadcast Incremental
Power (DBIP) algorithm [2] has very good performance in energy saving.

The problem of centralized approach is that any changes of nodes in their activity status
(from active to passive and vice versa or dead) may cause global changes in topology
which must be propagated throughout the network. This may results in extreme and un-
acceptable communication overhead for networks. Hence, because of the limited
resources of nodes, it is ideal that each node can decide on its own behavior based only
on the information from nodes within a constant hop distance. Such distributed
algorithms and protocols are called localized [3-7]. Of particular interest are protocols
where nodes make decisions based solely on the knowledge of its 1-hop or 2-hops
neighbors to them.

In this chapter, we propose and implement a localized energy-aware broadcast protocol
which is based on the “Incremental Power” philosophy for wireless networks with
Directional Antenna, Localized Directional Broadcast Incremental Power Protocol
(LDBIP). Our localized protocol only uses localized and distributed location information
and computing to construct broadcast tree. The use of directional antennas can reduce the
beam width angle to diffuse the radio transmission to one direction and thus provides
energy savings and interference reduction. In our algorithm, source node sets up spanning
tree with only position information of its neighbors within two hops. Directional antennas
are used for transmitting broadcast packet, and the transmission power is adjusted for
each transmission to the minimal necessary for reaching the particular neighbor. Each
node that receives broadcast packet will consider relay instructions included in received
packet to compute its own two hops neighborhood spanning tree and do the same as
source node. We compare the performance of our protocol (LDBIP) to those of BIP and
DBIP. Experimental results show that in wireless networks, this new protocol has better
performance compared to BIP, and similar performance to DBIP.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

62

5.2.2 System Model

5.2.2.1 Network Model
We assume a wireless network consists of N nodes, which are randomly distributed over
a specified region. Any node is permitted to initiate broadcast. Broadcast requests are
generated randomly at network nodes. Each broadcast consists of the source node and at
least one destination node. Additional nodes may be used as relays either to provide
connectivity to all members in network or to reduce overall energy consumption. The set
of nodes and the links of nodes support constructing a broadcast tree. Here, the links are
incidental and their existence depends on the transmission power of each node. Thus, it is
a set of nodes (rather than links) that are the fundamental units in constructing the tree.
The connectivity of the network depends on the transmission power and antenna pattern.
We assume that each node can choose its RF power level R Fp , such as

m axm in
RFp p p≤ ≤ .

The nodes in broadcast tree can adjust their power levels for the various transmission in
which it participates.

5.2.2.2 Propagation Model
We use two kinds of propagation model, free space model [8] and two-ray ground
reflection model [9]. The free space model considers ideal propagation condition that
there is only one clear line-of-sight path between the transmitter and receiver, while the
two-ray ground model takes reality into consideration and considers both the direct path
and a ground reflection path.

The following equation to calculate the received signal power in free space at distance d
from the transmitter

2

2 2P
(4)

() t t r
r

P G
d L

Gd λ
π

=
,

(2)

where tP is the transmitted signal power. tG and rG are the antenna gains of the transmitter
and the receiver respectively. L (1)L ≥ is the system loss, and λ is the wavelength.

The following equation to calculate the received signal power in Two-ray ground model
at distance d

2 2

4P () t t r t r
r

P G h h
d L

Gd =
,

(3)

where th and rh are the heights of transmit and receive antennas respectively.

However, the two-ray model does not give a good result for a short distance due to the
oscillation caused by the constructive and destructive combination of the two rays,
whereas, the free space model is still used when d is small.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

63

Therefore, a cross-over distance cd is calculated. When cd d< , Eqn. (1) is used. When

cd d> , Eqn.(2) is used. At the cross-over distance, Eqns. (1) and (2) give the same result.
So cd can be calculated as

(4)t rh hπ λ . (4)

When considering omni-directional antennas and uniform propagation conditions, it is
common to select tG and rG as 1.

The use of directional antennas can permit energy savings and reduce interference by
concentrating transmission energy where it is needed. We learn from [10] that because
the amount of RF energy remains the same, but is distributed over less area, the apparent
signal strength is higher. This apparent increase in signal strength is the antenna gain. We
use an idealized model in which we assume that all of the transmitted energy is
concentrated uniformly in a beam of widthθ , as shown in Fig. 1, then the gain of area
covered by the beam can be calculated as

2 (1 c o s)
3 6 0
θ− , (5)

while the gain of the other areas is zero.

As a consequence of the “wireless broadcast advantage” property of omni-directional
systems [11], all nodes whose distance from Node i does not exceed ijr will be able to
receive the transmission with no further energy expenditure at Node i.

While using directional antenna, the advantage property will be diminished, since only
the nodes located within the transmitting node’s antenna beam can receive the signal. In
Fig. 1, only j, l can receive the signal, while k cannot receive the signal.

Figure 2.1: Use of Directional Antenna

Based on this model, the transmitted power required to support a link between Node i and
Node j is

RF
ijp = RF power needed for link between Nodes i and j

 = { }minmax P (,),r pd θ

(5)

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

64

The use of a nonzero value of
min

p is that at the physical layer of each wireless sensor
node, there is a receiving threshold. When a packet is received, if its signal power is
below the receiving threshold, it is marked as error and dropped by the MAC layer.

We assume that the beam width θ is fixed beam width and one node can simultaneously
support more than one directional antenna. Furthermore, we assume that each antenna
beam can be pointed in any desired direction to provide connectivity to a subset of nodes
that are within communication range. In addition, we use directional receiving antennas,
which have a beneficial impact to avoid background noise and other user interferences.

5.2.2.3 Energy Expenditure
In addition to RF propagation, energy is also expended for transmission (encoding,
modulation, etc.) and reception (demodulation, decoding, etc.). We define:

 Tp = transmission processing power and

 Rp = reception processing power.

The total power expenditure of a node, when transmitting to a maximum range r over a
sector of widthθ , is

(,)R F T Rp p r p pθ= + + (6)

Where (,)RFp r θ is RF propagation energy expenditure, and the term Rp is not needed for
the source node. A leaf node, since it does not transmit but only receives, has a total
power expenditure of Rp . We assume that each node starts with a finite quantity of battery
energy. For example, Node i has energy (0)iE at time 0. The residual energy at Node i at
time t is

0
() (0) ()

t
i i iE t E P d ττ= − ∫

(7)

Where ()iP τ is the total power expended at Node i at timeτ . We say that a node is “alive”
as long as its residual energy is positive and that it dies when its residual energy
decreases to zero. Based on our assumptions, a “dead” node cannot participate, even as a
leaf node.

5.2.3 Proposed Algorithm

5.2.3.1 Localized Energy Aware Broadcast Algorithm
The goal of the localized algorithm [12] is to allow a localized and distributed
computation of broadcast tree. We assume every node knows the position information of
its neighbors within two hops.

The principle is as follows: the source node S (the one that initiates the broadcast)
computes the broadcast tree within its two hops neighborhood, and sends the broadcast
packet to each of its one hop neighbor, while the determined relay instructions for relay

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

65

nodes are included in broadcast packet. For each of its one hop neighbors, for example,
node U who receives the packet for the first time, two cases can happen:

 The packet contains relay instructions for U. U will use these relay instructions to

construct its own two hop broadcast tree. Then, instead of starting from an empty tree as

S did, it extends the broadcasting tree based on what source S has calculated for it. By

this way, the joint neighborhood nodes of S and U will use the same spanning tree.

 There are no relay instructions for U. In this case, starting from an empty tree, node U

can just use its two hops neighbor location information to construct its own broadcast tree.

After the procedure mentioned above, node U will rebroadcast the packet again to its own
one hop neighbor and includes relay information for its own relay node, just like what
source node has done.

In this principle, there may be some nodes which will receive this packet more than one
time, then at this time, node can simple drop the packet and doesn’t rebroadcast again. In
order to reduce overlap, we use the neighbor nodes elimination scheme. Each node will
include its two hops neighbor nodes in packet, because these nodes certainly will receive
the packet soon. Once a node receives the packet, except recording the relay information,
it should also record the nodes which will be covered soon. If the covered node is not
used in relay information and also is a neighbor node of this node, then this node will
delete it from its neighbor list and after deletion calculate its own broadcast tree. Fig.2.2
is the pseudo-code of the proposed algorithm.

As for how to set up broadcast tree, we have considered two basic approaches with
directional antennas:

 Construct the tree by using an algorithm designed for omni-directional antennas; then,

reduce each antenna beam to our fixed beam width.

 Incorporate directional antenna properties into the tree-construction process.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

66

Figure 2.2: Localized Broadcast Algorithm

The first approach can be based on any tree-construction algorithm. The “beam-
reduction” phase is performed after the tree is constructed The second approach, which
takes directional antenna into consideration at each step of the tree construction process,
can be used only with algorithms that construct trees by adding one node at a time. In
next section, we describe the later approaches (LDBIP) in detail.

5.2.3.2 Localized Directional Broadcast Incremental Power Protocol (LDBIP)
The incremental power philosophy, originally developed for use with omni-directional
antennas, can be applied to tree construction in networks with directional antennas as
well. At each step of the tree-construction process, a single node is added, whereas
variables involved in computing cost (and incremental cost) are not only transmitter
power but beam width θ as well. In our simple system model, we use fixed beam
width fθ , that means for adding a new node, we can only have two choices: set up a new

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

67

directional antenna to reach a new node; raise the length range of beam to check whether
there is new node covered or not.

(a) (b)

 (c) (d)

Figure 2.3: Nodes addition in LDBIP

Fig. 2.3(a) shows a simple example in which the source node 0 wants to add nodes 1, 2,
and 3 to the tree. Node 1 is the closest to 0, so it is added first; in Fig. 2.3(b), an antenna
with beam width of fθ is centered between 0 and Node 1. Then we must decide which
node to add next (Node 2 or Node 3), and which node (that is already in the tree) should
be its parent. In this example, the beam from 0 to Node 1 can be extended to include both
Node 1 and Node 3, without setting up a new beam. Compared to other choices that
setting up a new beam from Node 0 to Node 2, or from Node 1 to Node 2, this method
has minimum incremental power. Therefore, Node 3 is added next by increasing the
communication range of 0 and Node 1. In Fig. 2.3(c), finally, Node 1 must be added to
the tree. Three possibilities are respectively to set up a new beam from 0, 1, 3. Node 3 has
minimum distance. Then in Fig. 2.3 (d) we set up a new beam from Node 3 to Node 2.

Once calculate the two hops neighborhood broadcast tree, source node will send packets
to its one hop neighbors. In above example, Node 1 and Node 3 are Node 0’s one hop
neighbors. Once they receive the packet, they will check the relay information and
covered node information. For example, as for Node 1, it doesn’t receive relay
information, and it has only three neighbors, which are Node 0, 2 and 3. However, packet
originated from Node 0 includes all of them as covered nodes. Then Node 1 has no
neighbor nodes to set up its own broadcast tree, so it will give up rebroadcast. As for
Node 3, we assume it also has other two hops neighbors except Node 1 and 2. Because
Node 3 received the relay information to 2, even Node 2 is included in covered nodes list,
it still can participate in the new broadcast tree construction. Furthermore, when Node 3
constructs its own broadcast tree, it has to add the link of Node 3 to Node 2 as its first
downlink beam as Node 0 has calculated. By this way, even every node only knows its
two hops neighbors and only calculates its two hops broadcast tree, packets still can be

2

1
3

0

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

68

broadcasted in the whole network. In addition, when any changes of sensor nodes in their
activity status occur, with localized broadcast protocol, we can get the minimum
computation and energy consumption compared to centralized solutions. They are the
advantages of our algorithms.

5.2.3.2 Examples Constructed by the Various Algorithms

 (a) (b) (c)

Figure 2.4: Broadcast Tree. (a) BIP (b) DBIP(fθ =30) (c) LDBIP(fθ =30)

Fig. 2.4 shows the broadcast tree produced by BIP, DBIP and LDBIP for a 12-node
network, where the source node is shown larger than the other nodes. There broadcast
trees are generated in our simulation work, which use the system and energy model
mentioned in section 2.

Because DBIP and LDBIP use directional antenna, therefore in our simulation system,
according to different fθ , we can get different broadcast tree; of course, the according
energy consumption will also be different. Furthermore, because our algorithm LDBIP is
distributed, which means every node only calculates its two hops neighborhood broadcast
tree, the Fig. 4 (c) in fact is the combination of all nodes’ broadcast tree. Based on our
algorithm, the joint parts of nodes’ broadcast tree will not have too much difference
because nodes refer relay information from other nodes and apply the neighbor nodes
elimination scheme.

5.2.4 Performance Evaluation
In this section, we present our performance evaluation for our localized algorithm LDBIP,
and also compare it with two centralized algorithm BIP and DBIP, since these two
protocols are very effective centralized protocols in energy consumption.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

69

 (a) (b)

Figure 2.5: Energy Consumption Comparison

We use ns2 as our simulation tool and apply the system, propagation, and energy model
mentioned in Section 2. The parameters used in our simulations are the following. The
network is static and always composed of 50 nodes randomly placed in a square area
whose size is changed to obtain different density. For each measure, 5 broadcasts are
launched and for each broadcast, a new network is generated.

To compare the performance with those of other protocols, we observe the total power
consumption over the network when broadcasts have occurred.

Fig.2.5 shows the relationship of energy consumption and display area for BIP, DBIP and
LBIP protocols. Fig.2.5 (a) shows the comparison in a large display area range and
Fig.2.5 (b) focuses on the small display area.

Fig.2.6 shows the relationship of energy consumption and display density for BIP, DBIP
and LBIP protocols. Fig.2.6 (a) shows the comparison in a large display density range
and Fig.2.6 (b) focuses on the high display density.

 (a) (b)

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

70

Figure 2.6: Energy Consumption Comparison

Figure 2.7: Saved Rebroadcast Ratio

From Fig.2.5 and 2.6, we can find that because of using directional antenna, DBIP and
LDBIP have stable energy consumption despite of display area and density and are very
good at energy saving. Compared to centralized algorithm DBIP, in wireless network, our
localized algorithm LDBIP has a little more energy consumption. However, this is
negligible because our algorithm needs the topology of only two hop neighbors whereas
DBIP requires the total network topology.

We also observe the value of SRB (Saved Rebroadcast) which is the percentage of
nodes in the network that received the message but did not relay it. A Blind Flooding has
a SRB of 0%, since each node has to retransmit the message once.

Fig. 2.7 shows the relationship of SRB and display area for BIP, DBIP and LBIP
protocols. From this diagram, we can see compared omni-directional antenna, using
directional antenna we can get higher SRB value despite of display area. Our localized
protocol LDBIP has higher SRB compared to BIP, but has less SRB compared to DBIP.
However, our localized algorithm has more stable SRB compared to BIP, even DBIP.
From above diagram, we can see that basically the SRB of LDBIP is 50%.

In summary, in wireless networks, our localized energy-aware protocol has good
performance in energy consumption and saving rebroadcast, which is similar to well-
known centralized protocol DBIP. Since our protocol is based on localized information
and distributed computation, if consider topology changes, nodes only need broadcasting
them to their neighbors rather than all the other nodes in the whole network, our localized
protocol can get better performance.

5.2.5 Conclusions
In this chapter, we proposed the new localized energy-aware broadcast protocol for
wireless networks with directional antenna which has limited energy and computation

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

71

resources such as sensor network. Our algorithm is based on the localized information
and distributed computation method, which means, rather than source node collects all
location information of network to calculate broadcast tree, every node collects some part
of the whole network’s nodes location information and participates calculating broadcast
tree. At the cost of a few more information stored in the broadcast packets, our localized
algorithm offers near as good energy saving result as well-known centralized algorithm
DBIP. Its drawback is that since every node calculates the broadcast tree only based on
part of all location information, so compared to centralized algorithm, the power
consumption for total spanning tree may be not the minimum. However, with localized
information, nodes can broadcast in a distributed way, and don’t need to collect all the
location information in network.

Especially, if consider topology changes caused by nodes’ status changes, our distributed
algorithm can get the minimum recalculating computation and in this aspect can get
lesser energy consumption. So in future work, we plan to take topology changes into
consideration for our simulation. In addition, we will take realistic facts into
consideration for energy consumption and network lifetime.

5.2.6 References
 [1] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides, On the construction of energy-
efficient broadcast and multicast trees in wireless networks, Proc. IEEE INFOCOM 2000,
pp. 585-594, March 2000.
[2] J.E. Wieselthier, G.D. Nguyen, and A. Ephremides, Energy-Limited Wireless
Networking with Directional Antennas: The Case of Session-Based Multicasting, Proc.
IEEE INFOCOM 2002, pp. 190-199, June 2002.
[3] P. Bose, P. Morin, I. Stojmenovic, J. Urrutia, Routing with guarantee delivery in ad
hoc networks, CM/Kluwer Wireless Networks 7 (6) (2001) 609-616.
[4] T. Chu, I. Nikolaidis, Energy efficient broadcast in mobile ad hoc networks, in: Proc.
Ad-Hoc Networks and Wireless (ADHOC-NOW), Toronto, Canada
[5] W. Peng, X. Lu, On the reduction of broadcast redundancy in mobile ad hoc networks,
in: Proc. Annual Workshop on Mobile and Ad Hoc Networking and Computing
(MobiHoc'2000), Boston, Massachusetts, USA, 2000, pp. 129-130.
[6] A. Qayyum, L. Viennot, A.Laouiti, Multipoint relaying for flooding broadcast
messages in mobile wireless networks, in: Proc. 35th Annual Hawaii International
Conference on System Sciences (HICSS-35), Hawaii, USA, 2002.
[7] J. Wu, H. Li, A dominating-set-based routing scheme in ad hoc wireless networks, in:
Proc. 3rd Int'l Workshop Discrete Algorithms and Methods for Mobile Computing and
Comm (DIALM'99), Seattle, USA, 1999, pp. 7-14.
[8] H.T. Friis, A note on a simple transmission formula, Proc. of the IRE, Vol. 41, May
1946, pp. 254-256.
[9] H.T. Friis, Introduction to radio and radio antennas, IEEE Spectrum, pp. 55-61, April
1971.
[10] Joseph J. Carr, “Directional or Omni-directional Antenna” Joe Carr's Receiving
Antenna Handbook, Hightext, 1993.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

72

[11] J.E. Wieselthier, G.D. Nguyen, and A. Ephremides, Algorithms for Energy-Efficient
Multicasting in Static Ad Hoc Wireless Networks, Mobile Networks and Applications
(MONET), vol. 6,no. 3, pp. 251-263, June 2001.
[12] F.Ingelrest, D.Simplot-Ryl, Localized Broadcast Incremental Power Protocol for
Wireless Ad Hoc Networks. 10th IEEE Symposium on Computers and Communications
(ISCC 2005), Cartagena, Spain, June 2005.

5.3 Swarm Intelligence Inspired Autonomic Routing

5.3.1 Introduction
There is a need to manage heterogeneous computing devices in accordance with high
level policies set out by their human administrators [1]. This is particularly the case for
devices in distributed ubiquitous environments. This autonomous style of management is
referred to as autonomic computing [2] which includes at least four basic characteristics,
namely self-configuration, self-optimization, self-healing, and self-protection. The
purpose is that autonomic computing system will make the job of human administrator
more relaxed, since the complexity of managing heterogeneous computing units is getting
too large to be handled in current scenarios.

A novel alternative approach to reduce system complexity is to make use of the Swarm
Intelligence (SI) mechanism. A SI inspired system is a self-optimizing system with four
main ingredients, which are positive feedback, negative feedback, amplification of
fluctuations and multiple interactions among multi-agents [9]. Strangely, it also covers
the four aspects of autonomic computing to some degree. In SI inspired systems, many
insect like agents are interacting locally with one another and with their environment, just
like the relationship between autonomic elements and their managing environment, and
finally some global optimized performance can be achieved, such as to find the shortest
path from the nest to the forage place. Usually, the agents are simple and small in size,
just like the insects which have only few hundreds or thousands of neurons. So, the
software packets can also be small in size. Also, the SI inspired systems are robust and
the tasks can be fulfilled through the interaction among the multiple agents with faster
convergence. In the next section, a detailed comparison between the SI inspired
mechanism and autonomic computing will be presented.

Due to the inherent accordance between autonomic computing and swarm intelligence, it
is reasonable to combine them together and to apply them to some distributed and
ubiquitous environment, such as the Ubiquitous Sensor Network (USN). To the best of
our knowledge, little work has been done to combine the mechanism of SI with
autonomic computing and then to apply them to some ubiquitous applications.
Our contribution in this chapter lies in the following three aspects. First, we explore the
inherent accordance between autonomic computing and swarm intelligence mechanism.
Then, we propose a SI inspired autonomic routing scenario in a ubiquitous context aware

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

73

application environment. Finally, we present our preliminary simulation results and
analysis of some performance metrics, such as agent number, packet delivery ratio and
power consumption.

5.3.2 Comparison between Autonomic Computing and Swarm
Intelligence
Autonomic computing [1-3] system is a self-managed computing system with minimum
human consciousness or involvement, and with an ultimate goal to free administrators from the
burden of system operation and maintenance. It has at least four basic ingredients, which are self-
configuration, self-optimization, self-healing, and self-protection. Different aspects of
autonomic computing are explained in [4-6] with specific application emphasis.
Opportunities and possible research directions of autonomic computing in the system
engineering field are well explained in [7], and [8] gives a concise and comprehensive
introduction about autonomic computing.

The principles of Swarm Intelligence (SI) [9] were originally inspired by the observation
of various natural and social phenomena. Even though these social insects have only few
hundreds or thousands of neurons and they simply collaborate with their neighbours,
some high level intelligence is observed. Thus, the idea that subcomponents are very
simple while the overall system manages itself adaptively is very tempting and promising
from an engineering perspective. Ant colonies apply this principle, which has inspired a
new research direction called Ant Colony Optimization (ACO) [10].

The SI inspired system is a self-organizing system, which includes positive feedback,
negative feedback, amplification of fluctuations and multiple interactions among multi-
agents [9]. The relationship between autonomic computing and swarm intelligence is
tightly coupled according to Table 1. The middle column in Table 1 is a concise
interpretation which bridges both autonomic computing and swarm intelligence. For
example, through the tuning of system parameters, the self-configuration aspect can be
achieved autonomically rather than manually. In the mean time, the pheromone can get
evaporated, reinforced, thresholded according to [9], which represents the actual
parameters under dynamic system situation. From this, we can see that both of them are
tightly coupled. It is obvious that the system performance can get optimized through the
local interaction among the multiple ant agents. Also, the system robustness can be
guaranteed through this kind of parallel multi-agent interaction. Finally, the security and
load-balancing can be fulfilled with careful parameter and rule design. In the next section,
the readers can get a deeper understanding of their inherent accordance.

Table 1. Relationship between autonomic computing and swarm intelligence

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

74

Autonomic Computing Relationship Swarm Intelligence

Self-Configuration System parameters tuning etc. Pheromone based operator

Self-Optimization Optimized system performance etc. Global optimal performance through local interaction

Self-Healing Robustness, convergence rate etc. Multi-agent interaction, (parallelism)

Self-Protecting Security,

load-balancing etc.

Pheromone threshold,

sequence number etc.

5.3.3 A-CAMUS Architecture
Our work in this chapter is influenced by the earlier work relating to the Autonomic
Context-Aware Middleware for Ubiquitous Systems (A-CAMUS) architecture for
ubiquitous sensor networks [11-13]. This project been undertaken for more than 3 years
and a “Smart Office” test-bed has been built. We include a brief discussion about A-
CAMUS here as background and related work.

In Fig.1 lists our A-CAMUS architecture.

Fig. 1. An A-CAMUS Architecture

The ubiquitous sensor network lies in the bottom layer. Some sensing devices, such as
Berkeley-mote, RFID devices etc. are deployed in the real environment, which form a
ubiquitous sensor network. These devices can collect the original information and then
send this raw data to the upper knowledge processing layer for further processing with
the help of autonomic sensing agents, which is defined as software. During this process,
routing is an utmost important task since it should not only send the related data from the
source to the destination correctly, but that it should meet the constraints and provide
certain QoS requirement. In this chapter, we try to solve this routing problem by using
swarm intelligence mechanism.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

75

5.3.4 Swarm Intelligence inspired Autonomic Routing
Based on the inherent accordance between autonomic computing and swarm intelligence,
we now provide a SI inspired autonomic routing scenario (which is a sub-component of
A-CAMUS architecture).

5.3.4.1 Routing Scenario
Fig. 2 shows three modules of our agent based autonomic routing scenario which are
Autonomic Agent (AA) manager, Service Manager and Context Manager. We will add
more functionality into the modules and verify it based on our “Smart Office” test bed
later.

Fig. 2. Autonomic routing scenario

TABLE 2 DATA STRUCTURE OF AA MANAGER
Attributes Unique ID, Timestamp, Remaining

energy, Service type etc.

Context

Information

IP, Available service, Hop number,
Pheromone distribution, Humidity,
Temperature, Lighteness, latency, etc

Actions Generation, Migration, Service
discovery, Pheromone evaporation,
Pheromone aging, Pheromone
reinforcement, etc.

Autonomic Agent (AA) manager consists of three main parts, which are attributes,
context information and actions, as is shown in Table 2. Autonomic Agents (AAs) will
collaborate with each other and configure themselves so as to achieve an optimal
performance based on SI mechanism. While in the mean time, they will prevent the
system from being over-loaded and malfunctioned to fulfill the self-protecting function.
A Service Manager is in charge of different services, like routing, printing services etc.
Then, through the communication among AAs, different types of services can be
collected and exchanged in a localized and real-time manner. A Context Manager is like
a repository to store the context and provide the best service so as to fulfill the self-
optimization function.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

76

An SI inspired routing scenario based on these three modules is proposed in Fig. 3. From
which, we can conclude its basic steps as follows:

Fig. 3. Autonomic routing work flow

Step 1: Originally, each AA is piggybacked into the hello packet and periodically

broadcasted to collect some information, such as available services, remaining
energy, distance, next hop etc. The SI mechanism is used with pheromone
evaporation, reinforcement and aging.

Step 2: When there is some specific routing request originated from one node, it will
follow the autonomic routing work flow in Fig. 3, which consists of many closed
control loop, as is the same with the autonomic computing.

Step 3: Then, it will first check the Service Manager in Fig. 2 to see whether the service
is available, namely whether the destination node is in its routing table. If it is
available, it will check the context manager to get the best candidate and return it
to the original node finally.

Step 4: If the service is not available, it will contact the AA Manager rather than search in
the Context Manager. If AA is attacked or malfunctioned, it will autonomically
generate another one with the uniform data structure shown in Table 2. In this
way, a self-healing function is fulfilled here. If AA is available, the service
discovery process will be initiated so as to find the required service. Through the
localized interaction between AAs, the related services can be found, like to find
the shortest path between source node and destination node. During this process,
some actions are taken, such as pheromone generation, updating, and routing
updating etc. to fulfill the self-configuration function.

Step 5: Once specific route is found, the context information is sent back to the Service
Manager and Context Manager. And finally, the best service is decided and provided to
the users. Here, another closed control loop is formed.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

77

5.3.4.2 Routing Phase
The routing phrase can be divided into three phases, which are route setup, route
maintenance and route failure handling phase. Here, we will illustrate this procedure with
an example depicted in Fig. 4.

Fig. 4. 5 nodes network topology

Table 3 Pheromone table of node 1

 2 3 4 5

2 p2,2 p2,3 p2,4 p2,5

3 p3,2 p3,3 p3,4 p3,5

4 p4,2 p4,3 p4,4 p4,5

5 p5,2 p5,3 p5,4 p5,5

During the route setup phase, each node will select its next hop node to forward the
traffic packet according to its routing table and pheromone table. Taking node 1 as an
example, its pheromone table is shown as in Table 3. The row in pheromone table
represents its neighboring neighbors and column represents the destination node. The
entry means the probability to get to the destination node through the neighboring nodes.
Once node 1 has packet to send to node 5 and it has no pheromone information about
node 5, it will initiate route setup phase. If the intermediate node has no information
about destination node, it will continually broadcast until the broadcast packet reaches the
destination node. Finally, the route is setup on reverse direction. It is worth noting that,
the pheromone value is only updated during the backward route setup phase so as to
represent the latest update of dynamic network. The selection of the probability entry jip ,
can be found in [9].

During the route maintenance phase, the source-destination pair is maintained either
through periodical hello packets or data packets to save routing overhead. In the
meantime, the pheromone value is either reinforced or evaporated to represent the real
network situation. Since the selection of next hop is probability based, the work load on

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

78

one route can be shared by the other route to make load-balancing. In this way, the
functionalities of self-configuration, self-optimization and self-protecting are achieved.

Finally, once there is a link failure due to overload or out of power, the local repair can be
adopted so as to search for alternative route. If impossible, a new route setup phase will
be initiated.

5.3.4.3 Energy Consumption Model
Here, we use one of the energy consumption model from [16] as below. The energy
needed to transmit, receive and forward bn bits of packets are calculated in (1), (2) and
(3) respectively.

)(αdEEnE ampelecbT ×+= (1)

elecbR EnE ×= (2)
)2(αdEEnEEE ampelecbTRF ×+=+= (3)

Here, ,/50 bitnJEelec = =α 2 or 4. If the distance d is smaller than a distance threshold

Td , a free space fading (2d power loss) model is adopted and
.//10 2mbitpJE fsamp == ε Or else, a multipath fading (4d power loss) model is adopted

and .//0013.0 4mbitpJE mpamp == ε Here, we let:

.42 dd mpfs ⋅=⋅ εε (4)
So, we can get the distance threshold (Td) as 87.7 meters.

5.3.4.4 Study of Energy Consumption
Now, we will study the factors which influence the energy consumption from source
node to the destination node. Taking Fig. 1 as an example, there are N=30 nodes
randomly deployed in a [1000, 1000] m2 area. Let Ad AB = , BdBC = , Cd AC = and

CBA <≤ (also it could be CAB <≤ since A and B are replaceable here). We simply
put bn as one bit and we can easily calculate the bit number according to the traffic
model in real situation.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

79

Fig. 1. 30 nodes deployment

First, we will study the one hop instance, where the relationship between BA EE + and

CE is studied. Then, we can extend it to multi-hop circumstances. We average our
simulation results for 10 times and here, we simply provide one instance so as to make it
intuitively easy to understand, as is shown in Table 3.

Table 3. Comparison of one hop energy consumption (J)

Case 1: C<dT

A, B< dT

E(2,15)= 1.79*10-7

E(2,14)+E(14,15) =2.78*10-
7

Case 2: C>dT

A, B> dT

E(11,12)=9.42*10-6

E(11,21)+E(21,12)
=2.17*10-6

Case 3: C>dT

A, B< dT

E(7,5)= 2.64*10-7

E(7,1)+E(1,5) =2.82*10-7

Case 4: C>dT

 A< dT<B

E(3,27)=2.88*10-6

E(3,23)+E(23,27) =2.38*10-
6

Table 3 lists 4 cases about the energy consumption between BA EE + and CE according
to their special position of node A, B and C. In Case 1, the distance between node A and
C is smaller than the distance threshold dT. It is an ideal situation since we can simply
communicate from node A to node C without the help of any intermediate nodes. The
energy consumption is in the order of 10-7 and it is also less than the summation from
multi-hop nodes. In Case 2, the distance between Node 11 and Node 12 is C=291 meters,
and A=159 meters, B=172 meters. From equations (1)-(3), we obtain CE = 9.4*10-6,
which is about four times larger than BA EE + . It is worth noting that the energy
consumption is in the order of 10-6 to transmit only one bit data.

We can see that if A and B are both smaller than the distance threshold ,Td the
difference between BA EE + and CE is small. Usually, we can neglect it and take either
of the instances. If one of the intermediate distance is larger than Td , the difference
between BA EE + and CE is larger than the first case. The difference degree is about ten
times larger. And if all the distances are larger than Td , the difference is the largest
among all the cases. In Case 3, C is larger than Td while A and B are both smaller than

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

80

Td . We can see that CE is smaller than BA EE + and the difference between them is also
small. Finally, in Case 4, we observe that there are situations when A<dT<<B, it could be
better to transmit the data through multi-hop nodes rather than to transmit the data
through one-hop.

So, here, we can draw one conclusion that the difference between BA EE + and CE will
not be very large if A and B are not much larger than the distance threshold. However, if
one of the distance or both A and B are larger than the threshold, it is a wise choice to use
multi-hop transmission. Now, we can extend this conclusion to the multi-hop instance
and try to validate it.

Fig. 2. 50 nodes deployment

Next, we will increase the network connectivity and introduce 50 nodes deployment in a
similar way as Fig. 1, which is shown in Fig. 2. We will compare the energy consumption
in the context of multi-hop routing during one communication traffic.

From Table 4, we can draw a similar conclusion as in Table 3, which is that the energy
consumption will not be too large if the communication distance is not much larger than
the distance threshold. In other words, if we choose those nodes with communication
distance smaller or a little larger than the distance threshold, the energy consumption is
reasonably acceptable. So, we are willing to save much energy at the cost of a few more
hop numbers. Once again, it validates our selection criterion about the intermediate nodes
during the routing phase.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

81

Table 4. Comparison of multi-hop energy consumption (J)

Case 1:
C>dT

A, B..<dT

E(20,29)+E(29,22)= 2.47*10-7

E(20,31)+E(31,30)+E(30,29)+
E(29,22) =5.35*10-7

Case 2:
C>dT

A< ..<
dT<B

E(26,42)+E(42,46)= 4.14*10-6

E(26,24)+E(24,7)+E(7,30)+E
(30,29)+E(29,46)=1.14*10-6

Case 3:
C>dT

A, B..>dT

E(43, 36)+E(36, 16)= 1.60*10-
5

E(43,11)+E(11,15)+E(15,
36)+

E(36,41)+E(41, 16)=4.95*10-
6

5.3.5 Experimental Setup and Results

5.3.5.1 Experimental setup
Based on our previous experience [14], we set our simulation environment as follows.
There are N nodes randomly placed within a range of 100 by 100 m2, with a uniform
transmission range R of 30m. A Random Waypoint mobility model is adopted here and
their velocity vary from 0 to 20 m/s. Taking N=20 as an example, we will see the
deployment as in Fig.5.

Unlike the broadcasting mechanism, we set our neighbor selection criteria as follows:

 Rdt
ij

iji eetp /)()(−− ∗= τ , (Rdij <) (2)
)1,()()1(+Δ+=+ tttt ii ττ ,]1,0[∈τ (3)

⎪⎩

⎪
⎨
⎧

∗−
⋅

∗
=+Δ

agingt

orcedre
N

K
tt

i)()1(

inf
2

1
)1,(

τρ
 (4)

here,)(tiτ is the pheromone distribution of node i at time t, ijd is the distance of <i, j>
and R is the maximum transmission range. From (2), we can infer that the smaller ijd and

)(tiτ is, the higher)(tpij will be and we will choose higher)(tpij as the candidate node.
In other words, this algorithm will prefer those nodes which are either nearer to the
transmission node or being less visited with less pheromone so as to save energy. After
each hop, the pheromone will automatically be updated according to (3) and (4), where
the pheromone will either be reinforced according to the number of visiting agents K or
aged by a factor of ρ (normally between [0.9, 1]) and N is the neighbor number.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

82

Fig. 5. N (20 in this case) node random deployment

5.3.5.2 Study of Agent Number
We will first study how many autonomic agents is need for each node so as to fulfill the
routing task. If the agent number is too small, it will not find the related route or the
response time will be too large to accept. If the agent number is too large, the routing
overhead will be a burden and it is similar to the broadcasting mechanism, which we try
to avoid in this chapter.

Table.4 shows the average number of neighbors for each node. The total node number
varies from 20 to 100 and the average node neighbor increases almost linearly with it. So,
we tentatively set our agent number as K=min (N, 6) here and we will try to validate it
later.

TABLE 4 AVERAGE NEIGHBOR FOR DIFFERENT N
N 10 20 30 40 50

Neighb
or

2 4 6 8 10

N 60 70 80 90 100

Neighbor 12 14 17 20 22

5.3.5.3 Study of Packet Delivery Ratio
To verify the agent number, we randomly generate 300 routing connections between
node i and j. In Fig. 6, we make a comparison between one agent approach and our
approach in the aspect of packet delivery ratio. From this figure, we can see that there is
no reliability guarantee if the agent number is too small. For the connection of (1, 14) and
the node deployment in Fig. 5, if there is only one agent, the routing sequence will be {1,
5, 15, 6, 20, 18, 17, 13, abort}. If there are K agents like our approach, it will first take
nodes {5, 16} as its first hop node. Then, node 5 will detect node 14 as the destination
node and return this information to the source node 1. It only takes 2 hops. And another

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

83

routing sequence can also be found through {1, 16, 19, 18, 9, 8, 14}. So, the
successfulness of finding a reliable route can be ensured in our approach.

Fig. 6. Packet delivery ratio for different approaches

5.3.5.4 Study of Power Consumption
Finally, we will study the power consumption and make a comparison between the
broadcasting mechanism and our approach. According to our previous work in [15], we
assume the power consumption is proportional to the square of distance and the data
length is the same.

Fig.7 shows the power consumption for different approaches, from which we can see that
our approach is always better than the broadcasting mechanism. And the larger N is,
more energy will be saved. So, the self-optimization aspect can be once again achieved.

Fig. 7. Power consumption for different approaches

5.3.6 Conclusion and Future Work
We compare and draw some inherent accordance between autonomic computing and
swarm intelligence mechanism. Then, we introduce a Swarm Intelligence inspired
autonomic routing scenario under a context-aware ubiquitous environment. The
autonomic routing scenario and routing phase are explained in detail, and some
preliminary experimental results are provided with satisfactory performances. The energy

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

84

consumption about SI inspired routing algorithms is studied afterward based on one
famous energy model. From the experiments of both one hop and multi-hop instances, we
provide an intermediate node selection criterion which is quite energy-efficient.

For the present, an agent based “Smart Office” test bed has been built in our professor’s
office. With the aid of various sensors, actuators and protocols, we intend to perform
extensive experiments based on our SI inspired autonomic routing scenario, and
introduce more modules and functionalities in the near future.

5.3.7 References
 [1] R. Murch, “Autonomic Computing,” Upper Saddle River, NJ: Prentice Hall, Mar.
2004, ISBN: 013144025X.
[2]IBM, “Autonomic Computing Initiative,” IBM Press, 2003, http://www.autonomic-
computing.org.
[3] J. Kephart and D. Chess, “The Vision of Autonomic Computing,” IEEE Computer,
vol. 36, no. 1, January 2003.
[4] Belecheanu, R. A., Jawaheer, G., Hoskins, A., McCann, J. and Payne, T, “Semantic
Web Meets Autonomic Ubicomp,” In Proceedings of The 3rd International Semantic
Web Conference, Hiroshima, Japan, 2004.
[5] F. Schintke, T. Schütt, A. Reinefeld, “A Framework for Self-Optimizing Grids Using
P2P Components”, 14th Intl. Workshop on Database and Expert Systems Applications
(DEXA'03), September 2003, pp. 689 – 693.
[6]Apostolos Malatras, George Pavlou, et al, “Self-Configuring and Optimizing Mobile
Ad Hoc Networks,” Proceedings of the Second International Conference on Autonomic
Computing (ICAC’05), Seattle, Washington, June 2005, pp. 372-373.
[7] H. Schmeck, “Autonomic computing - vision and challenge for system design,” in
Proceedings of the International Conference on Parallel Computing in Electrical
Engineering (PARELEC’04), Dresden, Germany, September 2004.
[8] R. Sterritt, M. Parashar, H. Tianfield and R. Unland, "A Concise Introduction to
Autonomic Computing," Journal of Advanced Engineering Informatics, Special Issue on
Autonomic Computing and Automation, Elsevier Publishers, 2005, pp. 181-187.
[9] E. Bonabeau, M. Dorigo, G. Theraulaz, “Swarm Intelligence: From Natural to
Artificial Systems”, Oxford University Press, New York, 1999.
[10] Maniezzo V, Gambardella LM, De Luigi F, “Ant Colony Optimization, New
Optimization Techniques in Engineering,” by Onwubolu, GC, and BV Babu, Springer-
Verlag Berlin Heidelberg, 2004, pp. 101-117.
[11] Hung Q. Ngo, Hung Le-Xuan, SungYoung Lee. A Middleware Framework for
Context Acquisition in Ubiquitous Computing Systems. Second International Conference
on Computer Applications (ICCA 2004), Myanmar 8th January 2004.
[12]Hung Q. Ngo, Anjum Shehzad, Saad Liaquat, Maria Riaz and Sungyoung Lee.
Developing Context-Aware Ubiquitous Computing Systems with a Unified Middleware
Framework. Proceedings of Embedded and Ubiquitous Computing: International
Conference EUC 2004, LNCS Volume 3207, Springer Verlag 2004, pp. 672 – 681.
[13] http://uclab.khu.ac.kr

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

85

[14] Wang Jin, Shu Lei, Jinsung Cho, Young-Koo Lee, Sungyoung Lee, Yonil Zhong. "A
Load-balancing and Energy-aware Clustering Algorithm in Wireless Ad-hoc Networks".
The 1st International Workshop on RFID and Ubiquitous Sensor Networks, USN'2005.
[15] Xiaoling Wu, Shu Lei, Wang Jin, Jinsung Cho, Sungyoung Lee, "Energy-Efficient
Deployment of Mobile Sensor Networks by PSO." Advanced Web and Network
Technologies, and Applications (APWeb 2006), Harbin, China, January 16-18, 2006, pp.
373-382.
[16] Wendi B. Heinzelman, Anantha P. Chandrakasan, and Hari Balakrishnan: An
Application-Specific Protocol Architecture for Wireless Microsensor Networks. IEEE
Transactions on Wireless Communications, Vol. 1, No. 4, pp. 660-670, 2002.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

86

5.4 Conditional Query Aggregation Algorithm

5.4.1 Introduction
Sensor networks consist of a large number of nodes with sensing, computation and
communication capabilities and are able to process massive amounts of data. Recently,
one unified view is to treat them as distributed databases to provide data services [8], [9],
[13], [15], [16], [17], where sensors are programmed via declarative queries in a variant
of SQL or an event-based language. Queries are used for end users to request data from
these databases. However, since most of the sensor nodes are limited in power,
computational capacities and memory, how to devise query processing strategies that
reduce the energy consumption in dissemination and transmission becomes more and
more important for highly energy-constrained sensor networks.

Traditionally, end users submit queries to the base station where there is a query manager
processing the queries one by one (local cache strategies may be used) and disseminating
these queries to the proper regions of sensor networks via the underlying routing
infrastructure. However, for some applications, multiple end users may issue a large
number of simple queries simultaneously, which means that the query rate can be very
high. Thus the overhead of query dissemination can no longer be ignored as usual, and
the energy consumption spent on sending and routing queries and data of response may
increase. In addition, a large number of query messages disseminated in networks may
cause serious traffic congestion. In such cases, reducing queries to be disseminated can
significantly reduce the energy consumption of redundant query propagation and data
transmission in sensor networks. Thus the overall performance of sensor networks can be
improved.

In our previous work [6], we proposed an effective query aggregation algorithm SAQA to
reduce the overall energy overhead for the data services in the sensor networks. However,
in [6], we constructed the aggregated regions based on the input query regions and did
not consider the existing topology and distribution of sensors in the networks. Such as,
adjacent spatial information can be combined together in that they may share part of the
route for query dissemination and data transmission. In addition, how to decide the query
merge order is an important issue we should consider.

In this chapter, a two-tier buffer model is proposed to conduct the query aggregation. In
this model, a conditional query aggregation algorithm is provided to reduce the redundant
information in the queries and the number of queries for dissemination. We concentrate
on query aggregation. The sensor network performs in-network aggregation while routing
data from source sensor nodes through intermediate sensor nodes to the base station.
Specifically, the two major contributions of this chapter are: 1) a two-tier buffer model to
conduct the query aggregation, and 2) an effective conditional query aggregation
algorithm which consolidates queries based on spatial, attribute and deadline query
information and network topology information. The expected benefits include savings in
the overall energy consumption, both in query dissemination and in data transmission.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

87

The remainder of this chapter is organized as follows. In Section 2, we review the state-
of-art research on query processing in sensor networks. Section 3 introduces the query
model and our two-tier buffer model used in this chapter. In Section 4, our conditional
query aggregation algorithm is detailed. In Section 5, performance evaluation and
analysis results are given. Finally we conclude our study with scope for future work in
Section 6.

5.4.2 Related Work
In the context of query processing, a lot of existing work in the literature deals with data
aggregation, such as, AODV [3] adopted and enhanced in Cougar [9], Directed Diffusion
[4], ACQUIRE [7], TAG [8]. Not much attention has been paid to conduct query
aggregation. In some applications as mentioned above, query aggregation plays an
important role of reducing energy overhead.

In [10], the authors introduced a general framework for distributed processing of spatial-
temporal queries in a sensor network that has two main phases: (1) routing the query to
the spatial area specified in the query; (2) collecting and processing the information from
the nodes relevant to the query. They proposed the spatial-temporal query processing
algorithm based on the local storage. In [11], the authors gave the energy consumption
model used in the algorithm in [10] and also proposed three algorithms: WinFlood,
FullFlood and WinDepth. Samuel et al. discussed the design of an acquisitional query
processor (ACQP) for data collection in sensor network in [12]. They provided a query
processor-like interface to sensor networks and used acquisitional techniques to reduce
power consumption. In the query dissemination optimization, they built a semantic
routing tree (SRT). SRTs provide an efficient mechanism for disseminating queries and
collecting query results for queries over constant attributes. A specific probabilistic
model based on time-varying multivariate Gaussians was provided in [14]. The authors
assumed that the queries sent by users include error tolerances and target confidence
bounds that specify how much uncertainty the user is willing to tolerate. Moreover, their
work was focused on multiple snap-shot queries over the current state of the network,
rather than continuous queries. With these strict assumptions, their application scope was
narrowed down.

Although, our two-tier buffer model is different from those described above, there are a
number of common elements. Our model supports the high query rate applications
whereas many of the above authors did not consider the number of queries and conduct
any query aggregation to reduce redundancy in original queries before dissemination.

In [2], the authors proposed a multi-layered overlay-based framework consisting of a
query manager and access points (nodes), where the former provides the query
aggregation plan and the latter executes the plan. They present an effective query
aggregation algorithm, which is mainly based on reducing the duplicate/overlapping
spatial information of the original queries sent by the applications to minimize the
number of queries sent out and prevent data transmission in the same region happening
multiple times. This work is similar to our previous work in [6]. However, in [2], no
attention has been paid to the attribute and deadline information in the original queries. In

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

88

addition, they did not consider about the network topology when reducing the
duplicate/overlapping spatial information in the queries.

5.4.3 System Model

5.4.3.1 Network Model
A wireless sensor network (WSN) consists of base stations and a number of wireless
sensor nodes. Each sensor node is capable of collecting various data from the
environment. End users issue queries to the base stations, which disseminate these
queries to the network. Different mechanisms have been proposed to solve these queries
and route back the data of response. We have the following basic assumptions for sensor
networks:

 Sensor nodes remain stationary at their initial location, which means the topology is
fixed,

 sensor field is divided into different regions after the sensor nodes are deployed, and

the end users have the information about this division,

 there is a centralized query manager at the base station and it executes the query
aggregation plan with a global view of the network topology,

 each sensor is able to track one or multiple values of certain variables such as

temperature, pressure, humidity, etc.

5.4.3.2 Query Model
End users request information from a sensor network through queries. According to the
features of applications, various queries can be injected into the sensor network [8], [15],
[16]. In this chapter, we define the following tuple as our query model:

where, S= {s1, s2 … sM} denotes the spatial information that
indicates the geographical regions of the network. Since the end users can be interested in
more than one region, the definition of S is extended to be a set of M regions. A denotes
the attribute information the end users are interested in, such as, temperature, light,
voltage, pressure, humidity, etc. As mentioned in the assumptions above, the definition of
A is also extended to be a set {a1, a2 … aK} of K attributes. T (optional) denotes the
temporal information, indicating the duration of the query in time units, such as, seconds.
The duration can be notated either as a single constant or as the elapsed time between two
specific times, i.e. T = c or T = (t1, t2) where the time t2 is later than the time t1. F
(optional) denotes the frequency information, indicating the frequency at which the data
should be reported. D (optional) denotes the deadline information, indicating the urgency
at which the data should be reported. Intuitive details are provided by the following
example.

A typical query could be: “find the temperature level and humidity level in region s1, s2
from 8am to 4pm every ten minutes and report the data back before 6pm”, where S is {s1,

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

89

s2}, A is {temperature level, humidity level}, T is (8am, 4pm), F is 600 seconds and D is
6pm. If there is no deadline information, we define D to be infinite.

To conduct query aggregation, we have the following assumptions about the query model:

 the query manager at the base station translates the queries to the above format. In
the process of translation, the query manager provides the syntax check and
verification of applications, such as the query manager ensures the t2 < D constraint;

 most of the queries have spatial information. A query without spatial information can
be processed through the traditional query processing techniques such as flooding or
direct diffusion [4], etc.;

 F in the majority of queries is constant. In other words, irregular occurring
frequencies are not discussed in this chapter.

Our application scenario, in particular, focuses on the application where multiple end
users may issue a large number of simple queries simultaneously. Such application
scenario is very useful for some urgency processing attracting lots of end users’ attention.
Although the query model proposed above apply to the general applications, for ease of
presentation in this chapter, the aggregation is done mainly based on the spatial
information, attribute information and deadline information, so that we restrict our query
model to a simpler one: .

5.4.3.3 Two-tier Buffer Model
In our two-tier buffer model, we allow multiple end users to submit a large number of
queries. As new queries are generated, they are not sent immediately to the network for
evaluation, but are gathered by the query manager at base station. After receiving the queries
from end users, the query manager at base station first translates the queries to the query
model above. Then it looks up the data in the local database. If the related data is already
available in the local cache, the queries are solved locally to avoid redundant query
dissemination. Otherwise, the query manager begins to conduct the query aggregation. The
purpose is to reduce the number of query messages for dissemination and also the
transmission overhead of aggregated queries and responded data.

In terms of the query manager, many unprocessed queries are still physically existing at base
station and waiting for the processing of query manager. Therefore, there should be a
physical buffer in the query manager at base station to store the unprocessed queries. We
regard this buffer as the First Tier Buffer (FTB). The Second Tier Buffer (STB) is the
buffer that logically exists inside query manager which enables the query aggregation. In this
case, we propose the Two-Tier Buffer model for our query aggregation work as Figure 1
shows.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

90

Fig.1 Two-tier Buffer Model

In FTB, queries are stored and deadline information is used to check whether the query
has enough time for aggregation, in case that some queries may have urgent deadlines. If
time is adequate for aggregation, the query is stored in FTB for later aggregation.
Otherwise, no aggregation will be done for the query and it will be disseminated to the
in-network immediately to meet the deadline requirement.

Queries are processed once every epoch (Ep) [18]. Each epoch consist of a query
aggregation (QA) and a query process (QP) phase. In the QA phase, Query manager
periodically collects all the queries stored in FTB and starts the aggregation in STB by
our conditional query aggregation algorithm. More details about our conditional
aggregation algorithm are presented in Section 4.2. In the QP phase, query manager
disseminates the aggregated queries to the network and data of response are forwarded
back to the query manager. The duration of a QP phase is a tunable application-specific
parameter.

In fact, the buffer size is limited and cannot store all the queries sent by end users,
especially when the query rate is very high. Storage strategies are needed. In this chapter,
we adopt the FIFO approach, where the newly generated query is simply discarded if the
buffer is full at that time or the end users could send the query again later.

5.4.4 Conditional Query Aggregation (CQA)

5.4.4.1 Problem Definition
According to our query model mentioned above, we assume there are N queries: Q1,
Q2 … QN. The main objective of query aggregation is to reduce the number of query
messages for dissemination and thus reduce the overhead energy consumption in both
query dissemination and data transmission. To conduct the query aggregation operation,
we define our conditional aggregation function
as: , where Di is the deadline

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

91

information in Qi (1≤Qi≤N). V denotes the aggregation operator. The energy consumption
for f with output queries (is defined by

 (1)

where represents the energy consumption for query dissemination from the query
manager at base station to the proper sensors, represents the energy consumption
for data transmission from source sensors through intermediate nodes back to the query
manager at base station. Our objective is to find an optimal mapping so that the value of
Ef is minimal. No query aggregation is just a special case of the conditional aggregation
function, i.e., N = R and , for all 1 ≤ i ≤ N. In the next section, we provide the
algorithm in detail.

5.4.4.2 Proposed Algorithm
Our conditional query aggregation algorithm is defined into the following steps:

Step 1: Initialization. Multiple end users send a large number of simple queries
simultaneously to the query manager at base station. FIFO approach is adopted, where
the newly generated query is simply discarded if the buffer is full at that time.

Step 2: In FTB, the query manager uses deadline information to check whether the
query can be aggregated or not. A query that can be stored in FTB should satisfy the
following criteria:

D > Ep (2)

If the above inequality is satisfied, the query will be stored in FTB and then when a new
epoch arrives, it is sent to STB for further aggregation. Otherwise, the query is treated as
an urgent query and disseminated into the sensor network immediately.

Step 3: In STB, spatial and attribute information are used to aggregate queries.
Query manager periodically picks up all the queries in FTB, consolidates the queries by
our conditional aggregation algorithm and restores the recombined queries in terms of the
spatial information in STB. After all the aggregation is done, query manager dispatches
the aggregated queries via some location-based routing scheme.

The exhaustive approach to find the optimal mapping in our conditional aggregation
function, in other words the optimal merge order, is obviously impractical for real
applications especially when the number of query messages increases. To solve this
problem, we consider the network topology when consolidating the spatial information.
The basic idea is: As the query manager has a global view of all the query information
and the network topology, it can calculate all the overlapping regions in all the queries in
FTB, find an optimal merge order based on the most adjacent regions information.
Queries containing most adjacent spatial information are merged together with higher
priority. The reason is that routing to adjacent regions is probably sharing part of the
dissemination paths. Thus, less intermediate nodes are involved in both the query
dissemination and data transmission and energy consumption is consequently reduced.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

92

For ease of presentation, we consider the following examples:

Suppose we have two queries and

coming simultaneously from end users and the queried
information is not available in base station local database, and both queries have enough
time for aggregation (D1 > Ep and D2 > Ep). In this case, query manager only needs to
store Q1, since the spatial and attribute information in Q2 are completely included in Q1..

Given another example, two queries and and we
suppose D1 > D3. They ask for partially different attributes in overlapped regions,
recombining them into three simple queries as

and
will be much more beneficial. It reduces the energy overhead

of sending separate duplicate query messages to the same region and more importantly
avoids disturbing other intermediate nodes (and nodes in the overlapping region) while
routing the queries. Different attributes can be collected at the same time in the same
region to satisfy the original queries. Compared to the original case, the number of
intermediate nodes (and nodes in the overlapping region) involved in the routing process
is reduced. In addition, duplicated data transmission is also prevented.

The basic idea has some similarities to our previous work in [6]. However, in [6], we
constructed the aggregation without considering the existing topology and distribution of
sensors in the network. In this chapter, we take the network topology into account when
selecting queries for aggregation according to the spatial information. For instance, we
assume three queries Q4, Q5 and Q6 query three different regions s4, s5 and s6.
Geographically, s4 and s5 are adjacent areas where s6 is far away from both. Such
adjacent spatial information can be used to conduct aggregation so that Q4 and Q5 may be
recombined. Adjacent areas are most probably sharing part of the route for query
dissemination and data transmission. In this case, sending Q4 and Q5 within one packet
may reduce the energy overhead when routed the common path.

Before the detailed algorithm, we provide some definitions and the rule of adjacent
region selection used for finding optimal merge order.

Definition I: If A is a set, let |A| represent the number of elements in A.

Definition II: Suppose we have two regions si and sj. The nodes sets on the routes from
base station to si and sj are defined as and . If si and sj are adjacent, they probably
share some intermediate sensor nodes. Thus the intersection of their routing node sets
should be at least not NULL. Therefore, we define the weight of adjacent regions to be:

 (3)

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

93

Adjacent Region Selection Rule: our intention is to disturb intermediated nodes as few as
possible to avoid duplicate query propagation when the queries are targeting at adjacent
regions. For all the regions in the sensor networks, we calculate the weights for each pair
and choose the maximum value for that pair.

 (4)

Iteratively using the above formula, we get all the adjacent regions and store this
information in the query manager. When the query manager aggregates the queries
according to the spatial information, it can refer to the adjacent regions information to
choose the adjacent queries to be merged.

In our network model, we assume the network topology is fixed. However, routing is
independent of network topology. In other words, a routing algorithm can dynamically
choose routing paths, making and changed. To solve this problem, the query
manager can periodically calculate for all the regions.

Through the Adjacent Region Selection Rule, we can get the set W with C adjacent
regions. C is the number of adjacent regions in W.

Query manager periodically picks up all the queries in FTB, consolidates the queries by
our conditional aggregation algorithm. For the query aggregation operation, we mainly
use two important concepts, union and intersection, in set theory.

For two queries Qi, Qj ∈ Q, we say these two queries are overlapped, if

 (5)

Referring to the adjacent regions set W obtained through the Adjacent Region Selection
Rule, the query manager aggregates the overlapped queries:
CASE I: If (the same with) as in Figure 2, after the aggregation, we
will get:

 . (6)

Fig.2 Two overlapped regions Si and Sj, where

Since Si is included in Sj, we can separate the area to two parts, one is the intersection part
, and the other is the rest part of after separation, . As for the attribute

information, in the case of , we unify the two parts from Qi and Qj to get one set .

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

94

That is, what we have introduced, the union operation. And for the rest part of , , the
attribute in the new aggregated queries will be the same as in the original query .

Thus the output queries will be:

 (7)

Nodes in the intersection area will be disturbed only once, but still gather the necessary
information.

CASE II: If and as in Figure 3, after the aggregation, we will get:

 (8)

Fig.3 Two overlapped regions Si and Sj, where and

As for the spatial information, Qi and Qj are partially overlapped with one intersection Si,j.
That’s why we aggregate the two queries into three parts, one is the intersection, and the
other two are the rest parts of Qi and Qj respectively. As for the attribute information, the
same as in CASE I for Si,j. For the rest two parts Sri and Srj, the attribute in the new
aggregated queries will be the same as in the original queries. Finally, the output queries
will be:

 (9)

5.4.5 Performance Evaluation

5.4.5.1 Experimental Model
We assume that each sensor work in free space mode with some experimental data
introduced in [5]: the energy consumption of sending message is calculated by Etx (a, b)
= Eelect * a + Efs * a * b2 and the energy consumption of receiving a message is
calculated by Erx (a, b) =Eelect * a, where a is the message size and b is the message
transmission distance between the sender and receiver, Eelect= 50 nJ/bit, and Efs = 100
pJ/bit*m2 (1 nJ = 1000 pJ and 1 MnJ = 1000 nJ). Since the energy consumed for
processing queries and sensing data consists of only a very small portion of the overall
energy consumption (node that energy consumed to process 100 million instructions
almost equals that to transfer 10 bits of data), we do not take it into account in our
calculation.

We define the Adjacent Region Degree (ARD) as the ratio of C/M, where C is the number
of adjacent areas decided by the Adjacent Region Selection Rule and M is the number of

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

95

areas predefined by the network topology. The range of ARD is [0, 0.5], where 0
represents the case that routing to every region uses different paths, no intersection exists
in these routes and 0.5 represents the case that any two of the regions can be aggregated.

In our two-tier buffer model, we provide the conditional query aggregation algorithm to
reduce the redundant information in the queries and the number of queries for
dissemination. That is to say we mainly concentrate on query aggregation and the sensor
network itself performs in-network aggregation while routing data from source sensor
nodes through intermediate sensor nodes to the base station. In our related work,
AODV[3], DD[4], ACQUIRE[7], TAG[8] and [10, 12, 14] are mainly focus on the in-
network query processing, not much related to the query aggregation at base station. Thus
we choose the following three query processing approaches to compare with our
conditional query aggregation (CQA) algorithm:

1) Spatial based Query Aggregation (SQA)
In [2], the authors proposed a multi-layered overlay-based framework consisting of a
query manager and access points (nodes), where the former provides the query
aggregation plan and the latter executes the plan. They present an effective query
aggregation algorithm, which is mainly based on reducing the duplicate/overlapping
spatial information of the original queries sent by the applications to minimize the
number of queries sent out and prevent data transmission in the same region happening
multiple times. This algorithm is our first comparison.

2) Spatial and Attribute based Query Aggregation (SAQA)
In [6], a spatial and attribute based query aggregation algorithm SAQA is proposed. In
SAQA, not only spatial information, but also attribute information is used to conduct
query aggregation. However, the algorithm has three main limitations: a) the algorithm
has one assumption that all the queries have enough time for aggregation. In some real-
time applications, such assumption may not be satisfied; b) during the aggregation, each
time only two queries are chosen for aggregation and no storage strategy is considered; c)
the algorithm does not consider the network topology.
3) Conditional Query Aggregation without considering network topology (CQA-1)
To illustrate the function of two-tier buffer, we propose this approach similar to our
CQA:

 In FTB: the same as in our conditional query aggregation algorithm. A physical
buffer existing in query manager at the base station is used to store queries
submitted by the end users. This approach also adopts the FIFO storage strategy.
When there is no space in FTB, the query will be simply discarded or the end user
could send it again later. In addition, the query manager also uses deadline
information and criteria (2) to check whether the query has enough time for
aggregation.

 In STB: similar to [6], query manager aggregates the queries from FTB based on
the spatial and attribute information. However, no consideration about the network
topology and distribution of sensor nodes in the network.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

96

5.4.5.2 Performance Results
5.4.5.2.1 Comparison with SQA, SAQA and CQA-1

1) Energy Consumption on Number of Query Messages
Figure 4 shows the comparison of energy consumption in terms of the number of query
messages. In this figure, X axis represents the total number of input queries from the end
users and Y axis represents the total energy consumption. From this figure, we have the
following observations:

 CQA and CQA-1 outperform both SQA and SAQA. For example, with a large
number of queries, i.e., from 100 to 200, the energy consumption of SQA and
SAQA can be 2~6 times more than that of CQA and CQA-1. The result matches
our expectation in that with the two-tier buffer, CQA and CQA-1 can do
aggregation on more queries stored in the buffer. The energy cost for both query
transmission and data delivery has been significantly reduced.

 The performance of CQA-1 is similar to that of CQA in that both CQA-1 and CQA
adopt the two-tier buffer model to allow more queries to be aggregated. Thus the
energy consumption can be saved significantly. However, we can still find that
CQA costs less energy than CQA-1, although the difference is not so much as that
between CQA and SAQA. The reason is that CQA-1 does not consider the network
topology when aggregating the spatial information, even though it also conducts
aggregation based on spatial and attribute information and uses two-tier buffer to
store the queries.

 SAQA performs better than SQA. The reason is that SAQA not only reduces the
redundancy in spatial information but also in that of attribute information.

 The overall energy consumption is sensitive to the number of queries. The larger
the number of query messages is, the more energy consumption. However, in CQA,
this problem is alleviated because, when the number of queries increases, there will
be more chances of overlaps between query regions and more chances of adjacent
spatial information, which can be effectively utilized by our conditional query
aggregation approach.

0 20 40 60 80 100 120 140 160 180 200 220
0

500

1000

1500

2000

2500

3000

3500

4000

E
ne

rg
y

C
on

su
m

pt
io

n(
M

nJ
)

Number of Query Messages

 SQA
 SAQA
 CQA-1
 CQA

100 120 140 160 180 200
0

30

60

90

120

150

180

210

240

270

300

En
er

gy
 C

on
su

m
pt

io
n(

M
nJ

)

Region Size

 SQA
 SAQA
 CQA-1
 CQA

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

97

Fig.4 Energy Consumption on Number of Query Messages Fig. 5 Energy
Consumption on Query Region Size

Although our initial motivation of this chapter is to reduce the overlapping information in
the original queries and the number of query messages for dissemination when the query
ratio is very high, our CQA shows competitive performance even in the case that query
ratio is medium or low. In a word, our conditional query aggregation algorithm can
efficiently process the queries and significantly reduce the energy consumption regardless
of query ratio.

2) Energy Consumption on Query Region Size:

Figure 5 shows the comparison of energy consumption in terms of different query region
sizes. In this figure, the X axis represents the different query region sizes and Y axis
represents the total energy consumption. As the query size is enlarged, the overall energy
consumption also increases. This is because a larger region size means that more sensor
nodes are involved, or more query/data transmissions are performed. Regardless of the
query size, our CQA performs better than the other 3 schemes with the same reasons
given above.
5.4.5.2.2 Self-comparison with FTB size and ARD

1) Energy Consumption and Query Delivery Ratio on First Tier Buffer Size
Figure 6 shows the energy consumption and query delivery ratio on different first tier
buffer size. Query Delivery Ratio is obtained by comparing total number of queries
received by the query manager with total queries disseminated after aggregation.

With the increasing of first tier buffer size, the query delivery ratio is also increasing.
This is explainable because with a larger buffer more queries can be stored and later
aggregated by the query manager. If the buffer size is small and the number of query
messages is large, the query manager will have to discard some of the queries in that the
buffer is full.

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

1000

0

10

20

30

40

50

60

70

80

90

100

Q
ue

ry
 D

el
iv

er
y

R
at

io
(%

)

En
er

y
C

on
su

m
pt

io
n(

M
nJ

)

First Tie Buffer Size

 Query Delivery Ratio
 Energy Consumption

 Fig. 6 Energy Consumption and
Query Delivery Ratio on First Tier

0.0 0.1 0.2 0.3 0.4 0.5
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

 10 Regions

 20 Regions

 30 Regions

 40 Regions

En
er

gy
 C

on
su

m
pt

io
n(

M
nJ

)

Adjacent Region Degree

 50 Regions

 Fig. 7 Energy Consumption on
Adjacent Region

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

98

Buffer Size

In Figure 6, we can also find the variation of energy consumption according to the first
tier buffer size. Basically, we have two observations: a) when the first tier buffer size is
small, query delivery ratio is small. The smaller the query delivery ratio is, the more
queries are discarded. In this case, only a small part of queries will be processed. Thus
the energy consumption is small. b) However, when the buffer size increases, more
queries can be processed, which means more queries disseminated after aggregation and
more energy consumption for query dissemination and data transmission. Even though
the energy consumption is increasing, the increasing ratio is not as fast as it is when the
query delivery ratio is low. Because more queries stored in buffer also mean more
reduction in spatial and attribute aggregation, which on the other hand decreases the
energy consumption. A tradeoff between the first tier buffer size and energy consumption
can be achieved with further research.

2) Energy Consumption on Adjacent Region Degree (ARD)

Figure 7 shows the energy consumption on different adjacent region degrees. In this
figure, the X axis represents the different adjacent region degrees and Y axis represents
the total energy consumption.

It is obvious in Figure 9 that the energy consumption decreases when the ARD increases.
According to the definition of ARD, larger ARD implies that routing to adjacent regions
shares more intermediate nodes. In that case, queries targeted at these adjacent regions
can be combined together for dissemination. Less intermediate nodes will be disturbed
for query dissemination and data transmission. Thus the energy can be saved. In addition,
we have the observation that our CQA performs well especially with a large scale sensor
network.

5.4.6 Conclusion and Future Work
In this chapter, we have proposed a two-tier buffer model to conduct query aggregation
using an effective conditional query aggregation algorithm based on the spatial, attribute,
deadline information in the original queries and also the information of network topology.
The objective is to reduce overall energy consumption for query dissemination and data
transmission in the sensor network. We have conducted extensive performance
evaluations on different models. Our evaluation results show that by applying our two-
tier buffer model and conditional query aggregation algorithm, we can significantly
reduce the amount of query traffic and energy consumption for query processing
regardless of query ratio.

There are still some directions to extend our study. First, we use two-tier buffer model to
conduct query aggregation to save energy consumption at the price of storage. This
proposes a tradeoff between the buffer size and reduction of energy. Second, if the
number of queries in FTB is small, then STB may not be efficiently used. How to make
full use of the second tier buffer to processing query aggregation needs further
consideration. Finally, in our model, we only deal with fixed network, which means the

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

99

topology is stable. However, in most cases, the network topology can be changed. How to
decide adjacent region in this changing network and how to make our conditional query
aggregation algorithm adaptive are other issue for the future work.

5.4.7 References
[1] J. Beaver, M. A. Sharaf, A. Labrinidis, P. K. Chrysanthis, “Power-aware in-network
query processing for sensor data”, Proc. of Hellenic Data Management Symposium, 2003,
1 – 17.
[2] W. Yu, T. Le, Dong Xuan and W. Zhao, “Query Aggregation for Providing Efficient
Data Services in Sensor Networks”, Proc. of IEEE Mobile Sensor and Ad-hoc Sensor
Systems (MASS), October 2004, 31-40.
[3] Ian D. Chakeres and Elizabeth M. Belding-Royer, “AODV Routing Protocol
Implementation Design”, Proc. of the International Workshop on Wireless Ad Hoc
Networking (WWAN), Tokyo, Japan, March 2004, 698-703.
[4] C. Intanagonwisat, R. Govindan, D. Estrin, “Directed Diffusion: A scalable and
robust communication paradigm for sensor networks”, Proc. of the 6th Annual
International Conference on Mobile Computing and Networking (MobileCom’00),
Boston, Massachusetts, August 06-11, 2000, 56-67.
[5] H. O. Tan, and I. Korpeoglu, “Power efficient data gathering and aggregation in
wireless senor networks”, Proc. of ACM Special Interest Group on Management of Data
(SIGMOD), San Diego, California, June, 2003, 66-71.
[6] J. Yang, B. Yan, S. Y. Lee, J. S. Cho, “SAQA: Spatial and Attribute based Query
Aggregation in wireless sensor networks”, The 2006 IFIP International Conference on
Embedded & Ubiquitous computing (EUC’2006), Seoul, Korea, 1-4 August 2006, LNCS
4096, 15-24.
[7] N.Sadagopan, B.Krishamachari, A.Helmy, “Active query forwarding in sensor
networks”, Journal of Ad-hoc Networks, 3(1): 91-113, 2005
[8] Samuel Madden, Michael J. Franklin, Joseph M.Hellerstein, Wei Hong, “TAG: a Tiny
AGgregation service for Ad-Hoc sensor networks”, Proc. of the 5th symposium on
Operating systems design and implementation, Boston, Massachusetts, December 09-11,
2002
[9] Y. Yao and J. Gehrke, “Query processing for sensor networks”, Proc. of Conference
in Innovative Data Systems Research, 2003
[10] Alexandru C, Mario AN, Jörg S, “A framework for spatio-temporal query
processing over wireless sensor networks”, Proc. of the 1st Int’l Workshop on Data
Management for Sensor Networks in Conjunction with VLDB 2004. New York: ACM
Press, 2004, 104−110.
[11] Alexandru C, Jörg S, Mario AN, “An analysis of spatio-temporal query processing
in sensor networks”, Proc. of the 1st IEEE Int’l Workshop on Networking Meets
Databases in Cooperation with 21st IEEE Conf. on Data Engineering (ICDE 2005).
Washington: IEEE Computer Society, 2005, 120−125.
[12] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, Wei Hong, “The design
of an acquisitional query processor for sensor networks”, Proc. of the 2003 ACM
SIGMOD international conference on Management of data, San Diego, California, June
09-12, 2003, 491-502

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

100

[13] P. Bonnet, J. E. Gehrke, P. Seshadri, “Querying the physical world”, IEEE Personal
Communications, Vol. 7, No. 5, October 2000, 10-15.
[14] Deshpande A, Guestrin C, Madden S, et al., “Model-Driven Data Acquisition in
Sensor Networks”, Proc. of the 2004 International Conference on Very Large Data Bases,
Toronto, Canada, May, 2004, 588-599
[15] Hellerstein, J., Hong, W., Madden, S., Stanek, K, “Beyond average: Towards
sophisticated sensing with queries”, 2nd International Workshop on Information
Processing in Sensor Networks (IPSN’03), March 2003, 63-79
[16] Madden, S., Szewczyk, R., Franklin, M., Culler, D, “Supporting aggregate queries
over ad-hoc sensor networks”, Proc. of the Workshop on Mobile Computing and Systems
Applications, Los Alamitos: IEEE Computer Press, 2002, 49-58
[17] C. Jaikaeo, C. Srisathapornphat, C. Shen, “Querying and tasking in sensor networks”,
Proc. of the SPIE, Florida: SPIE, 2000, Vol.4037. 184-194
[18] Niki Trigoni, Yong Yao, Alan J. Demers, Johannes Gehrke, Rajmohan Rajaraman,
“Multi-query optimization for sensor networks”, DCOSS 2005, 307-321

5.5 Fast Converging Pulse Coupled Oscillator Synchronicity Model
in Sensor Networks

5.5.1 Introduction
Time synchronization is a critical piece of infrastructure in distributed system, and
wireless sensor networks make particularly extensive use of synchronized time.
Applications such as target tracking, MAC layer access schedule, time varying data
collection, need either local or global synchronized time scale as a precondition.

Pulse Coupling Oscillator (PCO), as a model inspired from nature biological phenomena
[1], has good scalability, strong robustness, self-organization and other salient features
above the traditional synchronization protocols. It is suitable for large-scale sensor
network outdoor observation applications. And the PCO provides a synchronicity
primitive that achieves a tight alignment of individual nodes firing phases. It can be used
in communication scheduling, coordinated duty cycling and time synchronization. [2]

All synchronization schemes, whether it is local or global, proactive or post-facto reactive
[3], need some setup time and energy to get ‘chaos’ clock times synchronized. The length
of the synchronizing time is called the immediacy of the time synchronization protocol.
In some applications, like emergency detection (e.g., gas leak detection, intruder
detection) [4], the immediacy requirement is very high. But usually there is a tradeoff
between the immediacy and the energy efficiency. While our FPCO model proposed in
this chapter can fast the synchronizing speed, meantime improve the energy efficiency by
reducing almost half converging cycles and jump actions. The added overhead is
negligible also.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

101

The remainder of the chapter is organized as follow: section II introduces the related
existing time synchronization protocols; section III introduces the classic mathematical
model of PCO together with the node converging direction determinant formula. In
section IV, given the inefficient action during the nodes converging process, we provide
the improved fast converging PCO model. The proof of FPCO model is stated in section
V. Section VI describes the simulation results and associated analysis. Section VII
discusses the conclusion and future work.

5.5.2 Related Work
As the development of micro-electromechanical system (MEMS), producing large
amount of low cost, small size sensor becomes possible. Wireless sensor networks
attracted more and more research interest; consequently there appear many time
synchronization protocols. According to the scalability, computing complexity and
energy consumption characteristics, we classify current time synchronization protocols
into three categories:

1) Centralized or partly centralized
All nodes’ clocks are synchronized to some root node. These protocols mostly depend on
specific network topology, like tree structure (TPSN [5] TDP [6], LTS [7]), hierarchical
layer (FTSP [8]) or local star topology (RBS [3]).

TPSN (Time synchronization protocol in sensor network) uses pair-wise MAC layer
timestamp messages propagate the root’s clock along the spanning tree edge level by
level. FTSP (flooding time synchronization protocol), differs with TPSN, nodes transmit
and relay time information using flooding method, forming a dynamic hierarchical
structure automatically. In receiver end it estimates four kind delays in transmission path
and gets good time precision. RBS (reference broadcast synchronization), bases on the
idea of receiver-receiver synchronization, removes the non-determinism caused by
sending end completely. Although it is receivers’ mutual synchronization, it also needs
one central node broadcasting the pulse.

Centralized synchronization protocol has obvious shortcoming in large scale sensor
networks. As the increase of intermediate node number, the precision will decrease.
Meanwhile for the critical role of root node, centralized structure is easy to be attacked
and destroyed. So although centralized protocol is simple and the precision is reasonable,
its scalability and robustness is not very well.

2) Distributed synchronization protocols
These kinds of protocols are mostly used in sparse Ad Hoc networks. They don’t
synchronize the local clocks to some specific one node. Instead they generate time stamps
according local clocks. Concretely time stamps are first transformed from local time to
UTC (“Coordinated Universal Time”, which is used as a common time transfer format)
and then to local time of the receiver [9]. These transformations cannot be done exactly
due to the unpredictability of the computer clocks, but will result in estimate lower and
upper bounds. The TS/MS [10] protocol uses simple data collection algorithm to estimate
the two neighbor clocks’ relative drift and offset intervals then to get synchronized.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

102

However, when it is used in the entire network, it also uses the hierarchical structure.
RITS [11] (routing integrated time synchronization protocol) integrates post-facto time
sync into a routing service. It performs inter-node time translation along the routing path.

Above the three distributed protocols’ space and density scalability is much better than
centralized protocols, however the time stamp conversion computing complexity is
relatively high.

3) Synchronicity inspired from nature system:
In nature world, there is much large scale biological synchronicity phenomena, like
populations of synchronously flashing fireflies, crickets that chirp in unison, electrical
synchronous pacemaker cells.[] The earliest mathematic model on synchronization of
pulse-coupled biological oscillators is Mirollo and Strogatz’s work [12]. They proved that
a very simple reactive node behavior would always converge to produce global
synchronicity, irrespective of the number of nodes and starting times. After that many
researchers give improvements by considering the non-ideal factors such as non-uniform
coupled strength [13], local interaction [14], and transmission delay consideration [15-16].
On applications, besides the direct usage for time synchronization, PCO also can be used
in data clustering [17] and data fusion field [18].

Biologically inspired time synchronization protocol can be either centralized or
distributed. But here the PCO model is totally distributed. It maintains no internal state
regarding neighbors or networks topology and just executes very simple computations
and interactions. Second, self-organization: all the motions are inspired mutually by
nodes themselves without any external command or request. Every node adjusts its own
oscillate rhythms searching for a uniform pace. Third, robustness: it adapts to topology
changes such as the loss and addition of nodes and links. Fifth, scalability: the more
oscillators take part in the coupling procedure, the faster they will converge. The
phenomena of thousands of fireflies’ synchronous action also can prove PCO model’s
scalability is very good. Last one: low cost of resynchronization: as we know, the
synchronized clocks will drift away as time goes by, we have to estimate the drift rate
and compensate it [RBS] continuously or resynchronize them periodically [1, 4].
However, in PCO model, once some oscillators drift away a little, the whole group will
adjust themselves to get resynchronization automatically by the pulse coupled between
each other.

5.5.3 Mathematic model of PCO

5.5.3.1 Pulse coupled oscillator model
Today’s computing devices are equipped with a hardware oscillator assisted clock. The
PCO regards every distributed clock as an oscillator with the same fixed frequency but
different initiate phase. “Pulse coupled” means using a fired pulse as signal to transmit
oscillating information. The object is to let these oscillators act with the same phase, the
same frequency, so-called synchronized. We use function ()f φ represent oscillator
state,φ represents the oscillator phase. Phaseφ and state ()fϕ φ= both are defined on [0,

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

103

1]. The function cycle period is T. Here we require f is monotonically increasing and

concave down (that is:
' 0f > and

'' 0f < ; (0) 0f = , (1) 1f =). When there is only one
oscillator, state will follow the function curve from 0 to 1 at a regular rate: / 1 /d dt Tφ = .
When it arrives to 1, it fires and emits a pulse, then resets phase to 0 and runs again.
However, if during the walking path, at time t , it receives a pulse from the other oscillator,
the state will jump an amount ε (Fig 5.1). The corresponding phase
becomes 1((()),1)tMIN f f φ ε− + . And if the state jumps beyond 1, we set it as 1, and
thinking it gets synchronized with the firing one. In such a way, oscillators interact with
each other and adjust their phases to an agreed one.

Figure 5.1 Oscillator jump action

5.5.3.2 Converging direction determinant formula of PCO
The discussion in [2] is extended and enhanced in this section to more clearly describe
the dynamic nature of the converging process and get the converging direction
determinant formula. The simple requirements on f ensure a node reacts more strongly to
events that occur later in its time period. Here we give a graphic explanation on a pair
nodes’ converging procedure (Fig 5.2).

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

104

Figure 5.2 A pair nodes’ phase converging procedure in one cycle. The red lines
represent their “phase difference”

From observing two nodes’ phase difference changing process in one cycle, we can infer
the phase difference converge direction.

First introduce the symbols used in the deduction: ()fϕ φ= is the oscillator function, ϕ

represents the state;
1()fφ ϕ−= is the inverse function of f . Here we use A, B represent

two oscillators (or two already intra synchronized groups, which have to finish the final

two groups synchrony stage) with different initial phases (we assume A Bφ φ<) . Let
| |AB
uuur

, the red (dark) lines in Fig 5.2, represent the phase distance vector from A to B.

Whether| |AB
uuur

shrink to 0 or enlarge to 1, we all think they get synchronized.

When oscillator B is fired, A jumps, AB distance changes to

| ' ' | | | AA B AB φ= −Δ
uuuuur uuur

(1)

Temporarily the distance becomes smaller: | ' ' | | |A B AB<
uuuuur uuur

(Fig 5.2 (b), (c));
Next after oscillator B firing, A jumps (Fig 5.2 (d), (e)), the distance becomes:

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

105

' '| " " | | ' ' | | |B A BA B A B ABφ φ φ= +Δ = −Δ + Δ
uuuuuur uuuuur uuur

(2)

Now if we want to compare the value of | " " |A B
uuuuuur

and | |AB
uuur

, we need to know the

relationship of AφΔ and 'BφΔ .
Using the definition of inverse function (Fig 5.1):

1 1() ()k k kf fφ ϕ ε ϕ− −Δ = + − (3)

Now we need to judge the monotonicity of kφΔ , using inverse function derivative rule,

the first scale differential coefficient of kφΔ is:

1 1 '() '()'
'() '() '() '()

f f
f f f f

ϕ ϕ εφ
ϕ ε ϕ ϕ ϕ ε

− +
Δ = − =

+ +

(4)

For " 0f < , 'f is monotonically decreasing and ' 0f > , ' 0φΔ > . φΔ is monotonically
increasing.

Return to two oscillators’ jump position Aφ and 'Bφ (Fig 5.2 (d))
1

' '1 1 (())B A Af fφ φ φ ε−= − = − +

1
' (()) 1A B A Af fφ φ φ φ ε−− = + + −

(5)

So when Bφ is at critical fire point (1Bφ =).

If
1(()) 1A Af fφ φ ε−+ + > , 'A Bφ φ> , 'A Bφ φΔ > Δ , | " " | | |A B AB<

uuuuuur uuur

.
| " " | | |A B AB<
uuuuuur uuur

. For we set '' 1B Bφ φ= = , ''Aφ must be bigger than Aφ , so in the afterwards, it

will always meet the requirement
1(()) 1A Af fφ φ ε−+ + > , | |AB

uuur

value continues shrinking
until equal to 0.

If
1(()) 1A Af fφ φ ε−+ + < , 'A Bφ φ< , 'A Bφ φΔ < Δ , | " " | | |A B AB>

uuuuuur uuur

.

For the same reason, new phase of A will always drop in this class, | |AB
uuur

continues
enlarging until equal to 1.

If
1(()) 1A Af fφ φ ε−+ + = , 'A Bφ φ= , 'A Bφ φΔ = Δ , | " " | | |A B AB=

uuuuuur uuur

. This is the unique fixed
point. Actually, for the uniqueness of this point and clock drift or clock measure errors,
once the phase drifts away a little, the system will repel the phase to 1 or 0 synchronicity
state. So the existence of unique fix point will not cause system pause and it is a repeller
as described in [12].

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

106

Define
1(())k k kV f fφ φ ε−= + + (k represents the initial phase of the second oscillator),

then we give out pair oscillators’ converging direction determinant formula:

If 1KV > , the phase difference converges to 0;

if 1KV < , the phase difference converges to 1.

From the format of the determinant formula, we can see the pair’ initial phase states, the
coupling parameterε and the extent to which ()f φ is concave down all influence the
converging procedure, so synchrony is a “cooperative effect between the coupling and
the dissipation; convergence disappears when either the coupling or the dissipation is
removed” [12].

5.5.4 Fast converging PCO

5.5.4.1 Swing actions of phase difference
From pair oscillators’ converging procedure, we notice that the “phase difference”
swings: | | | ' ' | | ' ' | | " " |AB A B and A B A B> <

uuur uuuuur uuuuur uuuuuur
. The distance decreases and increases again in

one cycle. Except the jump before final synchronicity, every time the jump do not cause
the distance change by φΔ but ()φΔ Δ . In Fig 5.3 we draw out the phase difference
changing procedure of a pair of oscillators’ convergence, the blue (upper) line describes
the swing action. The unnecessary swing between two directions causes converging time
longer and consumes more energy.

Figure 5.3 swing action of the phase difference

5.5.4.2 Single direction converge
The swing procedure in multi-oscillator situation is actually searching and attempting the
final converging direction. When oscillators enter different synchrony groups, oscillators
in one group always act simultaneously. Then we can regard this kind of group as one
oscillator, the two synchrony groups can be thought as there are only two oscillators

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

107

mutually interacting. For pair of synchrony groups, base on our determinant formula, it is
easy to know their final converging direction. So if we know the converging direction in

advance by calculating the value of kV , then we can avoid the unnecessary reverse
direction jump, improve the total converging time and so as to save the energy
consumption.

To be concrete, when an oscillator hears one pulse, it calculates current kV value and
checks the coming jump is to its final converging direction or not. If it is, then jump the
oscillator, otherwise, ignore it. Thus the reverse jump is replaced by just staying its
original place, and the up jump fold parts in blue (upper) line become the level parts in
red (lower) line as showed in Fig 5.3. For getting rid of the useless reverse jump the
converging time can be reduced much. Also because there are only two groups left, once
decide the current firing pulse cause to the right jump direction, the next heard pulse
would definitely cause jumping to the reverse direction and should be ignored

automatically. Besides, because kV value changes monotonically, once decided the
converging direction, it will not change again. We only need judge the converging
direction once in the whole procedure. And this will bring a little increase on the whole
overhead but not a little enhancement on the synchronicity rate. We call it as fast
converging pulse coupled oscillator model (FPCO). Furthermore, our FPCO still keeps
the simplicity, self-organization, robustness of the original PCO model.

Pseudo-code of single direction converge

While (Not synchronized) do
{
Heard firing pulse
If (the first time heard the pulse)
/* first time, we need to judge the
 final converge direction */
{Calculate V = (1(())A Af fφ φ ε−+ +
If (V >1)
 Flag=1;
else
 Flag=0
}
Else
{

 If (flag)
 {React to the fire pulse;
 Flag=! Flag;}
 else
 {Ignore the fire pulse;
 Flag=! Flag;}

}
}

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

108

5.5.5 Theoretical analysis of FPCO
In this section we give out the theoretical analysis of FPCO model. Our analysis mainly
follows that of Geoffrey Werner-Allen and Geetika Tewari [2].

Often, a transformation is completely described by its eigenvalues and eigenvectors. We
use the eigenvalue and eigenvector of the dynamic matrix to analyze the two oscillators’
phase difference changing trajectories. Without influencing the function property and

final results here we do some simplification: 1) () ln()f φ φ= ,
1() ()g f eφφ φ−= = ; 2) Aφ

starts at any initial phase difference with Bφ , and Bφ starts just before firing. One cycle
finishes at the time just before B’s next firing. Refer to our determinant formula; two
kinds of initial states produce two different dynamics.

THEOREM. Two oscillators A and B, governed by FPCO dynamics, will be driven to
synchrony irrespective of their initial phases.
Proof:

First we assign A Bφ φ< , 1Bφ = .

For the case of 1AV > initial state, oscillator B’s firing will cause oscillator A jump, but

A’s firing will be ignored by B. So if the initial state is (,1)n Aφ φ=
uur

, after one cycle, the

return map is 1 ((()),1)n Ag fφ φ ε+ = +
uuur

. Substitute the expression for function ()f φ and
()g φ and algebraic simplification yields:

1 (,1)n Aeεφ φ+ =
uuur

;

1n nMφ φ+ =
uuur uur

Here n denotes the cycle number. The matrix M is defined as

,0
0,1
e

M
ε⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Hence the algorithm can be described as a linear dynamical system in φ
r

,

where [] []0,1 0,1φ ∈ ×
r

. M already is a diagonal matrix containing the eigenvalues of

M : 1 eελ = and 2 1λ = ; the corresponding eigenvectors are 1 (1,0)v =
ur

, 2 (0,1)v =
uur

. The

evolution of the system is most simply described in term of { }1 2,Base v v=
ur uur

. Figure 5.4

illustrates the system’s evolution along the directions of 1v
ur

 and 2v
uur

. Because the initial Bφ

is 1 and 2 1λ = , so in the 2v
uur

direction Bφ will never change and always keeps 1.

Trajectories only move on 1Bφ = level line. And for 1 1eελ = > , the trajectories will

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

109

approach to the 1Aφ = axis along the vector 1 (1,0)v =
ur

. Finally it will stop in the state of

synchrony (1,1)φ =
r

.

Fig 5.4 Trajectory of the oscillator phases

Second situation:

When the initial state meets 1AV < , oscillator A will not respond for the firing of
oscillator B, only B jumps after hearing the firing of A. So the return map changes

to 1 (1 ((1)),1)n Ag fφ φ ε+ = − − +
uuur

, 1 (1 ,1)n Ae eε εφ φ+ = − +
uuur

, still 1n nMφ φ+ =
uuur uur

.

Here

,1
0,1
e e

M
ε ε⎡ ⎤−

= ⎢ ⎥
⎣ ⎦ , eigenvalues and corresponding eigenvectors

are 1 1' , ' (1,0)e vελ = =
uur

; 2 2' 1, ' (1,1)vλ = =
uur

. Vector 2 'v
uur

 changes direction, but for 2 ' 1λ = ,

there will no movement along 2 'v
uur

direction, it always stays on 1Bφ = level

line. 1 ' 1eελ = > , it’s the same with the first situation, trajectories approach 1Aφ = axis

along the vector 1 ' (1,0)v =
uur

. Both of these two situations are illustrated in Fig 5.4.

5.5.6 Simulation result and discussion
Our experiment is set up in the ideal coupling environment: uniform interactions; all-to-
all connected networks, no path loss; all kinds of processing, transmission, propagation

delay are not under consideration. We choose
1() ln[(1) 1]bf e
b

φ φ= − +
 as the oscillator

function in our experiment. For the jump parameterε and the extent of function b have
similar effect on the rate of synchrony, we set b=1 and just change the value ofε to
observe the synchrony rate of FPCO. All the comparison is under the same environment,
initial state and parameter settings.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

110

Fig 5.4 Two oscillators’ synchrony procedure

Fig 5.4 shows one example of two oscillators synchrony procedure comparison between
PCO and FPCO. Oscillator function is () ln[(1) 1]f eφ φ= − + ,ε chosen as 0.002, and the
initial phase is simulated by random numbers uniformly distributed in [0, 1]. Obviously
for getting rid of the half of the attempting reverse jump actions. FPCO save almost half
of converging time in this two synchrony group stage.

Table 1 is the comparison with different jump parameter ε (from 0.002 to 0.2). In order
to decrease the influence of initial states, we repeat the test 5000 times with different
initial states. Then get the average value for every ε . We can see that even under
differentε values, our scheme always can save almost average 61.21% converging time
in two synchrony group stage.

0

50

100

150

200

250

0.002 0.006 0.008 0.02 0.06 0.08 0.2

Epsilon

S
y
n
c
h
r
o
n
i
c
i
t
y

t
i
m
e

PCO

FPCO

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

111

Table 1 Converging time comparison of two synchrony group stage

If we use fast PCO in the last two group stage, the whole synchrony time also will reduce.
Table 2 (a), (b) give out experimental figures of improved converging speed in the whole
synchrony procedure. The saved amount depends on the proportion of two synchrony
group stage takes in the whole procedure. From our experiment results the averaged time
saving is approximately 30%.

0

10

20

30

40

50

60

10 50 100 500 1000 5000 10000

Number of nodes

S
y
n
c
h
r
o
n
y

t
i
m
e

PCO FPCO

Table 2. Synchronicity time comparison of PCO/FPCO (b)

For the inherent scalability of PCO model, in the first column of Table2 (a), along with
the increase of node number, the converging time increase not much, except some special
initial state (like the node 500, 1000 situation).

Furthermore, the converging cycle is reduced by half; in every cycle, half of the jump
actions are ignored. The total energy consumption on synchrony stage will be definitely
saved.

5.5.7 Future Direction
Although our scheme only is used in the final stage of the converging procedure, it gets
good result. We can see there still are spaces to use it in the whole synchrony procedure.
That is from the two oscillators’ situation extending to the n oscillators situation. But in
the multi-oscillators situation, one oscillator will react more than one times in one cycle
for hearing many pulses. It becomes not easy to decide the oscillators’ final converging
direction. Hence we need to further analysis the converging rules and modify our FPCO.

Our all analysis, experiments are under the ideal environment. If we want to adopt the
FPCO in real sensor networks, the realistic effects in wireless environment must be
considered and tested in real testbed. Further in real testbed our energy consumption
saving estimation also can be verified and observed more exactly.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

112

5.5.8 References
[1] S. H. Strogatz and I. Stewart, “Coupled oscillators and biological synchronization,”
Scientific American Magazine, pp. 102–108, Dec 1993.
[2] G. W. Allen, G. Tewari, A. Patel, and R. Nagpal, “Firefly inspired sensor network
synchronicity with realistic radio effects,” in SenSys05, San Diego, California, USA.,
November 2005.
[3] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchronization using
reference broadcasts,” in Fifth Symposium on Operating Systems Design and
Implementation (OSDI 2002), Usenix, 2002, pp. 147–163.
[4] Y. B. Sivrikaya Fikret, “Time synchronization in sensor networks: a survey,” IEEE
Network magazine’s special issue on Ad-Hoc Networking, vol. 18, no. 4, pp. 102–108,
2004.
[5] S. Ganeriwal, R. Kumar, and M. Srivastava, “Timing-sync protocol for sensor
networks,” in Proc. First Int. Conf. on Embedded Networked Sensor Systems(SenSys),
Los Angeles, California, Nov 2003, pp. 138–149.
[6] W. Su and I. Akyildiz, “Time-diffusion synchronization protocols for sensor
networks,” IEEE/ACM Transactions on Networking, vol. 13, no. 2, pp. 384–397, 2005.
[7] J. van Greunen and J. Rabaey, “Lightweight time synchronizationfor sensor
networks,” in Proc. 2nd ACM Int. Workshop on Wireless Sensor Networks and
Applications (WSNA 03), San Diego, California, Sept 2003, pp. 11–19.
[8] B. Kusy and M. Maroti, “Flooding time synchronization in wireless sensor networks,”
in Proc. 2nd ACM. Conf. on Embedded Networked Sensor Systems(SenSys),
Baltimore,Mariland, 2004, pp. 39–49.
[9] K. Romer, “Time synchronization in ad hoc networks,” in Proc. ACM Symposium on
Mobile Ad Hoc Networking and Computing (MobiHoc 01), Oct 2001, pp. 173–182.
[10] M. L. Sichitiu and C. Veerarittiphan, “Accurate time synchronization for wireless
sensor networks,” in Proc. IEEE Wireless Communications and Networking Conference
(WCNC 2003), New Orleans,LA, Oct 2003, pp. 1266–1273.
[11] J.Sallai, B. Kusy, A. Prabal, and P. Dutta, “On the scalability of routing-integrated
time synchronization,” in 3rd European Workshop on Wireless Sensor Networks
(EWSN), Zrich Switzerland, Feb 2006.
[12] R. Mirollo and S. Strogatz, “Synchronization of pulse-coupled biological
oscillators,” SIAM., vol. 50, no. 6, pp. 1645–1662, 1990.
[13] L. F. Abbott, “A network of oscillators,” J. Phys. A, Math. Gen, vol. 23, pp. 3835–
3859, 1990.
[14] D. Lucarelli and I. Wang, “Decentralized synchronization protocols with nearest
neighbor communication,” in Proc. ACM SenSys 04, Nov 2004.
[15] U. Ernst, K. Pawelzik, and T. Geisel., “Delay-induced multistable synchronization of
biological oscillators,” Physical Review E, vol. 57, no. 2, pp. 2150–2162, Feb 1998.
[16] W. Gerstner., “Rapid phase locking in systems of pulse-coupled oscillators with
delays,” Physical Review Lett, vol. 76, no. 10, pp. 1755–1758, Mar 1996.
[17] Rhouma and H. M.B.H. andFrigui, “Self-organization of pulsecoupled oscillators
with application to clustering,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 23, no. 2, pp. 180–195, 2001.
[18] N. Wakamiya and M. Murata, “Scalable and robust scheme for data fusion in sensor
networks,” in the First International Workshop on Biologically Inspired Approaches to

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

113

Advanced Information Technology (Bio-ADIT 2004). Lausanne: LNCS3141, Jan 2004,
pp. 412–427.

5.6 Integrated Sleep-scheduling and Routing

5.6.1 Introduction
Ubiquitous sensor networks are expected to be widely employed in various applications
such as medical care, military, environmental monitoring and industry [1]. Currently,
energy supply is one of the fundamental bottlenecks. It is very costly and unpractical to
replace sensor node batteries once they are deployed, both because of the large number of
sensing nodes and the typically hazardous or unfriendly environment in which these
nodes are deployed. Hence, prolonging network life becomes a primary concern in
network design.

The sleeping technique has been used to conserve energy of battery powered sensors.
Several researchers even suggest putting redundant sensor nodes into the network and
allowing the extra sensors to sleep to extend network lifetime [2]. This approach is
practical due to the low cost of individual sensors. When a sensor node is put into the
sleep state, it is completely shut down, leaving only one extremely low power timer on to
wake itself up at a later time. In a dense sensor network, rotating active and inactive
sensors among the low power sensor members, some of which provide redundant data, is
an intelligent way to manage sensors to extend its network lifetime. This leads to the
following sleep scheduling problem: How does the cluster head (CH) or base station (BS)
select which sensor nodes to be put into sleep, without compromising the sensing
coverage capabilities of the whole network?

For a multi-hop USN rather than a single hop USN, an energy efficient routing protocol
also needs to be considered. Hence, there exist more challenges than single hop networks,
for example,

• The routing path (link) failure may happen during data transmission because of collision,

node dying out (no battery), node busy, or other accidents. Some applications require
real time information and data, which means retransmission is not possible. This
motivates us to design a multi-path routing scheme for USNs.

• There exists energy constraint in USNs because most sensors are battery operated. This
motivates us to consider energy aware routing.

In this chapter, we investigate the energy constraint problem in USNs and propose a sleep
scheduling scheme in a single hop network based on Analytical Hierarchy Process (AHP).
In addition, an integrated sleep scheduling and routing algorithm in a multi hop

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

114

environment is proposed again based on AHP. In a single hop network, three factors
contributing to the optimal nodes scheduling decision are considered and they are 1)
distance to CH, 2) residual energy, and 3) sensing coverage overlapping, respectively.
Our goal is to balance energy consumption in low power sensor nodes and extend the
sensor network lifetime while maintaining adequate sensing coverage capabilities. In a
multi hop network, we propose an integrated AHP based sleep scheduling and multipath
routing scheme for USNs, each of which has three different criteria considered as well.
We evaluate the efficiency of both proposed schemes in terms of energy consumption,
lifetime and coverage, and compare with related work, that is, random scheduling in
heterogeneous sensor networks in the single hop case and Geographical Multipath
Routing (GMR) scheme in the multi hop case.

The rest of the chapter is organized as follows. We introduce the background of AHP and
related work in Section 2. The third section presents our sleep scheduling scheme in a
single hop network. We present an integrated sleep scheduling and routing protocol in a
multi-hop network in Section 4. Section 5 evaluates and analyzes the performance of the
proposed method. Finally, we draw the conclusion and discuss future work in section 6.

5.6.2. Background

5.6.2.1 Analytical Hierarchy Process
The Analytical Hierarchy Process (AHP) [3] is a multiple criteria decision-making
method which decomposes a complex problem into a hierarchy of simpler and more
manageable sub problems. These sub-problems are usually called decision factors and
weighted according to their relative dominances to the problem. AHP synthesizes their
importance to the problem, and finds the best solution.

AHP performs following four main steps: decomposition, pair-wise comparison, local
weight calculation, and weight synthesis.

A. Structuring Hierarchy

Structuring a problem as a hierarchy of multiple criteria is the first step of implementing
AHP. The decision factors of the problem are identified and inserted into the hierarchy.
The overall objective is placed at the topmost level of the hierarchy. The subsequent level
presents the decision factors. The solution alternatives are located at the bottom level.

B. Calculating Local Weights

The second step is the evaluation stage where each factor is compared to all other factors
within the same parent. Local weights consist of two parts: the weight of each decision
factor to the goal and the weight of each nominee to each factor. Both of them are
calculated with the same procedure. Taking the former as an example, we describe the
procedure as the following three steps.

1) Making Pairwise Comparison

The evaluation matrices are built up through pairwise comparing each decision factor
under the topmost goal. The comparison results are based upon user expertise experience

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

115

by asking questions such as "Which is more important and by how much?" These initial
values are captured in square matrix A as

()
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

==
×

nnnn

n

n

nnij

aaa

aaa
aaa

aA

L

LLLL

L

L

21

22221

11211

 (6)

where aij denotes the ratio of the ith factor weight to the jth factor weight, and n is the
number of factors. The fundamental 1 to 9 scale can be used to rank the judgments as
shown in Table 1 [20].

Table 1 A fundamental scale of 1 to 9
Number Rating Verbal Judgment of Preferences
1 Equally
3 Moderately
5 Strongly
7 Very
9 Extremely

2, 4, 6, 8 indicate the medium value of above pairwise comparison.

The smaller one in a pair is chosen as a unit and the larger one is estimated as a multiple
of that unit and assigned a number based on the perceived intensity of importance.
Similarly, the reciprocals of these numbers are used to show the inverted comparison
results. We thus obtain a reciprocal matrix where the entries are symmetric with respect
to the diagonal.

2) Calculating Weight Vector

For the given matrix A in Eq. (1), its eigenvalue equation is written as AW = λmaxW,
where W is a non-zero vector called eigenvector, and λmax is a scalar called eigenvalue. W
and λmax appear as a pair and cannot be taken apart. After standardizing the eigenvector
W, we regard the vector element of W as the local weight of each decision factor
approximately, which can be denoted as:

{ }n
T
j www ,,, 21 L=w (7)

As a result, the weights of the decision factors can be achieved by calculating the
eigenvector of AHP matrix and the eigenvalue that approximately equals the number of
assessed elements.
3) Checking for Consistency

If every element in Eq. (1) satisfies the equations jiij aa /1= and ijkjik aaa =⋅ , the matrix
A is the consistency matrix. However, the evaluation matrices are often not perfectly
consistent due to people's random judgments. These judgment errors can be detected by a
consistency ratio (CR), which is defined as the ratio of consistency index (CI) to random
index (RI). CI can be achieved by

CI = (λmax −n)/(n−1), (8)
where λmax is the eigenvalue and

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

116

∑
=

=
n

i
ii WAWn

1
max /)()/1(λ . (9)

The RI is given in Table 2 [3]. When CR ≤ 0.1, the judgment errors are tolerable and the
weight coefficients of the global weight matrix Wj are the weights of decision factor
under the topmost goal. Otherwise, the pairwise comparisons should be adjusted until
matrix A satisfies the consistency check, i.e. matrix A needs to be reinitialized.

Table 2: Random index
n RI

1 0

2 0

3 0.58

4 0.90

5 1.12

6 1.24

7 1.32

8 1.41

9 1.45

10 1.49

11 1.51

C. Calculating Global Weights

From above steps, we can obtain not merely the weights of decision factors towards the
topmost goal from Wj but also the weights of alternatives towards each factor. If there are
k candidates, all the k weight matrixes of alternatives under n factors construct a k×n
matrix, denoted as jni

W / , i=1, 2, … k, j=1, 2, …n.
The global weight of each alternative can be achieved through multiplying the local
weight by its corresponding parent. So the final weight matrix in the symbol of

inW is
calculated as

jjnn WWW
ii
⋅= / , (10)

where the final weight of each alternative is calculated as

∑
=

⋅=
n

j
jjnn WWW

ii
1

/ . (11)

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

117

The larger the final weight of alternative, the higher the probability it is eligible to be
selected.

5.6.2.2 Related work
Sleep scheduling which aims to conserve the energy of the sensor nodes has been studied
in the literature. In [2], nodes are allowed to sleep based on routing information, and
nodes switch between sleep and active state based on the traffic of the network. As a
modification to this basic algorithm, reactive features have been added to the node's
schedule. The node would wake up more frequently based on the route discovery interval.
Another widespread option is to turn off redundant nodes in the network [4]. In this
scheme, the density of low power sensors is high enough to maintain the sensing
coverage of the entire network even when some nodes are turned off. Each node studies
the activity of their neighbors and decides to sleep if the coverage can be maintained by
the active nodes. A back-off based approach has been used to prevent neighboring nodes
to turn themselves off simultaneously.

In [5], a few nodes are selected as coordinators which would then decide the sleep/awake
schedule of the other nodes in the network. While coordinators are awake at all times, the
other nodes in the network sleep in order to conserve the overall network energy. In [6]
nodes are randomly selected to go to the sleep mode and in [7] a Linear Distance-based
Scheduling (LDS) technique has been used to define the sleep schedule of the nodes in a
cluster based homogeneous network. In [8], the authors release the single hop
communication assumption of [7] and introduce a Hop-based Sleeping Scheduling (HSS)
algorithm in a circular sensor network which is divided by a number of levels. The
overall result of these sleep schedules is a considerable reduction in the energy
consumption of the sensor network.

In [9], the authors propose a cross-layer sleep-scheduling-based organizational approach,
called SS-Trees, in order to increase monitoring coverage and operational lifetime of
mesh-based USNs. An integer linear programming (ILP) formulation and an iterative
algorithmic approach are suggested to determine the feasible SS-Tree structures for these
purposes. The ILP approach requires the determination of objective functions and several
constraints, which is often complicated. Hence the proposed AHP based approach is
different and simpler in that we only need to give the estimated weight to several factors
as an input for AHP to finish the whole process of optimal decision making without
knowing the objective functions and constraints. From this point-of-view, AHP is easier
to carry out with the achievement of the same performance goals.

Many routing protocols have also been developed for ad hoc networks, which can be
summarized into two categories: table-driven (e.g., destination sequenced distance vector
[10], cluster switch gateway routing [11]) and source-initiated on-demand (e.g., ad hoc
on-demand distance vector routing [12], dynamic source routing (DSR) [13]). In [14],
Lee and Gerla propose a Split Multi-path Routing protocol that builds maximal disjoint
paths, where data traffic is distributed in two roots per session to avoid congestion and to
use network resources efficiently. A Multi-path Source Routing (MSR) scheme is
proposed in [15], which is an extension of DSR. Their work focuses on distributing load

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

118

adaptively among several paths. Nasipuri and Das [16] present the On-Demand Multi-
path Routing scheme which is also an extension of DSR. In their scheme, alternative
routes are maintained, which can be utilized when the primary one fails.

In sensor networks, location is often more important than a specific node ID. For example,
in sensor networks for target tracking, the target location is much more important than the
ID of reporting node. Therefore, some location-aware routing schemes have been
proposed for USNs. A greedy geographic forwarding with limited flooding to circumvent
the voids inside the network is proposed in [17], and some properties of greedy
geographic routing algorithms are studied in [18]. Jain et al [19] proposes a geographical
routing using partial information for USNs.

The AHP algorithm for CH selection is proposed in [20]. However, our approach is
different from theirs in that we apply AHP to sleep scheduling and moreover use different
AHP factor namely overlapping coverage.

5.6.3 Sleep-Scheduling in a Single-hop Cluster based Network
We adopt the same radio model as stated in [21] with fsε =10pJ/bit/m2 as amplifier
constant, Eelec=50nJ/bit as the energy being dissipated to run the transmitter or receiver
circuitry. It is assumed that the transmission between the common nodes or between the
CH and its individual member node follows a second-order power loss model. The
energy cost of transmission for sensor nodes at distance d from each other in transmitting
an l-bit data is calculated as:

2),(dllEdlE fselecT ε+= (12)
A typical sensor network could contain thousands of small sensors. In some specific
applications, clustering has been employed to group a number of sensors, usually within a
geographic neighborhood. In such a cluster based topology, sensors can be managed
locally by a CH which is a node responsible for management in the cluster and for
communication between the cluster and the base station.

We aim to enhance the efficiency of the given sensor network by enabling a balanced
usage of energy across the nodes and an improved network lifetime without
compromising network coverage. Figure 1 is the illustration of cluster based sensor
network topology in which our proposed single hop sleep scheduling scheme is designed.
We focus on energy consumption at the cluster level.
A. Assumptions

We consider the sleep node scheduling problem under several assumptions as follows:

– The target sensor network is heterogeneous with a large number of low power sensor

nodes to serve as member nodes and a small number of more powerful nodes to serve as
CHs. The motivation behind is to confine the complex hardware and additional battery
to a few CH nodes. The low power nodes are simple in hardware and perform basic
functions such as sensing and simple computations;

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

119

– A large number of sensor nodes are deployed over a sensing field, such that at least some
sensor nodes can be put into the sleep state without degrading the sensing coverage of
the network;

– The CHs can communicate directly with BS and vice- versa. Similarly, the CH can reach

all the sensor members in the cluster in one hop and vice-versa. Thus, it is not needed
for any routing strategy from the BS to any specific CH or from any CH to the
individual sensor member.

– The application can tolerate some delay in reports from some sensors in each round.

B. Network Parameters

The user-defined parameters used in defining the network are listed below:

1) Fraction of nodes selected to sleep in a given round, 'r': This is the fraction of the total

number of nodes in the network that are selected to sleep in each round.

2) Threshold limit, 'θ': This denotes the fraction of nodes in the network, which, when

dead, determines the lifetime of the network.

Base station

member node

CH

Fig. 1 Cluster based sensor network topology.

C. Sleep Scheduling Scheme by AHP

In our design, three factors influence the load balance and coverage directly, that is, 1)
distance to CH, 2) residual energy, and 3) sensing coverage overlapping:

1) Distance to CH: Distance of a node to its CH. It can be approximated by the signal

strength of radio transmission. The node with longest distance to the CH is preferred
to be put into sleep.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

120

2) Residual energy: Remaining battery of the sensor node. The initial energy is
predefined. In addition, the energy consumption for transmission is calculated using
Eq. (7) by CH.

3) Sensing coverage overlapping: Overlapped sensing range of a node by neighbor nodes.

The node with larger overlapping degree, i.e., the node with higher redundancy, is
desired to be selected as sleeping node.

This optimized sleep scheduling process is a multiple factors optimization problem and
can be achieved by AHP, which is used to select the nodes eligible to sleep in one cluster.
It is carried out in three steps:

Step 1: Collect information and formulate the sleeping nodes selection problem as a
decision hierarchy of independent factors.

Step 2: Calculate the relative local weights of decision factors or alternatives of each level.

Step 3: Synthesize the above results to achieve the overall weight of each alternative nodes

and choose the one with largest weight as the eligible sleeping node.

The goal of the decision "select a node eligible to sleep" is at the top level of the
hierarchy as shown in Fig. 2. The next level consists of the three decision factors. At the
bottom level there exist the m alternative sensor nodes to be evaluated.

Select a node eligible to sleep

Distance to CH Residual energy Sensing coverage
overlapping

Nodes 1 to m Nodes 1 to m Nodes 1 to m

Fig. 2 AHP hierarchy for sleeping nodes selection in a single hop case.

In AHP modeling, the evaluation matrix A, here denoted as A1, is determined based on
Eq. (1) as follows:

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

121

A1 =

 Distance
to CH

(α)

Residual
energy
(β)

Sensing range
overlapping
(γ)

α

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

γ/γγ/βγ/α
β/γβ/ββ/α
α/γα/βα/α

 β

γ

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

12/13/1
1/212/1
1/31/21

where the three criteria (distance to CH, residual energy and sensing range overlapping)
are denoted by α, β and γ respectively. The selection of these initial values is motivated
by our choice that "Distance to CH" is the most important, than "Residual energy" is the
next important followed by "Sensing range overlapping" as the least important factor.
This choice reflects a typical set of parameters for energy conservation.

The computed eigenvector W = [0.5396 0.2970 0.1634]. It indicates the local weight of
the distance to CH, residual energy, and sensing coverage overlapping respectively so
that we can see clearly that the distance to CH is the most important criterion, and
sensing coverage overlapping is the least. According to Eq. (4), we can get the eigenvalue
λmax = 3.0093. Consequently, consistency ratio can be calculated as CR= 0.0047 < 0. 1,
thus matrix A satisfies the consistency check.

Each sensor node determines the weight matrices of alternatives under three factors and
then gets global weight based on its specific situation. Afterwards, its eligibility as a
sleeping node can be finally decided.

If there are eight candidate nodes in each cluster, all the eight weight matrixes of
alternatives under three factors construct a 8×3 matrix, denoted as jni

W / , i=1, 2, … 8, j=1,
2, 3. The final weight of each alternative is calculated using Eq. (6) with n =3. The larger
the final weight of node, the higher the probability of node which is eligible to be put into
sleep. Thus, the r fraction of nodes with the largest weight are selected as the sleeping
nodes in the current round.

5.6.4. Integrated Sleep-Scheduling and Routing Algorithm
In multihop environment, we investigate the sleep scheduling problem as well as
multipath routing problem and propose an integrated AHP based sleep scheduling and
routing (A-SR) scheme in a ring based multi-hop network topology with the destination
(or BS) at the center, as shown in Fig. 3. In the existing multi hop sleep scheduling
scheme (e.g., [8]), although routing is integrated, residual energy is the only factor
considered. In the existing geographical routing approach (e.g., [19]), the path selection

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

122

doesn't consider the remaining battery capacity of each node, which is a very important
factor for energy constraint sensor networks. In our A-SR sleep scheduling part, distance
to destination, residual energy, and sensing coverage overlapping are included, with the
latter two factors the same as the single hop case. In contrast with the single hop case, the
node with shorter distance to destination is preferred to be put into sleep since they are
more energy hungry as a relay. In routing part, distance to the destination, residual
energy, and queue size of each sensor node are included, with the former two factors the
same as the proposed multi hop sleep scheduling. Our scheme is a fully distributed
approach where each sensor only needs the above parameters, and we use AHP to handle
these parameters in the A-SR.

In our A-SR scheme, we only keep the second assumption from single hop case. And we
need to additionally assume that the event detection by the nodes in the network occurs
periodically and all nodes are synchronized. Thus our A-SR can be executed round by
round based on the period. For A-SR routing part, the detailed explanations of the three
criteria for next hop relay node selection are given as follows:

1) Distance to destination: Distance of a node to BS which is the destination. The

geographical location of destination is known to the source node (as in [19]), and the
physical location of each sensor node can be estimated easily if the locations of three
sensor nodes (within a communication range) are known in a USN. The node with
shorter distance to the destination is preferred to be selected.

2) Residual energy: Remaining battery of the sensor node. The energy consumption for

transmission and reception can be calculated using Eqs. (7) and (8).

3) Queue size: It indicates the buffer capacity at the node. This parameter helps avoid

packet drops due to congestion at the receiver.

The optimized node selection in multipath routing is also a multiple factors optimization
problem and can be achieved using AHP.

-4 -2 0 2 4
-4

-2

0

2

4

X-Coordinate

Y
-C

oo
rd

in
at

e

Fig. 3 Ring based multihop network topology.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

123

In our A-SR for M-path routing, the source node select M nodes in its communication
range for the first hop relay. Assume there are N (N > M) nodes in its communication
range, nodes that are farther to the destination node than the source node are not
considered. Choosing M nodes from remaining eligible nodes is based on AHP (as will
be described in detail). Starting the second hop, each node in the M-path selects its next
hop node also using AHP.

Select a node eligible to sleep

Distance to
destination Residual energy Sensing coverage

overlapping

Nodes 1 to N Nodes 1 to N Nodes 1 to N

(a) AHP hierarchy for sleep nodes selection

Next hop relay node selection

Distance to
destination Residual energy Queue size

Nodes 1 to N Nodes 1 to N Nodes 1 to N

(b) AHP hierarchy for next hop relay nodes selection

Fig. 4 AHP hierarchy for decision making in a multi-hop network.

In the AHP hierarchy model, the goal of the decision "next hop relay node selection" is at
the top level of the hierarchy as shown in Fig. 4 (b). The next level consists of the three
decision factors and at the bottom level there exist the N alternative sensor nodes to be
evaluated.

We assume that each sensor node keeps a table which has some information about its
neighbor nodes: locations, battery level, and queue size. The table is updated periodically
by the locally-broadcasted information (beacon) from each neighbor node. We define a
time interval T, during which the three parameters (locations, battery level, and queue
size) do not change very much. This time interval T is the shortest time duration that a
sensor node will send another beacon. Each sensor examines itself the status of the three
parameters in every period T, and if a certain parameter has changed above a threshold, it
will locally broadcast a beacon.

In the route discovery phase, the source node uses AHP model to evaluate all eligible
nodes (closer to destination) in its communication range based on the parameters of each
node: distance to destination, residual energy, and queue size. The source node chooses
the top M nodes based on the local weight that this node will be selected. And the source
node sends a Route Acknowledgement (RA) packet to each desired node, and each
desired node will reply using a REPLY packet if it is available. The structure of RA and
REPLY is summarized in Table 3. If after a certain period of time, the source node did
not receive REPLY from some desired node, it will pick the node with highest weight

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

124

among the remaining N-M nodes. In the second hop, the selected node in each path will
choose its next hop node using the same process. As illustrated in Fig. 5, node B needs to
choose one node from four eligible nodes C, D, E, and F based on their three parameters,
and sends RA packet to the selected node and waits for REPLY. If the top one node is
unavailable (for exmaple, selected by another path), then the top second node will be
selected. Consequently, M paths can be set up.

For A-SR sleep scheduling part, we only present its AHP hierarchy model which is
shown in Fig. 4 (a), due to the similarity to the single hop case.

For energy analysis, we adopt the previously presented transmission energy model, i.e.,
Eq. (7). In multihop networks, the energy for reception and data aggregation also need to
be taken into account. Thus, to receive an l-bit data, the radio expends:

elecR lElE =)(, (13)

and the energy for data aggregation is set as EDA = 5 nJ/bit, the same as [21].

In AHP modeling, the evaluation matrices for A-SR, here denoted as A2, is determined
based on Eq. (1) as follows:

A2

=

 α β γ

α

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

12/13/1
1/212/1
1/31/21

 β

γ

where the three criteria, shown in Fig. 4 (a) and (b) from left to right, are denoted by α, β
and γ respectively.

The computed eigenvector W has the same value as the single hop case since we assumed
the same evaluation matrix. So we can observe that the distance to destination is the most
important criterion, and sensing coverage overlapping and queue size are the least. We
can again get the eigenvalue λmax = 3.0093, and consequently matrix A2 satisfies the
consistency check.

Each sensor node determines the weight matrixes of alternatives under three factors and
then gets global weight based on its specific situation. Its eligibility as next hop relay
node and sleep node can be finally decided by the AHP hierarchy model.

Table 3: RA and REPLY message structure
Type Desired Node ID Self Node ID Dest_X Dest_Y Src_ID

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

125

A

B

Source

Dest

C

D
E

F

Fig. 5 Illustration of next hop node selection.

5.6.5. Performance Evaluations
In order to evaluate the single hop sleep nodes scheduling scheme by AHP, we compare
it with the upper (lower) bound (which optimizes merely the current factor), LDS [7] and
random scheduling scheme. In our simulation, the 50m by 50m square monitored area is
assumed. All nodes except CHs equip with identical sensors and the sensing and
communication range are equal to 8m and 16m respectively. Initial energy in each node is
2J. We set the total number of nodes to be Nt=50 and number of static clusters to be 2.
Thus the number of nodes in each cluster is 25 by assuming a uniform distribution of
nodes.

Assume the CH plans to allow 25r nodes in its cluster to sleep in each cycle. In the
random scheduling scheme, the CH randomly selects r fraction sensor nodes to sleep. At
first, we compare the average energy consumption in a cluster by AHP based scheme and
random scheduling scheme to show the energy that can be conserved by our scheme.
Figure 6 provides the energy consumption verses the fraction of sleeping nodes of the
three schemes. Furthermore, we also consider the ideal case where Eq. (7) is used to
determine the minimum energy consumption which provides a lower bound on average
energy consumption. It shows that the energy consumption in case of the proposed AHP
based scheme is less than that of the random scheme, however slightly more than that of
the LDS. The energy savings can be enhanced with an increasing value of r. For an r
value of "0.7", the energy consumed by the AHP based scheme is 49.3% less than by
random scheme and 9% more than LDS.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6

Fraction of sleeping nodes r

A
ve

ra
ge

 e
ne

rg
y

co
ns

um
pt

io
n

pe
r r

ou
nd

 (u
J)

random

AHP

LDS

Lower bound

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

126

Fig. 6 Energy Consumption in the cluster per round.

Network lifetime can be defined as the time when a fraction of nodes, θ, run out of
energy. In Fig. 7, we evaluate the lifetime of the three schemes and the upper bound for
various values of r andθ. The length of each round is 5 seconds. We can see that the
lifetime of both schemes is prolonged with the increasing of r and the proposed AHP
based scheme greatly outperforms the random scheme and is close to LDS. This is in line
with the analysis that the proposed scheme can balance the energy consumption among
all the member nodes. We also can see that the lifetime of all the schemes increases with
an increase ofθ. This is because the network can be alive up to the time when θ fraction
of nodes are drained of their energy.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

160

180

200

220

240

260

280

Fraction of sleeping nodes: r

Li
fe

tim
e

[s
ec

]

random, θ=0.45
AHP,θ=0.45
upper bound, θ=0.45
LDS,θ=0.45
random, θ=0.25
AHP,θ=0.25
upper bound, θ=0.25
LDS,θ=0.25

Fig. 7 Lifetime comparision.

0 0.2 0.4 0.6 0.8
0.5

0.6

0.7

0.8

0.9

1

1.1

Fraction of sleeping nodes r

S
en

si
ng

 c
ov

er
ag

e

random
AHP
upper bound
LDS

Fig. 8 Coverage verses the fraction of sleeping nodes.

Figure 8 provides the comparison of coverage ratio verses the fraction of sleeping nodes r.
The coverage here is defined as the ratio of the union of all sensor nodes' sensing areas to
the whole monitored environment. For the detailed explanation of coverage ratio
calculation method, please refer to [22]. Fig. 8 shows that for the three schemes (AHP,
LDS [7] and random) the coverage ratio decreases with the increasing of the fraction of
sleeping nodes, r. LDS shows similar sensing coverage ratio with random scheme
(though different pattern) since the sensing coverage of the LDS scheme in the border

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

127

area is lower than that in the central area, as sensor nodes close to the border are put into
sleep with higher probability. However, in case of the proposed AHP based sleeping
scheme, the coverage ratio still can maintain above the desired value of 0.98 when up to
30% nodes are put into sleep. It indicates that the tradeoff in terms of coverage is not very
critical using the AHP based scheme. AHP based scheme outperforms the LDS and is
close to the upper bound in that the AHP takes overlapping coverage as one of the impact
factors while the LDS does not but only energy saving.

To evaluate the integrated sleep scheduling and routing in multi hop networks by AHP,
we have used J-Sim [23] as the simulation environment. 60 sensors are randomly
deployed in an area of 100m x 100m. The source and destination sensors are set as 2J
initially, and 5 couples of source and destination nodes are communicating at the same
time in this network. All the other sensors have initial energy of 0-2J. The buffer capacity
of each sensor node has been taken as 5 packets with packet length 512 bit and bit rate
9.6kb/sec. The time interval T is set as 10s in our simulation. The source node select M=3
nodes in its communication range for the first hop relay. From the second hop, each node
along the three paths selects only one node toward its next hop.

0 50 100 150 200 250
0

5

10

15

20

25

30

35

40

Simulation time (s)

of

 n
od

es
 d

ea
d

A-SR
GMR
HSS
upper bound

Fig. 9 Lifetime comparison.

We compare our A-SR with Hop-based Sleeping Scheduling (HSS) algorithm [8], upper
bound and the geographical multipath routing (GMR) [19] scheme where only distance to
the destination is considered. In Fig. 9, we plot the simulation time versus the number of
nodes dead. It shows that when 50% nodes (30 nodes) die out, the network lifetime for A-
SR has been extended more than 40%. A-SR significantly outperforms GMR and has
similar performance to HSS. In Fig. 10, we compare the packet loss rate of these three
schemes. Packets are dropped either due to insufficient buffer capacity at the receiver or
because of the lack of energy needed to transmit the packet. Observe that our A-SR
outperforms the GMR and HSS with about 20% and 10% less packet loss respectively
resulting in greater reliability. The average latency during transmission (end-to-end) is
424.23ms for our A-SR, 407.5ms for GMR and 422.8ms for HSS, and link failure rate for
A-SR is 6.51%, but for GMR is 10.42% and for HSS is 10%. Due to the integrated sleep
scheduling, in our proposed scheme, the network coverage ratio does not drop below the
satisfactory value 0.97 when up to around 30% nodes are put into sleep.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

128

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Simulation time (s)

P
ac

ke
t l

os
s

ra
te

ASR
GMR
HSS

Fig. 10 Simulation time vs. packet loss rate.

5.6.6 Conclusions and Future Work
In this chapter, we proposed a sleeping scheduling scheme in a single hop network and an
integrated sleep scheduling and routing protocol in a multi hop network based on AHP.
In the single hop network, three factors contributing to the optimal nodes scheduling
decision are considered and they are 1) distance to CH, 2) residual energy, and 3) sensing
coverage overlapping, respectively. In the multi hop network, our proposed A-SR scheme
includes distance to destination, residual energy, and sensing coverage overlapping for
sleep scheduling, and distance to the destination, residual energy, and queue size of each
sensor node for routing. To evaluate the performance, in the single hop network case, we
evaluated the efficiency of our proposed scheme in terms of energy consumption, lifetime
and coverage ratio, and compared with the upper (lower) bound, LDS and traditional
random sleep scheduling scheme in heterogeneous clustered sensor networks. The
proposed scheme was observed to improve network lifetime and conserve energy. We
also evaluated the efficiency of the proposed scheme in the multi-hop environment and
the results showed that it could extend the network lifetime much longer than the original
geographical routing scheme which only considered distance to the destination location,
and it had similar lifetime performance with HSS. Moreover, the proposed scheme could
reduce the packet loss rate and link failure rate since the buffer capacity was considered.
In both single hop and multi hop network environment, the sensing coverage capabilities
were not compromised.

In the future work, we may consider the node mobility as another factor for decision
making and design such protocol. Moreover, different node distributions will be further
considered.

5.6.7 References
[1] Xiaoling Wu, Hoon Heo, Riaz A. Shaikh, J. Cho, O. Chae, and S. Lee: Individual
Contour Extraction for Robust Wide Area Target Tracking in Visual Sensor Networks.
Proc. of 9th IEEE International Symposium on Object and component-oriented Real-time
distributed Computing (ISORC), Gyeongju, Korea (2006) 179-185
[2] Y. Xu, J. Heidemann and D. Estrin, Adaptive energy-conserving routing for multihop
ad hoc networks, Research report 527, USC/Information Sciences Institute (2000).

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

129

[3] T. L. Saaty, Fundamentals of Decision Making and Priority Theory with the Analytic
Hierarchy Process, RWS Publications, U.S.A., 2000.
[4] D. Tian and N. D. Georganas: A coverage□preserving node scheduling scheme for
large wireless sensor networks. Proc of the 1st ACM international workshop on Wireless
sensor networks and applications (2002) 32 – 41.
[5] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris: Span: An Energy-Efficient
Coordination Algorithm for Topology Maintenance in Ad Hoc Wireless Networks. ACM
Wireless Networks, Vol. 8, No. 5 (2002).
[6] W. Ye, J. Heidemann, and D. Estrin: An Energy□Efficient MAC Protocol for
Wireless Sensor Networks. Proc of the 21st International Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM), New York, NY (2002).
[7] J. Deng, Y. S. Han, W. B. Heinzelman, and P. K. Varshney: Scheduling Sleeping
Nodes in High Density Cluster□based Sensor Networks. ACM/Kluwer Mobile Networks
and Applications (MONET) Special Issue on Energy Constraints and Lifetime
Performance in Wireless Sensor Networks (2005).
[8] Yun Wang, Demin Wang, Weihuang Fu, and Dharma P. Agrawal: Hops-based Sleep
Scheduling Algorithm for Enhancing Lifetime of Wireless Sensor Networks. Proc of
IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS), Canada
(2006) 709-714
[9] Rick W. Ha, Pin-Han Ho and X. Sherman Shen: SS-trees: a cross-layer organizational
approach for mesh-based wide-area wireless sensor networks. Proc. of the 2nd
International Conference on Broadband Networks, Vol. 2, Boston, MA, USA (2005) 823-
832
[10] C. P. Bhagwat: Highly dynamic destination-sequenced distance vector routing. Proc.
of ACM SIGCOMM (1994) 234-244
[11] Ching-Chuan Chiang, Hsiao-Kuang Wu, Winston Liu, Mario Gerla: Routing in
clustered multihop mobile wireless networks with fading channel. Proc. IEEE Singapore
Intl Conference on Networks (1997)
[12] C. E. Perkins and E. Royer: Ad hoc on demand distance vector routing. Proc. 2nd
IEEE Workshop o Mobile Computing Systems and Applications (1999)
[13] D. Johnson and D. Maltz: Mobile Computing. Kluwer Academic Publishers (1996)
[14] S.J. Lee, and M. Gerla: Split Multipath Routing with Maximally Disjoint Paths in
Ad Hoc Networks. ICC (2001)
[15] L. Wang, Y. T. Shu, M. Dong, L.F. Zhang, and W.W. Yang: Multipath Source
Routing in wireless Ad Hoc Networks. Canadian Conference on Electrical and Computer
Engineering, vol. 1 (2000) 479-483
[16] A. Nasipuri, and S.R. Das: On-Demand Multipath Routing for Mobile Ad Hoc
Networks. IEEE ICCCN (1999) 64-70
[17] G. G. Finn: Routing and addressing problems in large metropolitanscale
internetworks. USC ISI Report ISI/RR-87-180 (1987)
[18] G. Xing, C. Lu, R. Pless, and Q. Huang: On Greedy Geographic Routing Algorithms
in Sensing-Covered Networks. ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc), Tokyo, Japan (2004)
[19] R. Jain, A. Puri, and R. Sengupta: Geographical routing using partial information for
wireless sensor networks. IEEE Personal Communications (2001) 48-57

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

130

[20] Yaoyao Yin, Juwei Shi, Yinong Li and Ping Zhang: Cluster Head Selection using
Analytical Hierarchy Process for Wireless Sensor Networks. IEEE 17th International
Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Helsinki,
Finland (2006) 1-5
[21] Wendi B. Heinzelman, Anantha P. Chandrakasan, and Hari Balakrishnan: An
Application-Specific Protocol Architecture for Wireless Microsensor Networks. IEEE
Transactions on Wireless Communications, Vol. 1, No. 4 (2002) 660 – 670
[22] Xiaoling Wu, Shu Lei, Yang Jie, Xu Hui, Jinsung Cho and Sungyoung Lee: Swarm
Based Sensor Deployment Optimization in Ad hoc Sensor Networks. Proc. of ICESS' 05/
LNCS, Xi’an, China, (2005) 533-541
[23] J-Sim. http://www.j-sim.org/.

5.7 Primary Study of FSO
Free space optics (FSO) and radio frequency (RF) have been widely used in wireless
communication. In this work, we compare the technologies to provide system designers
useful metrics.

5.7.1 Introduction
Traditional wireless sensor networks are bound by the provable limits in per-node
throughput for radio frequency (RF) based communications. Nowadays, there have been
increased interests in the development of sensor nodes that can communicate via free
space optics (FSO) [1-4]. FSO refers to the transmission of modulated visible or infrared
(IR) beams through the atmosphere to obtain broadband communications. In this work,
we provide a comparison work of FSO and RF communication. This comparison can
provide useful information for system designers.

5.7.2 Comparison of FSO and RF Communication
At lower data rates, RF is excellent at providing coverage due to the scattering and the
diffraction of the radio waves, and the sensitivity of the receivers that can be constructed.
Channels are robust to being blocked by obstacles. However, higher data rates require
higher frequencies. At these frequencies, the radio signal propagation becomes line of
sight, and problems become similar to that of using light. Components operating at these
frequencies are expensive, and the advantages of radio (coverage, and receiver
sensitivity) become less clear.

As an alternative to the radio frequency (RF) technology, free-space optical (FSO)
communication emerged as a promising candidate providing broadband, flexible, secure
and low-cost communication links between stationary platforms. Applications using FSO
have proved its merits [5-7],[9-12]. The comparison is provided in Table I.

Perhaps the greatest advantage of FSO technology is its high throughput. The need for
such a channel is evident when considering bandwidth hungry applications. Terabit per
second throughputs have been demonstrated under laboratory conditions. In contrast,
widespread RF technologies (e.g. 802.11x) are limited to link throughputs on the order of

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

131

10s of Mbps across distances of 10s of meters. Besides, the deployment of an FSO link
avoids the stringent restrictions on the usage of the limited bandwidth in RF networks. It
also avoids interference with existing RF communications infrastructure and is cheaply
deployed since no government licensing of scarce spectrum is required.

Table I A Comparison of FSO and RF Communication
Parameters Radio-Frequency Optical Communication
Spectrum 2 to 6 GHz 0.8 to 1.5 THz range (IR band)
Capacity 11, 54, 100Mbps, Up to 10 Gbps, 160Gbps (lab)
Bandwidth 10 – 12 Mbps 200THz (700-1500nm)
Range 20m - 4km 20m – 1.2km
Output Power 5.15-5.25 MHz

50mW; 5.25-5.35
MHz 250mW;
5.725-5.825 MHz
1W.

650nm 5-500mW; 880nm 2.5-
500mW;
1310nm 45-500mW; 1550nm
50-500mW

Power Consumption 2.31E-02 (J/Mb) 2.00E-03 (J/Mb)
Power Loss [8] 2.4 GHz 100dB/km;

915 MHz 92dB/km;
5.7 GHz 108dB/km.

Clear 5-15dB/Km; Rain 20-
50dB/Km; Snow 50-150dB/Km;
Fog 50-300 dB/Km

Security Low High

The main limitation of FSO is the requirement that a direct line-of-sight path exists
between a sender and a receiver (e.g. flying objects such as birds may block the
transmission). Another main problem of FSO is that the availability of services is weather
sensitive (e.g. heavy rain, fog, snow or strong wind).

There are also some other constraints: eye safety limitation (IEC60825-1,Amendment 2),
SNR varies significantly with the distance and ambient noise, accurate alignment of
transmitter-receiver necessary, etc. However, researchers have been working to enhance
its performance in various ways, e.g. with multibeam architectures, larger power margins,
backup systems, etc.

5.7.3 Conclusion
Free Space Optics is being increasingly considered as an attractive option for the rapid
provisioning of multi-gigabit per second links. In our work, we provide a comparison
between FSO and RF technologies. The main contribution is to provide useful metrics for
system designers. The metrics can be adopted as a method for quantitatively defining
system performance.

5.7.4 References
[1] J. M. Kahn, R. H. Katz, and K. S. J. Pister, “Next century challenges: Mobile
networking for “smart dust””, in Proc. ACM/IEEE International Conference on Mobile
Computing and Networking, Seattle, Washington, August 15-19, 1999, pp. 271–278.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

132

[2] B. A. Warneke, M. D. Scott, B. S. Leibowitz, L. Zhou, C. L. Bellew, J. A. Chediak, J.
M. Kahn, B. E. Boser, and K. S. J. Pister, “An autonomous 16mm3 solar-powered node
for distributed wireless sensor networks,” in Proc. IEEE Sensors, Orlando, Florida,
January 2002, pp. 1510–1515.
[3] W. Mao and J. M. Kahn, “Free-space heterochronous imaging reception of multiple
optical signals,” IEEE Transactions on Communications, vol. 52, no. 2, pp. 269–279,
February 2004.
[4] J. Llorca, A. Desai, U. Vishkin, C. Davis, and S. Milner, “Reconfigurable optical
wireless sensor networks,” in Proc. SPIE vol. 5237, Optics in Atmospheric Propagation
and Adaptive Systems VI, J. D. Gonglewski and K. Stein, Eds., Barcelona, Spain,
February 2004, pp. 136–146.
[5] “A Fiber-optic Powered Wireless Sensor Module Made on Elastomeric substrate for
Wearable Sensors”, the 26th Annual International Conference of the IEEE EMBS,2004
[6] D-Link Corporation, “DLINK 802.11(g) PCMIA card,” www.dlink.com, 2005
[7] FreeScale Corporation, “XS110 UWB datasheet,” www.freescale.com, 2005
[8] Cambridge Silicon Radio, “CSR Bluecore2 datasheet,” www.csr.com, 2005
[9] “Optical wireless communication in distributed sensor networks”, The International
Society for Optical Engineering
[10] Dominic O’Brien, “optical wireless communications challenges and prospects”,
University of Oxford.
[11] “Urban Optical Wireless Communication Networks” IEEE Communication
Magazine, February 2003
[12] Brian J. d'Auriol and Tanushree Ghosh, "A Systems Model for Computation,
Communication, Command and Control (C4) in a Spacecraft or Satellite Cluster",
Proceedings of The International Conference on Parallel and Distributed Computing,
Applications and Technologies (PDCAT) 2006, December 4-7, 2006, Taipei, Taiwan, pp.
285-290, IEEE Computer Societ

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

133

6. Autonomic Context Aware Middleware

6.1 Background and Motivation

6.1.1 Middleware
In a distributed computing system, middleware is defined as the software layer that lies
between the operating system and the applications on each site of the system.

Stimulated by the growth of network-based applications, middleware technologies are
taking an increasing importance. They cover a wide range of software systems, including
distributed objects and components, message-oriented communication, and mobile
application support.

Companies and organizations are now building enterprise-wide information systems by
integrating previously independent applications, together with new developments. This
integration process has to deal with legacy applications. A legacy application can only be
used through its specific interface, and cannot be modified. In many cases, the cost of
rewriting a legacy application would be prohibitive.

An increasing number of systems are composed of a collection of various devices
interconnected by a network, where each individual device performs a function that
involves both local interaction with the real world and remote interaction with other
devices of the system. Examples include computer networks, telecommunication systems,
uninterruptible power supply units, decentralized manufacturing units.

Users interact with Internet applications through a variety of devices, whose
characteristics and performance figures span an increasingly wide range. Between a high
performance PC, a smart phone, and a PDA, the variations in bandwidth, local processing
power, screen capacity, ability to display color pictures, are extremely large [1].

6.1.2 Functions of Middleware
In all of the above situations, applications use intermediate software that resides on top of
the operating systems and communication protocols to perform the following functions:

• Hiding distribution, i.e. the fact that an application is usually made up of many
interconnected parts running in distributed locations;

• Hiding the heterogeneity of the various hardware components, operating systems

and communication protocols;

• Providing uniform, standard, high-level interfaces to the application developers
and integrators, so that applications can be easily composed, reused, ported, and
made to interoperate;

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

134

• Supplying a set of common services to perform various general purpose functions,
in order to avoid duplicating efforts and to facilitate collaboration between
applications.

These intermediate software layers have come to be known under the generic name of
middleware [1].

6.1.3 Setting and History behind this project
Our main goal is to provide user-friendly information and communication services,
anywhere and anytime.
For this purpose we were focusing with central Middleware for ubiquitous application.
Figure 6.1 shows our previous approach. We were using sensors to collect data and send
the raw data to central middleware, which is a PC equipped with middleware software,
middleware than process data and send to application.

A major challenge in developing sensor network systems and algorithms is that
transmitting data from each sensor node to a central processing location may place a
significant drain on communication and energy resources. Such concerns could place
undesirable limits on the amount of data collected by sensor networks. However, in many
applications, the ultimate objective is not merely the collection of “raw” data, but rather
an estimate of certain environmental parameters or functions of interest (e.g., source
locations, spatial distributions). One means of achieving this objective is to transmit all
data to a central point for processing. An alternate approach based on distributed in-
network processing which, in many cases, may significantly decrease the communication
and energy resources consumed [2].

The basic idea is illustrated by a simple example. Consider a network comprised of n
sensor nodes and one central server uniformly distributed over a square meter, each of
which collects m measurements. Suppose that our objective is to compute the average
value of all the measurements. There are three approaches one might consider:

1. Sensors transmit all the data to a central server which then computes the average.
In this approach O(mn) bits need to be transmitted over an average of O(1) meter.

2. Sensors first compute a local average and then transmit the local averages to a

central server which computes the global average. This requires only O(n) bits to
be transmitted over O(1) meter.

Fig. 6.1: Previous approach- Central middleware, only sensors was used.

Smart Collaborative Sensor Central middleware

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

135

3. Construct a path through the network which passes through all nodes and visits

each node just once. The sequence of nodes can be constructed so that the path
hops from neighbor to neighbor. The global average can be computed by a single
accumulation process from start node to finish, with each node adding its own
local average to the total along the way. This requires O(n) bits to be transmitted
over only O(n-1/2) meters.

Clearly the last procedure could be much more communication efficient than the other
two approaches. It is also clear that a similar procedure could be employed to compute
any average quantity (e.g., a least squares fit to any number of parameters)[2].

In our previous approach we were focusing with second procedure. But in order to
achieve third procedure central middleware is not enough.
For this purpose we proposed a new distributed middleware architecture such that,

• Application supported by distributed middleware can do complex, fast operation.
• Facilitates integration of components in distributed heterogeneous environment.
• Optimized / Faster Integration.
• Faster system development.
• Cost-effective operation and management.

o Autonomic Capabilities (self-defining, self-configuring, self-optimizing,
self-healing, context-aware and anticipatory) are closely related to those
systems.

o Middleware services and architectures are gradually evolving to support
autonomic computing systems

Fig 6.2 shows our current distributor middleware approach. Middleware is integrated into
Smart Sensor, Smart Object, Handheld and PC.

Smart collaborative objects

Smart Collaborative Sensor

Fig. 6.2: New approach- each of the cooperative items has a middleware

Handheld

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

136

6.1.4. Goal of the project
Our goal is to development of distributed middleware which facilitates Ubiquitous
Application.

• Allowing the service developer to focus on the service logic rather than the
middleware implementation,

• It will deal with the challenges like resource constrains, mobility, heterogeneity.

• Integration of Sensor, Smart Object, handheld devices into smart environment.

• Integrate Collaborative Middleware to all the components associated with the

environment.

• Using handheld to access the mobile infrastructure.

6.1.5. Scope of the project
Scope of the project is pointed below,

• Middleware covers all the devices and network connected to the Ubiquitous
sensor network.

• Embed smartness to cooperating items.

• Dynamic power management.

• Reduce the communication between cooperating items.

• Event based communication.

• Application knowledge in nodes will be imposed during design phase.

• Automatic configuration of nodes and error handling.

• Support for time and location management.

6.2 Middleware Architecture
We propose distributed middleware architecture based on aCAMUS, which is autonomic
by nature and supports applications where sensing and acting devices themselves drive
the network behavior. In our proposed architecture application is not confined in a
powerful node, rather it is deployed on the devices embedded within the physical
environment. We discuss our middleware design principles in subsequent sections.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

137

6.2.1. Simplicity and Flexibility
Our framework comprises of several types of middlewares with different capabilities to
be deployed in different objects such as sensors, smart objects, handheld devices and
central server. Therefore, we name these middleware as follows:

• Sensor Node Middleware (SNM)

• Smart Object Middleware (SOM)

• Handheld Device Middleware (HDM)

• Backend Server (aCAMUS)

However simplicity as well as flexibility in the design of these middlewares is inevitable.
Hence, we keep the overall architecture, modules and their interfaces same in all
middlewares. Middlewares differ only in capabilities of their respective modules. In our
current design we consider three different computing resources (e.g. CPU, Memory,
Power) of the entities (e.g. sensors, smart objects, handheld devices, backend server etc.)
based on which we limit the capabilities of these middlewares. Figure 6.4 shows our
common middleware architecture named aCAMUS.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

138

6.2.2. Pluggable and Upgradeable Modules
All module of a middleware are pluggable and hence easily upgradeable. Autonomic
manager module helps to upgrade the modules on the fly. Hot-swapping mechanism is
also desired. OSGi framework may be a good choice for this purpose. Thus even after
deployment we may upgrade some reasoning module when necessary. Besides, if
computing resources for a certain entity (e.g. sensor, smart object etc.) changes, we
change or limit the module’s capabilities accordingly. For example, if CPU, memory is
increased in sensors we may choose more efficient but resource consuming reasoning
algorithm in SNM and vice versa.

6.2.3. Vertical Context Propagation
Middlewares generate contexts after collecting context data from the lower level
middlewares. For example, SNM generates context from sensory data, but SOM generate
context based on contextual data from SNMs. Each middleware type can generate context
with certain accuracy. This is because lower level middleware does not have efficient
reasoning mechanism as of upper level middlewares. Hence, we assume that context
flows only in vertical direction from bottom to top. For example, context from level 1
middleware (e.g. SNM) propagates to Level 2 middleware (e.g. SOM) and so on.
However, if immediate upper level middleware is not available, next higher level
middleware becomes a candidate for receiving context from this lower level middlewares.
On the other hand, client applications can discover and collect context from middlewares
of any level depending on clients’ need.

6.2.4. Horizontal Collaboration
As middleware have different reasoning capabilities, we assume that middlewares
collaborate with other middleware of the same level to generate contexts of certain

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

139

accuracy. However, middlewares collects data from lower level middlewares/ sensors and
then sends generated context to upper level.

6.3. Sensing Agent
The purpose of sensing agent is to retrieve the sensory data with the help of appropriate
OS function calls and send these raw data to Tuple Space manager. Sensor access
strategies determine when to read out sensors. With respect to the time period between
consecutive samplings and the time at which to access sensors, we distinguish between
the following strategies:

Best effort: Some sensors, for example accelerometers and microphones, monitor
environmental parameters that can change rapidly in relatively short time frames. In such
cases, the best effort strategy allows an application to access sensors as often as
technically feasible in order to monitor environmental changes accurately. The above-
mentioned function for reading out a sensor is thereby called whenever possible.

Fixed effort: In this sensor access strategy, there is a fixed time period between
consecutive sensor samplings. For example, the statement every 2000 ms means that the
corresponding sensor access function is scheduled to be called every two seconds. There
are two ways to implement the fixed strategy on a microcontroller. The first, and more
precise one, is to use a timer and to access the sensor from the corresponding interrupt
handler. This ensures that an application accurately conforms to the given time interval.
In our prototypical implementation, however, we have implemented a scheduler that
repeatedly checks for functions that need to be executed. The accuracy of such an
approach is influenced by the execution time of other scheduled functions.

Random interval: In order to avoid unwanted synchronization effects between nodes, it
is sometimes necessary to vary the time period between consecutive sensor accesses.
Such a behavior is supported by the random interval strategy, where a time interval is
specified out of which a value is randomly chosen. The statement random [1000, 2000]
ms is an example of this where the time between consecutive readings is randomly
distributed between one and two seconds.

Event-driven: In contrast to the need for regular sensor access, some sensors only need
to be read out under special circumstances – i.e., in case of certain internal or external
events. Event-driven sensor access can considerably reduce the number of times a sensor
needs to be sampled. It can therefore contribute towards reduced energy consumption, as
the process of sampling sensors often consumes significant amounts of energy. Hence,
especially when designed for resource restricted smart objects; applications should aim at
accessing sensors as seldom as possible. Event-driven sensor access is specified using
adaptation rules, and not directly in sensor access statements.

6.4. Inter Object Collaboration
The Inter Object Collaboration handles all basic communication-related issues required
for smart object collaboration. The main purpose of this module is to

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

140

1. perform the collaboration between smart objects in order to achieve consensus
free or consensus based operation,

2. integrate handheld (e.g. PDA) into environment of cooperating smart everyday

objects and

3. delegate a task to neighboring entity (smart object or handheld). Estimates
computational power needs by other smart objects

We will explain each of the scenarios in details in the following sections.

6.4.1. Collaboration between smart objects/sensors
Depending on the application requirements, collaboration may follow a consensus-free
and/or a consensus-based approach.

Consensus-free — entities may need to take local decisions hence they do not negotiate
a common decision and communicate different information, i.e., sensory data, fused
information, context/sub context and next action(s) in order to aid this local decision
making.

In figure 6.6 we are showing an example of consensus-free operation between smart
objects. In this figure we have 4 smart objects SO1, SO2, SO3, and SO4. SO1 is the
master node or full function device (FFD) and SO2 to SO4 are the slave nodes or reduced
function devices (RFDs). Each of the Smart Objects contains a distributed tuple space as
shown in tables the first column of the table is the tuple name, second one is the actual
value and the third one is the epoch number. The responsibilities of FFD are to perform
as task and/or delegate a task to neighboring entity. In consensus-free operation FFD
performs a simple task (F). That is, F = (A+C-D) * D + E.

Figure 6.6: Example of consensus-free operation between smart objects.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

141

In order to perform this task FFD communicates with other RFDs for A, B, C, D and E.
Here, SO2 contains of A and B, SO3 contains C and D and SO4 contains E. FFD
executes a read command and upon receiving read command RFDs send their latest
values to FFD. And FFD computes F as shown in the figure 6.7.

Figure 6.7: Example of consensus-free operation between smart objects.

Consensus-based — a system/sub-system may need negotiated outcomes; consequently
entities are compelled to communicate different information in order to take a common
decision.

In figure 6.8 we are showing same example as shown at consensus-free operation but the
operation is consensus based. SO1 delegates SO2 to computing (A + C – B). SO1 first
get C, D from SO3 and E from SO4 and sends the values to SO2. SO2 than compute the

Figure 6.8: Example of consensus-based operation between smart objects.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

142

desired function and send the value to SO1. And SO1 computes F as shown in figure 6.9.

Figure 6.9: Example of consensus-based operation between smart objects.

6.4.2. Integrating handheld into environment [2]
In this section we describe how smart everyday appliances can be used in collaboration
with handheld in order to perform context aware computing.

The purposes of integrating handheld into our environment such that,

1. It provides user interfaces for SO.

2. Mobile infrastructure access point.

3. Handle large amounts of sensory data to provide context-aware services.

Integrating handhelds into environments of cooperating smart objects in a software
framework called Smoblets[2]. The term Smoblet is composed of the words smart object
and Applet, reflecting that in our approach active Java code is downloaded from smart
objects in a similar way in which an Applet is downloaded from a remote Web server [2].
Figure 6.10 shows the incorporation of smoblets into the CAMUS proposed architecture
and is adapted from [2].

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

143

Figure 6.10: Overview of Smoblet System[2]

About smoblets:

• The code that is transferred to a nearby user device - referred to as Smoblet

• Consists of Java classes that are developed on an ordinary PC during the design of

a smart object.

• As the smart objects themselves cannot execute Java code, these are transferred to
the handheld to execute and transfer back the result.

The Smoblet backend is responsible for executing downloaded code on a handheld device.
It also protects the user device from malicious programs and enables downloaded Java
classes to access data on other platforms by providing an interface to the distributed
tuplespace implementation. In contrast, the Smoblet front-end helps users to search for
smart objects in vicinity, to explicitly initiate download, and to customize the behavior of
the Smoblet backend system.

An example of user interfaces for Smart Object (SO):
Figure 6.11 shows an example of user interface for SO provided by PDA. The purpose of
this example is to show how we plan to use handheld as a complex user interface. In this
example we show how we can monitor patient’s heart beat in a smart hospital/home. The
data will be gathered by a smart object capable of sensing heart beat. The gathered data
will than be sent to nearby handheld along with smoblet that will be responsible for
displaying the sensed data.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

144

Figure 6.11: An example of user interface for SO provided by PDA

An example of mobile infrastructure access point:
Figure 6.12 shows an example of how we can use handheld as a mobile infrastructure
access point. In this scenario we consider smart collaborative objects (SCO) environment
to monitor patients in a smart hospital.

Figure 6.12: An example of mobile infrastructure access point

A patient John equipped with of smart objects and is staying in a room of a smart hospital.
John experiences difficult breathing, his smart objects, given his medical history, triggers
an alert that this is a serious condition; notifications need to be sent to the assigned nurse
who is watching another patient and to assigned doctor who is working at her office in
the next block. In order to send such notifications smart hospital uses existing mobile

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

145

infrastructure. That is, using the John’s mobile, SCO send alert message to both doctor
and nurse.

6.5 Knowledge processing
In essence a distributed architecture for collaborative objects presents a challenging
scenario for implementing knowledge-processing mechanisms that can provide the same
level of functionality as in the case of a centralized architecture. The report is organized
as follows initially we will tackle the issues related to a distributed knowledge-base in
section II and in section III we will deal with reasoning mechanisms that can be
efficiently implemented in collaborative smart objects.

Details about Knowledge Processing will be found at chapter 8.

6.6 Adaptive, Scalable and Proactive Context delivery
The purpose of this module is to,

1. Provides scaleable context discovery and delivery mechanism.

2. Classifies the HOT and COLD context data.

3. Send it to multicast or unicast channel.

4. Proactive (prediction of future request).

In a ubiquitous environment, numerous clients will request for different contexts. The
context provider should be scalable in the sense that it should be able to satisfy the need
of context information among large number of clients without performance degradation.
On the other hand due to the existence of mobile devices, number of clients as well as
their request for context may change dramatically. Hence the system should be adaptive
to the number of requests. Scalability may be achieved through broadcasting the items.
But that may consume valuable bandwidth with less important data. On the contrary, pure
unicast can not achieve scalability as in this case their server communicates with each of
the client independently. Thus to achieve the scalability and adaptability in context
delivery we have incorporated hybrid dissemination approach, where hot item (most
requested) are broadcasted and the cold items are unicasted. But this approach introduces
the challenge of identifying hot and cold items. Tough request count is a good candidate
to calculate the hot item, but that may lead to starvation of delivery of cold item (with
fewer requests). To cope up with this problem we need to take account of the waiting
time along with the number of requests. This approach is also known as RxW algorithm.
Thus we give higher priority to the item with highest number of request or the item with
longest waiting time. We further try to perform optimal bandwidth division between
broadcast and unicast to reduce average latency in receiving the context [3].

Figure 6.13 shows an example of delivering a context in multicast channel. In this
scenario we consider smart collaborative objects (SCO) environment in a smart seminar
room of a smart hospital. Dr. Shannon wants to consult about the current situation of

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

146

patient John whose health condition decrease over night with senior doctors, Dr. Frank
and Dr. Stella and assigned nurse. She calls for a seminar while she is in her office. While
she reaches to the seminar room, associated smart objects determine that it is about to
start the seminar and sends a context to all the mobile devices in a multicast channel such
that the devices do not make sound.

Figure 6.13: An example of delivering a context in multicast channel

6.7 Project plan
In this section we described our project plan for the next 5 years along with summary of
methodology we are going to use.

6.7.1 Summary of methodology
• What general development approach will be used?

– We will be using Object Oriented Approach for,
• Faster development.
• Reuse of previous development.
• Increased quality.
• Modular architecture.
• Better mapping to problem domain.

• How will the project team be organized?

– Size of the development team will be 6.
– The change control board will consists of 3 people.

• What development and collaboration tools will be used?
– Project website

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

147

– Project mailing lists
– Issue tracking system
– Version control (VC) system

• How will changes be controlled?
– Requests for requirements changes will be tracked in the issue tracker
– The change control board (CCB) will review requested changes and

authorize work on them as appropriate
– After the feature complete milestone, no new features will be added to

this release.
– After the code complete milestone, no entirely new product source code

will be added to this release.
– All source code commit log messages must refer to a specific issue ID,

after the feature complete milestone.
• How will this plan be updated?

– Throughout the project.
– Will be placed on VC.
– Automatic notification to be sent to a project mailing list.

6.7.2 Work breakdown structure and estimates
Step Description Estimate

(Month)
1. Background Study and Report 9

1.1 Scenario analysis 3

 Fundamental scenario analysis 2

 Supporting scenario analysis 1

1.2 Survey 5

 Existing middleware architecture for SCO, SCS,
handheld and backend server.

3

 Existing tools. 2

1.3 Report writing 1

2. Design 9

2.1 Middleware architecture design 4

 Define module functionalities 3

 Interface specification 1

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

148

2.2 Inter middleware communication 4

2.3 Documentation 1

3 Implementation 18

3.1 sensor node middleware(SNM). 2

3.2 smart object middleware(SOM). 3

3.3 Integration of SNM and SOM 1

3.4 handheld device middleware (HDM). 5

3.5 Integration of SNM, SOM and HDM 1

3.6 backend server (aCAMUS). 4

3.7 Integration of SNM, SOM, HDM and aCAMUS 2

3.8 Update of Documentation

4 Testing 12

4.1 Test bed design and Implementation 3

 Port SNM to sensors. 0.5

 Deployment of sensors. 1

 Port SOM to SO. 1

 Deployment of SO 0.5

4.2 Scenario testing 8

 Collaboration among sensor 1

 Collaboration among sensor and smart object 1

 Collaboration among sensor and smart object and
Handheld

1

 Collaboration among all the entities. 4

4.3 Update of Documentation 1

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

149

5. Refinement and finalization 8

5.1 Revise design 4

5.2 Revise Implementation 3

5.3 Retesting 1

6 Documentation and final report 4

6.8. References
[1] What is middleware? http://middleware.objectweb.org/
[2] Michael Rabbat and Robert Nowak: “Distributed Optimization in Sensor Networks”
http://www.ece.wisc.edu/~nowak/dosn.pdf
[2] Frank Siegemund and Tobias Krauer, “Integrating Handhelds into Environments of
Cooperating Smart Everyday Objects”
[3] Lenin Mehedy: Scalable, Semantic and Proactive Context delivery for Ubiquitous Computing. Thesis
for the Degree of Master of Science. Department of Computer Engineering, Kyung Hee University, Seoul,
Korea.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

150

7. Ubiquitous Database Manager

7.1 Introduction
There exists numerous low-level context and high-level context in Ubiquitous
Environment. Context Repository is a persistent storage of the contexts and support query
to applications. The context repository can be classified into two types: Centralized
Repository and SCO Repository. Centralized Repository is placed at backend server
which has enough computational power and large capability storage. On the other hand,
in Smart Collaborative Object (SCO) environment, there is a repository at handheld
devices which has a small computational power and storage space. Therefore the
repository must be light weight and the contexts should be stored in a distributed space
because of the characteristics of handheld devices, sensors and objects in SCO
environment.

7.1.1 SCO Environment

Figure 7.1: Smart Collaborative Object Environment

Figure 7.1 shows a typical example of smart collaborative object (SCO) environment.
There are some passive sensors connected to active sensors. These active sensors can co-
operate with each other. The term ‘co-operate’ means that they can communicate with
each other by means of sharing information. These smart co-operative sensors can also
communicate with other smart objects and handheld devices. Again, smart object and
handheld devices can communicate with each other. The contexts generated from users’
activities will be stored in the backend server as well as some important contexts will be
stored in smart objects and handheld devices. These contexts contain useful information
regarding users or these are frequently shared contexts.

Smart Collaborative Objects Smart Cooperative Sensors

Handheld Devices

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

151

7.1.2 Our Objectives
Our main concern is to build a context repository for the SCO environment. In the course
of building this context repository we need to meet the following objectives too. These
are listed below.

1. Providing a means for context storing in smart objects and smart sensors using tuple
space.

2. Ontology driven, lightweight context storing mechanism in users’ handheld devices
with agent based communication.

3. Build a central context repository in backend server to support complex reasoning
and querying.

7.1.3 Challenges
The design and development of a context repository for smart collaborative object
environment faces a number of challenges. These challenges are:

1. Low power and limited memory of handheld devices: The main goal of smart
collaborative object environment is to provide services to the users in a context-sensitive
way. It is very much expected that user will have handheld devices like PDA, mobile
phones those have limited power resource and memory. Therefore, the context storage
should be light weight so that the most essential information and context should be stored
in users’ handheld devices.

2. Location-centric: The entities in SCO environment are mobile in nature. This mobility
adds location as a new dimension to applications that does not typically play a role in
stationary scenarios. Consider a system that can answer questions such as “find the
drugstores within 2 miles of my current location”. Such a system must track the location
of the current user and be able to access information based on relative locations and
distances.

3. Machine learning: Whether the system obtains its context information from sensors,
user input, PIM (personal information management) applications, or some combination of
these, it must perform a good deal of processing over the data in order to be able to
accurately assess the state of the environment and the intensions of the user. Thus,
context-aware applications impose demanding requirements for machine learning
techniques.

4. Context reasoning: This is very much necessary to get high level context from low
level context for effective context-sensitive information in SCO environment. The
provision of context reasoning will be extremely efficient in order to be able to interact
with the user in a useful and unobtrusive manner.

5. Diversity of contexts: In SCO environment, there should be a lot of heterogeneous
devices. Those devices will produce a number of contexts which will be different in

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

152

nature. For designing and developing a successful context repository in SCO environment
we need to identify some common framework to store that context information. This
common framework should be understandable by all the devices and agents interacting in
the system.

6. Objects are distributed: Smart collaborative objects will be distributed over a
particular region. Users will be also roaming around over that region. Therefore
centralized storage system will be in no use in this environment. We must have to design
the context repository in distributed manner to satisfy the queries issued by the
distributed objects and users.

7.2 Context Modeling and Representation

7.2.1. Context Modeling Approaches
Context Modeling is one of the most important job in designing an application for a smart
space and also a really hard job that related directly to the collaboration between smart
objects. In a context modeling survey, Strang and Linnhoff-Popien specified some
important requirements that we should consider when modeling context for ubiquitous
computing system in general.

1. Distribution composition: ubiquitous environment makes the composition and
administration of the context model and its data varies with notably high dynamics

2. Partial validation: partial validation on structure and instance level is highly necessary
to control modeling intention error-prone due to the complexity of contextual
interrelationships

3. Richness and quality of information: quality and richness of information varies over
time and is different from various sensors. A context model should support quality and
richness indication

4. Incompleteness and ambiguity: a context model should cover the incomplete and/or
ambiguous contextual information that gather from sensor network.

5. Level of formality: A precise and traceable representation of contextual facts and
interrelationships helps every party in ubiquitous computing interaction share the same
interpretation of the data exchange and its meaning.

6. Applicability to exiting environments

Based on these requirements, these two authors summarized the most relevant modeling
approaches classified by the scheme of data structures which are used to exchange
contextual information. Then they evaluated these approaches against the requirement
specified above.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

153

Figure 7.2: Environment variables: key-value pairs

1. Key-value models: The simplest data structure that represents the context information
by a value provided via an environment variable to an application (Figure 7.2). In
distributed service framework, a service is described by a set of these simple attributes.
The service discovery procedure then operates and matching algorithm on these attributes.
This model is easy to manage but inefficient in describing complex contextual
information and weak to response to all requirements above. There is no common scheme
or definitions to check against.

2.Markup Scheme Models: All markup based models (Figure 7.3) use a hierarchical data
structure consisting of markup tags with attributes and content. Profiles represent typical
markup-scheme models. Typical examples for such profiles are the Composite
Capabilities / Preference Profile (CC/PP) [3] and User Agent Profile (UAProf), which are
encoded in RDF/S. various other examples can be found in Strang and Linnhoff-Popien
(2004). Markup scheme models are strong concerning the partial validation due to the
existence of scheme definition and validation tools. Other requirement is met depending
on each specific application.

Figure 7.3: CSCP instance based on RDF

3. Graphical models: Context is modeled by using a very well know modeling tool
Unified Modeling Language due to its generic structure. Various approaches exist where
contextual aspects are modeled in by using UML, e.g. Bauer in [5]. Another modeling
approach includes an extension to the ORM (Object-Role Modeling) by context
information presented in Hendricksen et al. [6]. This kind of approach is particularly
useful for structuring, but usually not used on instance level and useful for deriving an

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

154

ER-model so that can be structure in a relational database. Other requirements are
considered but not fully address.

4.Object Oriented Models: It uses the power of object-oriented benefits (e.g.,
encapsulation, reusability, inheritance) to represent different context types (such as
temperature, location, etc.) and encapsulate the details of context processing and
representation on an object level. Access the context and the context processing logic is
provided by well-defined interfaces. A representative is the cues [7] and Active Object
Model [8]. Object oriented models are strong at distributed composition. Applicability to
existing environment put the burden on the resources of the computing devices that often
can not be fulfilled in ubiquitous computing systems.

5.Logic based models: This model defines context as fact, expression together with rules
on which new concluding expressions or facts can be derived from a set of existing facts
and expressions. Contextual information adding, updating and deleting from logic based
system in terms of facts or inferred from rules in the system. The strongest point of this
approach is high degree of information. McCarthy’s Formalizing Context [9-10] and
Akman&Surav’s Extended Situation Theory [1] are examples of this approach. This
approach is high in formality but difficult to maintain partial validation and has not
considered the quality requirement as well as incompleteness and ambiguity.
Applicability also leave a major issue

6.Ontology based models: Ontologies represent a description of the concepts and
relationships. Therefore, ontologies are a very promising instrument for modeling
contextual information due to their high and formal expressiveness and the possibilities
for applying ontology reasoning techniques. Various context-aware frameworks use
ontologies as underlying context models.

The evaluation of each modeling approach based on the six requirements from Strang and
Linnhoff-Popien [2] show that ontologies are the most expressive models and can fulfill
all of their requirements. That is why this approach currently emerges as the most
appropriate modeling tools for contextual systems.

7.2.2 Context Representation
To be shared, the ontologies need a representation language. Languages like XML that
define structure of a document, but lacks semantic model, are not enough for describing
ontologies- intuitively an XML document may be clear, but computers lack the intuition.
In recent years ontology languages based on Web technologies have been introduced.
DAML+OIL [12], which is based on RDF Schema [13], is one such language. It provides
a basic infrastructure that allows machines to make simple inferences. Recently,
DAML+OIL language was adopted by World Wide Web Consortium (W3C), which is
developing a Web Ontology Language (OWL) [11] based on DAML+OIL. Like
DAML+OIL, OWL is based on RDF Schema [13], but both of these languages provide
additional vocabulary—for example relations between classes, cardinality, equality,
richer typing of properties, characteristics of properties, and enumerated classes—along
with a formal semantic to facilitate greater machine readability. The OWL language has a

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

155

quite strong industry support, and therefore it is expected to become a dominant ontology
language for the Semantic Web.

7.2.3.1 RDF Schema (RDFS)
RDFS provides the framework to describe application-specific classes, their
properties, and relationships. RDF works on instance level where as RDFS works on
schema level. An example is given below.

<rdfs:Class rdf:ID="animal" />
 <rdfs:Class rdf:ID="horse">
 <rdfs:subClassOf rdf:resource="#animal"/> </rdfs:Class>

7.2.3.2 Web Ontology Language (OWL)
OWL is built on the top of RDF & RDFS. It provides much more expressive than RDF &
RDFS with hierarchies and relationships between resources.
It has many predefined classes and properties for ontologies that can be reused. It
supports a wide variety of development tools.

7.3 Context Storing
In this section we will discuss on context storing mechanism. Before going into the
details, let’s have a look on the following questions and answers.

1.Why do we embed smartness to objects?

Adaptation to users by sensing and computing current context

2. How does smart object cooperate with each other?

By sharing contextual information

3. How does smart object adapt to user’s current activity?

By analyzing current context

4. How can the system predict user’s future behavior?

Complex reasoning over historical context

Therefore, it is quite obvious that we have to store context to achieve our goal. We must
have to build the context repository for smart sensors, smart objects, handheld devices as
well as backend server. In the previous section, we pick ontology oriented approach as
the most suitable one for modeling and representing contextual information. We will
discuss the advantages of ontology oriented approach for context storage and ontology
based database in coming sections.

7.3.1 Ontology-oriented Approach for Context Storing
Ontology is a data model that represents a domain and is used to reason about the objects
in that domain and the relations between them. Ontologies are used in artificial
intelligence, the semantic web, software engineering and information architecture as a
form of knowledge representation about the world or some part of it. It is a data model

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

156

used for implementing semantic web that is a vision of web pages that are understandable
by computers, so that they can search websites and perform actions in a standardized way.
Semantic web provides a common framework that allows data to be shared and reused
across application, enterprise, and community boundaries. The motivation of using
ontology driven approach for context repository is three folds.

• Knowledge sharing: Ontology provides a common framework for information sharing.
We used to define standard vocabularies at the time of ontology modelling. These set of
standard vocabularies could be easily understood by different smart collaborative objects
present in the environment. Therefore, the sharing of knowledge could be served in a
meaningful way.

• Knowledge reuse: we can build large-scale context ontology by reusing knowledge of
several domain specific ontologies. We need not to start from scratch to build up the
large-scale context ontology. Objects in the environment can also reuse the knowledge as
it is providing a common framework to define contexts.

• Logic inference: Systems built on the top of SCO environment need inference
mechanism. Generating high level context from low level context is very much important
for smart collaborative object environment. This inferring mechanism helps the proper
execution of the system that it gives necessary context-sensitive information to the user
thus providing necessary services to users.

7.3.2 Ontology-based Database

Figure 7.4: Different Schemes for Ontology-based Database

The database that stores data and the ontologies describing their meanings in the same
database, known as Ontology-based database (OBDBs). Figure 7.4 shows different
schemes used so far. Ontology-based data represents ontology individuals. As for

Ontology-based Database

Dual Scheme Approach Single Table Approach

Ontology Ontology-based Data

Instance Property

Hybrid

NOISA

ISA

Hybrid

Vertical

TPC

Binary

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

157

example, instance of ontology classes. To ensure a high performance of queries on top of
OBDBs efficient representation of ontology-based data is needed. There are two main
representation schemes have been proposed. They are:

• Single table approach

• Dual schems approach

In the single table approach [14-17], the description of classes, properties and their
instances are stored in a single table called vertical table [14] (see Figure 7.5). The
demerits of single table approach are

• Each column shall be indexed.

• The property column shall be clustered.

• Not efficient to process queries having a large number of join operations.

Figure 7.5: Vertical table approach

To overcome the drawback of the first approach, a dual scheme approach (see Figure
7.6) has been proposed. It consists in storing separately ontologies and instance data in
two different structures, called ontology and data, respectively [18-20].

Figure 7.6: Ontology schema in the dual scheme approach

In the dual scheme approach, instances and their properties values are also stored
separately (see Figure 7.7). Three different schemes have been proposed to record class

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

158

belonging. In the two first approaches, each class is mapped onto a table. The third one,
called, hybrid maps all classes on the same binary table.

Figure 7.7: Instance scheme alternative representations

Three representations of property values are possible: (1) binary tables, (2) vertical table
of triples and (3) hybrid approach (see figure 7.8) consisting of a set of triple tables (one
per a range data type).

Figure 8: Property value scheme alternative representations

Another new technique of storing data has been proposed named as table per class
representation approach [21]. This schema consists of all the class applicable properties
that are used at least by one instance of the class (see Figure 7.9).

Figure 9: Table per class representation approach

Path based query [22] classifies three types of query patterns

• Queries based on one or multi step structure of triples
• Queries for class hierarchy and property hierarchy

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

159

• Queries considering both RDF and RDF schema

An example of the proposed storage structure for path based query has been given below
(Figure 7.10).

Figure 7.10: Storage structure for path based query

Context Oriented RDF Database [23] is a service satisfying the requirements for
CODBS (context oriented database service) based on the semantic web technologies.
Here, a profile is referred to a reusable resource (Figure 7.11) that can be identified via a
URI. Profiles are containers of key-value pairs. Each pair is a context element where the
key serves both as the URI and source of semantics (Figure 7.12).

Figure 7.11: Partial RDF representation of a user profile

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

160

Figure 7.12: Set of context elements resulting from figure 8

7.4 Our Solution for Context Repository
For building a successful context repository, we must have to provide a means to
interchange contextual information among smart sensors, smart objects. Furthermore, we
have to ensure that some user-oriented context will be stored in users’ handheld devices
as well as each and every context will be stored in the backend server. In the coming
portion, we will talk about our solution involving distributed tuple space for smart objects
and sensors, ontology-based lightweight database for users’ handhelds and context
repository for backend server.

7.4.1 Distributed Tuplespace for Smart Objects and Smart Sensors
Distributed tuplespace (Figure 7.13) provides a platform for storing and exchanging
sensory data and contextual information. It distributes the originally centralized
tuplespace structure among different nodes. In our approach, we will distribute
tuplespace among smart objects.

Figure 7.13: Distributed Tuplespace

Here are some more details on distributed tuplespace.

• Tuple spaces are a realization of the associative memory aka the blackboard
architecture for storage [24].

• A data structure shared by all the objects cooperating with each other.

• Shared data structure.

• Each node contributes a portion of its local memory to the shared data space.

• Operations on shared data space reflects to all local spaces.

7.4.2 Ontology-based Lightweight Database for users’ handhelds
The main component of our ontology driven context repository is entity. User, meeting
room, class room, restaurant etc. is examples of different kinds of entities. In our
definition of an entity computer or any other computational devices are not an entity itself
rather it belongs to the environmental context of that particular entity. The contextual
information for a particular entity can be roughly subdivided into the following categories.

Local

Tuplespace

Smart Object

Local

Tuplespace

Smart Object

Local

Tuplespace

Smart Object

Distributed Tuplespace

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

161

• Environmental context: This part captures the entity’s surroundings like things, services,
agents, environmental condition, users and information accessed by users.

• Spatio-temporal context: This type of context is concerned with attributes like time,
location and movement.

• Task context: This describes what the entity is doing, it can describe the entity’s goals,
activities etc.

This contextual information can be efficiently managed by ontology. Ontology provides
a common framework for understanding this information. Here we give an example of
ontology with related concepts for an entity (Figure 7.14).

Entity

Environmental Context Spatio-Temporal Context Task Context

CompEntity

Service

Other Entities

Time & Location Activities

Environmental Condition

Entity Profile

Is a

Is a Is a

Is PartOf

Has Profile

Entity

Environmental Context Spatio-Temporal Context Task Context

CompEntity

Service

Other Entities

Time & Location Activities

Environmental Condition

Entity Profile

Is a

Is a Is a

Is PartOf

Has Profile

Figure 7.14: Concepts of ontology for an Entity

Each entity in our smart collaborative object environment will communicate with each
other by means of its agent. The goal of agents is to reduce user work and information
overload.

An agent is an autonomous computer program, which has some specific functions and
responds to specific events, based on pre-defined knowledge rules or user’s instructions
[25].

Three fundamental roles of agents (Figure 7.15) are essential to smart collaborative
environments: information finder/filter, information interpreter, and decision maker.

• An information finder and filter helps users to find out the requested information and
filter out unnecessary information according to a specified user task. The agent will
provide a reasonable number of choices to users or suggest an alternative option if the
requested information items are not available.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

162

• An information interpreter can access and convey information from one side to the
other. In distributed network environments, heterogeneous data models and systems can
not communicate directly.

• A decision maker can make decision autonomously based on its own knowledge and
user-defined rules. An agent can collect and analyze information according to specific
events, such as the migration and linkages of objects and components, and then make an
optimal decision based on the rational rules defined by users or other agents.

Entity Agent

Information finder & filter

Decision maker

Information interpreter
Is PartOf

Is PartOfIs PartOf

Entity Agent

Information finder & filter

Decision maker

Information interpreter
Is PartOf

Is PartOfIs PartOf

Figure 7.15: Block diagram of an Entity Agent

Agent for a particular entity is responsible for knowledge sharing with other agents of the
smart collaborative object environment. Actually the agent retrieves contextual
information from the ontology based database of each entity. As our primary concern is
to make the database a lighter one, we will use one of the light-weight database
techniques. This light-weight database holds the ontology and ontology-based data for a
particular entity. By means of agent of that entity, this data can be shared with other
agents thus leads to the collaboration among different entities (Figure 7.16).

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

163

Entity

Environmental Context Spatio-Temporal Context Task Context

Entity Profile

Is PartOf

Has Profile

Entity Agent

Information finder & filter

Decision maker

Information interpreter
Is PartOf

Is PartOfIs PartOf

Light-weight Database

Entity

Environmental Context Spatio-Temporal Context Task Context

Entity Profile

Is PartOf

Has Profile

Entity

Environmental Context Spatio-Temporal Context Task Context

Entity Profile

Is PartOf

Has Profile

Entity Agent

Information finder & filter

Decision maker

Information interpreter
Is PartOf

Is PartOfIs PartOf

Light-weight Database

Figure 7.16: Interaction among Entity, Database and Agent

Next, we discuss on some light-weight database techniques like SQLite, HSQLDB, Mini
SQL etc.

• SQLite [26]: SQLite is a small C library that implements a self-contained,
embeddable, zero-configuration SQL database engine. SQLite is an embeddable
database system that uses flat files. It does not need to be started, stopped,
configured, or managed like other SQL databases. It is lightweight, fast, and
compact. And it works completely out of the box without any configuration.

• HSQLDB [27]: HSQLDB is the leading SQL relational database engine written

in Java. It has a JDBC driver and supports a rich subset of ANSI-92 SQL (BNF
tree format) plus SQL 99 and 2003 enhancements. It offers a small (less than
100k in one version for applets), fast database engine which offers both in-
memory and disk-based tables and supports embedded and server modes.

• Mini SQL [28]: Mini SQL, or mSQL, is a lightweight database engine designed

to provide fast access to stored data with low memory requirements. As its name
implies, mSQL offers a subset of SQL as its query interface.

7.4.3 Context Repository in Backend Server
There are two alternatives for context storing in backend server.

1. Ontology-based Database

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

164

2. Profile-based Storage

Both of these schemes have been discussed on section 3.

In the backend server, context will be collected in a timely manner from smart sensors,
smart objects as well as users’ handheld devices. Some principle features of backend
server includes

• Support complex reasoning (e.g. Bayesian reasoning).

• Support prediction of user and object behavior.

Figure 7.17. Context Repository Architecture in Backend Server

Figure 7.17 depicts the context repository architecture in backend server. Context linker
links data from different sources to the relevant information entity (e.g. Context location
linker, user linker, device linker). Context merger integrates context from different
sources, also identifies which parts of context is changed. Agent using context will
subscribe the notification schedule to context middleware and will receive notifications
when relevant part of context is changed. While receiving new context, it sends to
reasoning engine to specify the tasks needed to automatically perform for users to adapt
new context. Tasks will be sent to appropriate application agents’ services.

7.5 Context Querying Interface
Our next concern is to how queries will be executed on stored context? Synchronous or
asynchronous query mode? What would be the result format and query languages?
For finding the answers for the aforementioned questions, we need to define a query
interface. Here we will discuss on SQI (Simple Query Interface) [29].

7.5.1 Requirements and Design Principles
Here we present an Application Program Interface (API) for querying learning objects
repositories. Since one major design objective is to keep the specification simple and easy

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

165

to implement, the interface is labelled Simple Query Interface (SQI). The collaborative
effort of combining highly heterogeneous repositories has led to the following
requirements:

1. SQI is neutral in terms of results format and query languages: The repositories
connecting via SQI can be of highly heterogeneous nature: therefore, SQI makes no
assumptions about the query language or results format.

2. SQI supports Synchronous and Asynchronous Queries in order to allow application of
the SQI specification in heterogeneous use cases.

3. SQI supports, both, a stateful and a stateless implementation.

4. SQI is based on a session management concept in order to separate authentication
issues from query management.

7.5.2 Synchronous and Asynchronous Query Mode
SQI can be deployed in two different scenarios.

1. In the synchronous scenario (Figure 7.18), the target returns the query results to the
source. Results retrieval is therefore initiated by the source through the submission of the
query and through other methods allowing the source to access the query results.

2. In the asynchronous scenario (Figure 7.19), results retrieval is target-initiated.
Whenever a significant amount of matching results is found, these results are forwarded
to the source by the target. To support this communication the source must implement a
results listener. The source must be able to uniquely identify a query sent to a particular
target (even if the same query is sent to multiple targets). Otherwise the source is not able
to distinguish the search results retrieved from various targets and/or queries previously
submitted to a target.

Please note that the asynchronous query mode does not require an asynchronous handling
on the messaging layer. It can also be implemented by two synchronous functions at the
source and the target, respectively.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

166

Figure 7.18. Synchronous Query Mode

A query interface operated in synchronous mode can perform multiple queries per session
(even simultaneously).

In case of an asynchronously operated query interface, the source provides a query ID
that allows it to link incoming results to a submitted query (the source might query many
targets and each target might answer to a query by returning more than one result to the
source). Multiple queries can also be active within a session in asynchronous query mode.

Figure 7.19. Asynchronous Query mode used for performing a federated search

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

167

7.5.3 The Simple Query Interface – An Interoperable Application
Service for Querying
While for many aspects of the Interoperability Framework wide-spread solutions do exist,
the educational domain is still lacking interoperable application services that take
advantage of standards such as IEEE LOM, WSDL/SOAP, and XML. In this section we
propose an application service for querying that can be used for federating heterogeneous
learning object repositories.

An application service for querying needs to specify a number of methods a repository
can make available in order to receive and answer queries from other applications. To
distinguish the requestor from the answering system in our scenarios, the term ‘source’ is
introduced in order to label a system which issues a search (the source of the query). The
term ‘target’ labels the system which is queried (the target of the query). Alternatively,
the ‘source’ can also be referred to as ‘requestor’ and ‘target’ as ‘provider’.

Metadata can be stored using different means, such as file-based repositories, (possibly
distributed) relational databases, XML databases, or RDF repositories. In order to make
learning repositories interoperable, not only a common interface needs to be defined, but
also a common query language together with a common results format for learning object
descriptions needs to be agreed on.

The query service is used to send a query in the common query language to the target.
Next, the query results, represented in the common results format, are transported to the
source. On the implementation level, wrappers may need to be created to convert a query
from a common query language X to a local query language Y and transform the query
and the query results from a proprietary format to a common one and vice-versa.

Figure 7.20 illustrates an exchange process, where Learning Repository A (the source)
submits a query to Learning Repository B (the target). It is assumed that both systems
have agreed upon a common query language beforehand. The concepts used in the query
statement are part of a common (query) schema. At Repository B, the interface
component might need to transfer the query from the common query language to the local
one. Also some mappings from the common to the proprietary schema might be required
before submitting the search. This task is performed by a wrapper component. Once the
search has yielded results, the results set is forwarded to the source, formatted according
to a common results format.

The collaborative effort of combining highly heterogeneous repositories has led to the
following requirements.

1. The application service needs to be neutral in terms of results format, query schema
and query language. The repositories connecting can be of highly heterogeneous nature:
therefore, no assumptions about these components of the interoperability framework can
be made.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

168

2. The application service needs to support synchronous and asynchronous queries in
order to allow the application to be deployed in various use cases and heterogeneous
network architectures.

3.The application service needs to support, both, a stateful and a stateless implementation.

4.The application service shall be based on a session management concept in order to
separate authentication issues from query management, but also for providing an anchor
point for implementing simple business models for access control.

Figure 7.20: Communication between two Repositories

7.6 Five-year Project Plan

7.6.1 Phase I
1st
Year

Background Study, Requirement Analysis and
Feasibility Study

 1. Background Study

1. Literature Review
1. Smart Sensors

2. Smart Objects

3. Distributed Tuplespace

4. Ontology-based Modeling

5. Lightweight Database

6. Ontology-based Database

7. Profile-based Storage

8. Query Engine

2. Reviewing the existing system
1. Methods used

2. Performance

3. Identify scope of improvement

2. Requirement Analysis

1. Identify the Challenges to Build the System

2. Identify the Project Requirements based on the
Challenges

1. Methods

2. Resources

3. Developers Skills

3. Feasibility Study

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

169

1. Identify the End Users for the System

2. Identify Users Needs from the System

3. Availability of Technology to Meet the
Requirements

Figure 7.21. Gantt Chart for 1st Year

2nd
Year

Architecture Specification and System Design

 1. Architecture Specification

1. Distributed Tuplespace Architecture
1. Local Tuplespace Architecture in Smart Objects

2. Associative Memory based Distributed Tuplespace
Architecture

3. Identify interaction among Smart sensors and
objects

2. Ontology-based, Lightweight Database
Architecture

1. Concepts Definition
2. Lightweight Database Architecture

3. Agent Definition

3. Identify Collaboration among Smart Objects and
Handhelds

1. Query Interface Architecture

2. Interface for Smart Objects using handhelds

4. Context Repository in Backend Server
1. Modeling repository

2. Modeling Context Linker and Merger

3. Query Interface

5. Finalize architecture specification
1. Integrating Components into same Platform

2. Finalize Overall System Block Diagram

2. System Design

1. Design Each Component
1. Tuplespace Format Specification

2. Lightweight Database Tuple Format Specification

3. Backend Server Context Repository Schema
Definition

2. Co-ordination among each Component
1. Design API’s for Intra-Interaction

2. Design API’s for Inter-Interaction

3. Software Agent Design

3. Incorporate query interface (e.g. SQI)

4. Finalize Overall System Design

5. Prepare Class Diagrams

6. Prepare Sequence Diagrams

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

170

Figure 7.22 Gantt Chart for 2nd Year

3rd
Year

Implementation

 1. Implementation

1. Ascertain Availability of Candidate Technologies
2. Choosing Technology and Platform to Implement

3. Implementing Each Component
1. Distributed Tuple Space

2. Ontology-based, Lightweight Database

3. Context Repository in Backend Server

4. Implement API’s for Interaction among Each
Component

1. Intra-Sensors Interaction

2. Smart Sensors- Smart Objects, Handhelds
Interaction

3. Intra-Object Interaction

4. Smart Object- Handhelds Interaction

5. Smart Object- Server Interaction

6. Handhelds- Server Interaction

5. Provision for Reusability

6. Start Documentation

Figure 7.23: Gantt Chart for 3rd Year

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

171

7.6.2 Phase II
4th
Year

Testing and Performance Evaluation

 1. Testing

1. Unit testing

2. Integration testing

3. Overall system testing

2. Performance Evaluation

1. Evaluate the Performance

1. Each Component Performance

2. Overall System Performance

2. Find out the Performance Bottleneck

3. Changing Code for Increased Performance

4. Regression Testing

Figure 7.24: Gantt Chart for 4th Year

5th Year Deployment and Support
 1. Deployment

1. Deploy the Developed System into
Real Environment

2. Find out System Bugs

3. Fix the System Bugs and Re-Deploy
the System

2. Support

1. Prepare User Documentation

2. Train Users and Operators with the
System

3. Finalize Developers Documentation

4. Proper Maintenance of the System

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

172

Figure 7.25: Gantt Chart for 5th Year

7.7 Conclusion
Though our proposed context repository scheme still in a abstract level of thinking, it can
satisfy the requirements for SCO environment. We are going to use one of the light-
weight databases that will take out a huge overhead of computational power and memory.
Moreover, each entity will hold the ontology for itself that introduce the provision of
distributed modular ontologies [30, 31]. Ontology provides a data model that can serve as
a common framework for context storing thus make knowledge sharing and reuse
effective. Logic inference is very much possible by using the Semantic Web Rule
Language (SWRL) [32] and a rule engine like Java Expert System Shell (JESS) [33]. Our
next step is to further investigate the strengths and weaknesses of the proposed
architecture for context storing and once finalize the architecture then, to implement the
context repository for SCO environment.

7.8 References
1. T. Gu, X. H. Wang, H. K. Pung, D. Q. Zhang. An Ontology-based Context Model in
Intelligent Environments. In Proceedings of Communication Networks and Distributed
Systems Modeling and Simulation Conference (CNDS 2004), pp. 270-275. San Diego,
California, USA, January 2004
2.Thomas Strang, Claudia Linnhoff-Popien: A Context Modeling Survey. Workshop on
Advanced Context Modelling, Reasoning and Management as part of UbiComp 2004 -
The Sixth International Conference on Ubiquitous Computing, Nottingham/England,
September 2004
3.W3C. Composite Capabilities / Preferences Profile (CC/PP). http://www.w3.org/Mo-
bile/CCPP.
4.WAPFORUM. User Agent Profile (UAProf). http://www.wapforum.org.
5.BAUER, J. Identification and Modeling of Contexts for Different Information
Scenarios in Air Traffic, Mar. 2003. Diplomarbeit.
6.HENRICKSEN, K., INDULSKA, J., AND RAKOTONIRAINY, A. Generating
Context Management Infrastructure from High-Level Context Models. In Industrial
Track Proceedings of the 4th International Conference on Mobile Data Management
(MDM2003) (Melbourne/Australia, January 2003), pp. 1–6.
7.SCHMIDT, A., BEIGL, M., AND GELLERSEN, H.-W. There is more to context than
location. Computers and Graphics 23, 6 (1999), 893–901.
8.CHEVERST, K., MITCHELL, K., AND DAVIES, N. Design of an object model for a
context sensitive tourist GUIDE. Computers and Graphics 23, 6 (1999), 883–891.
9.MCCARTHY, J. Notes on formalizing contexts. In Proceedings of the Thirteenth
International Joint Conference on Artificial Intelligence (San Mateo, California, 1993), R.
Bajcsy, Ed., Morgan Kaufmann, pp. 555–560.
10. MCCARTHY, J., AND BUVAˇC. Formalizing context (expanded notes). In Working
Papers of the AAAI Fall Symposium on Context in Knowledge Representation and
Natural Language (Menlo Park, California, 1997), S. Buvaˇc and Ł. Iwa´nska, Eds.,
American Association for Artificial Intelligence, American Association for Artificial
Intelligence, pp. 99–135.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

173

11. Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L.
McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein. OWL Web Ontology
Language Reference. February 2004. W3C Recommendation, available at:
http://www.w3.org/TR/owl-ref/.
12. J. Hendler and D. L. McGuinness. The DARPA Agent Markup Language. IEEE
Intelligent Systems, 15(6):67–73, 2000.
13. D. Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema. 2003. W3C Working Draft, work in progress, available at:
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/.
14. R. Agrawal, A. Somani, and Y. Xu. “Storage and querying of e-commerce data” In
Proc. VLDB’01, pages 149–158, 2001.
15. B.McBride. “Jena: Implementing the RDF model and syntax specification.” In Proc.
of the 2nd Intern. Workshop on the Semantic Web, 2001.
16. S. Harris and N. Gibbins. “3store: Efficient bulk RDF storage.” In Proc. of the 1st
Intern. Workshop on Practical and Scalable Semantic Systems (PSSS’03), 2003.
17. L.Ma, Z. Su, Y. Pan, L. Zhang, and T. Liu. “Rstar: an RDF storage and query system
for enterprise resource management.” thirteenth ACM international conference on
Information and knowledge management, 2004:484 – 491.
18. S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, and K. Tolle. “On
storing voluminous rdf descriptions: The case of web portal catalogs.” In Proc.
ofWebDB’01 (co-located with ACM SIGMOD’01), 2001.
19. J. Broekstra, A. Kampman, and F.V. Harmelen. “Sesame: A generic architecture for
storing and querying rdf and RDF schema.” In Proc. of the First Inter. Semantic Web
Conf., pages 54–68, 2002.
20. Z. Pan and J. Heflin. “Dldb: Extending relational databases to support semantic web
queries.” ISWC’2003, 2003.
21. H. Dehainsala, G. Pierra, L. Bellatreche, “OntoDB : An ontology based database for
data intensive applications”, DASFAA 2007.
22. YounHee KIM, ByungGon KIM, and HaeChull LIM. “Design of Storage Structure
for Path-Based Query on RDF and RDF Schema.” IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences 2006. Volume E89-A , Issue 6.
pp. 1733-1735
23. Mohammad-Reza Tazari. “A Context-Oriented RDF Database. The first workshop on
the Semantic Web and Databases.” Tazari, M.R. Berlin (Germany), September 2003.
24. Wikipedia: http://en.wikipedia.org/wiki/Tuple_space.
25. M.H. Tsou, B.P Buttenfield,”An agent-based Communication Mechanism for
distributing geographic information services on the Internet”, GiScience 2000, Georgia.
26. SQLite: http://www.sqlite.org/
27. HSQL: http://hsqldb.org/
28. Mini SQL 2.0: http://www.hughes.com.au/library/msql/manual_20/
29. CEN/ISSS (2005). A Simple Query Interface Specification for Learning Repositories
(CEN Workshop Agreement #15454). Brussels, Belgium, retrieved 23March 23, 2006.
30. Y.Qu, Z.Gao, “Interpreting Distributed Ontologies”, WWW 2004, USA.
31. Jie Bao, V.Honavar,”Adapt OWL as a Modular Ontology language (a position
paper)”

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

174

32. SWRL: A Semantic Web Rule Language Combining OWL and RuleML,
http://www.w3.org/Submission/SWRL/

8. Knowledge Processing

8.1 Introduction

8.1.1 Ubiquitous Computing Vision
The term "Ubiquitous Computing" was originally introduced by Mark Weiser [1] in the
year 1991. In his fundamental article "The Computer for the 21st Century" [2], he
elaborated about "the computer that disappears". For Weiser the way into the 21st century
was obvious: Computer and Network technologies are getting smaller, cheaper, and more
powerful. Therefore, more and more everyday artifacts are going to be equipped with a
reasonable amount of computing power and, maybe even more important, are networked
together into a virtually unique network of communicating "things that think". In the pure
sense of the word, computing gets "ubiquitous", anywhere, any time. Computers in every
thing that is calmly doing what we intend it to do, in a way that is non-obtrusive and user-
friendly, in a sense that we do not have to focus our attention on the trivia of running an
electronic system.

Research on Ubiquitous Computing (Ubicomp) is related to very many other disciplines
from Robotics and Embedded Systems, Networking and Distributed Systems, to

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

175

Artificial Intelligence and Psychology. Thus Ubiquitous computing is a very difficult
integration of human factors, computer science, engineering, and social sciences.

8.1.2 Context-aware Computing
One goal of Context-aware Computing is to acquire and utilize information about the
context of a device to provide services that are appropriate to the particular people, place,
time, events, etc. For example, a cell phone will always vibrate and never beep in a
concert, if the system can know the location of the cell phone and the concert schedule.
Often, the term "Context-aware Computing" is used in a sense synonymously to
Ubiquitous Computing. This is because almost every ubicomp application makes use of
some kind of context. Ubicomp is mainly about building systems which are useful to
users, which "...weave themselves into the fabric of everyday life until they are
indistinguishable from it" [2].

For ubicomp systems, Context is essential. How can a system be helpful for a user? Users
tend to move around often, doing new things, visiting new places, changing their mind
suddenly, and changing their mood, too. Therefore, a helpful system seems to need some
notion of Context.

In the Human point of view, we have a quite intuitive understanding of Context. Here,
Context is often referred to as "implicit situational understanding." In social interactions
Context is of great importance. A gesture, a laugh, or the tone of sentences builds up the
implicit "picture" of what is meant or what communication partner is thinking. The same
words can have a completely different meaning in different contexts.

In Computer Science, Context is quite a familiar concept, be it within the discipline of
Artificial Intelligence ("Thinking machines"), in Robotics ("Adaptive Systems"), in User
Interface Design (like adaptive UIs or office assistants like the Microsoft Office assistant
called "Clippy"), or basically any other discipline (to some extent). Especially, every
discipline dealing with human users tries to take into account human behavior one way or
the other, with the generated output loops back as part of the vector of input values.

From the variety of definitions commonly used by Ubicomp researchers we can imagine
how difficult it is to find a common ground. Context definitions are far away from
mathematical precision and a particular definition often strongly depends on an authors'
subjectiveness:

• Schilit and Theimer [3]: "Context is location, identities of nearby people and
objects, and changes to those objects."

• A. Dey and Abowd [4]: "Context is any information that can be used to

characterize the situation of an entity. An entity is a person, place, or object that
is considered relevant to the interaction between a user and an application,
including the user and applications themselves."

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

176

• Pascoe [5]: "Context is the subset of physical and conceptual states of interest to a
particular entity."

So what is this leading to? Are those definitions helpful or misleading? In the sense of a
functional definition they are only helpful as a general description of what to do. As an
application designer they are only stating what they are doing anyway: trying to figure

out what input is needed to produce the desired output. Hence, it is of topmost
importance to have some common ground or a common "vocabulary" when talking about
what Context is. We need some sort of formal approach towards handling and describing

Context. Furthermore, in a software engineering sense, we need building-blocks for
building context-aware applications in a structured way. The Context Toolkit [6] by A.

Dey is a step into this direction and a good example for this principle (fig.1.) The Toolkit
includes building blocks called "Widgets", wrapper classes for Sensors which serve as a
hardware-abstraction layer, "Aggregators", which concentrate multiple input values to a

single output value, and "Interpreters", implementing some application logic and
generating application dependant "higher-level" output based on the input given. They

interpret the incoming data according to a pre-programmed scheme.

Figure 1: The Context Toolkit Core Components

With the Context Toolkit, the development of Context-aware applications basically
consists of several distinguishable steps including

1) The real-world is sensed;

2) Context is detected, aggregated, "interpreted", and

3) Applications are custom-built to match the "context-detection" technology.

However, we believe that there is more tool-support necessary for software engineering
and the design of Context-aware applications than provided today. We want to emphasize
that the way applications are developed is very dependant on the underlying technology
used, which we consider as bad practice in the long run. Research in the direction of

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

177

decoupling applications from data acquisition seems to be important. This is detailed in
the section 2, Middleware for Context-aware Ubiquitous Computing Environments.

8.1.3 Role of Knowledge Processing
Formation of the context information relies heavily on the inter-dependency of the
various events, entities and other domain objects. A formal approach for context
formation should be able to recognize these inter-dependencies and combine the current
information to form the effective context. This sort of an approach would heavily rely on
domain-knowledge, the performance of a system made along these lines would also be
affected by the knowledge representation scheme used in such a heavy knowledge-based
system.

The Knowledge processing layer of CAMUS is mainly responsible for providing these
knowledge-related services especially storing the domain information and definitions in
an efficient manner, defining rules for context-processing and synthesis, providing
adequate mechanisms for transforming the sensed data into useful complex concepts,
providing efficient means of tracking user-location. These tasks can be considered as
forming the fundamental aspects of the knowledge processing in a context-aware
ubiquitous system. Additional functionalities can be defined to cater for more complex
tasks which depend on the degree of interaction to be kept with the user and his
environment. As the amount of interaction becomes more intense, so does the need to
store more elaborate information, more complex mechanisms for context and complex-
concept formation increases. In essence the Knowledge-Processing layer forms the brain
of the system.

Figure-2: The CAMUS architecture

The current CAMUS architecture, as shown in figure-2, incorporates the knowledge
processing components at all stages. The extraction of features and their conversion to
context information forms the core operation of the knowledge processing layer. This
task is achieved by the collaboration between the ontology repository, the feature-
extraction layer, the reasoning modules. The reasoning modules range form general
reasoning mechanism to specialized reasoning mechanisms such as the location reasoning
module. The knowledge processing layer is responsible for carrying out all the needed
tasks and then providing the outcome in the form of general or specific context

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

178

information to the service delivery layer which in turn is responsible for invoking the
required services as mentioned by the application.

The knowledge processing layer requires very intensive computations for carrying out
these tasks, it is needed to implement these knowledge-processing in a computationally
efficient manner, thus there is a trade-off between the preciseness of the results and the
speed with which the computations are performed.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

179

8.2 Data Management in CAMUS

8.2.1 Motivation
Ubiquitous data management has a lot of challenges, which are not there in conventional
data management application. The following list outline a few challenges, this list by no
means complete. The ubiquitous application area is growing and a lot of challenges are
still on the way.

 Users are moving from place to place (Location Awareness, High Mobility)
 Data are stored in many places. (High Distribution)
 Various devices are with different capabilities and they use different means to

store/access data. (High Heterogeneity)
 Users cannot consistently control all the smart spaces he ever interacted with.

(High Autonomy)
 Users generate certain data and may want to access others. (Sharing and

Collaboration)
 The context of data is also important (Context Awareness)
 The source of data must be known (Provenance)
 Others: resource-constrained devices, unreliable connectivity and light weight

communication and security measures.

CAMUS has a central repository to maintain data with context. Data is captures by
lowest layer through different sensors and given to second layer which build context from
that data using OWL Ontology. This context-mapped data is pertinent to query the
context later on. The data repository is responsible to maintain this data for future uses.
How would this repository attack all the challenges will be discussed later in this report?

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

180

8.2.2 Architecture

8.2.3 Meta Data Management
The Meta Data is very important in CAMUS as it gives an open way to accessibility and
understanding of the data present in the repository. Metadata can provide richer searching
and other services within a service and the glue for integration across several services.
There are several key standard for maintaining metadata, we are using RDF based
metadata to define and store data related to context and reasoning engines. The metadata
is a separate storage in the repository that can be very helpful in migrating this metadata
to some other application.

8.2.4 Data and Knowledge Management
The focus of data and knowledge management in CAMUS repository is ‘doing the thing
right’ instead of ‘doing things right’. It does cater to the critical issues related to
adaptation, maintenance and manipulation of both data and knowledge present in the
repository. In ubiquitous application the very nature of data required a lot of care and
hence the data and knowledge management process and procedures and very important in
this regards. One of the main issues in pervasive computing is that how to manage the
context data over a large number of domains. A ubiquitous computing system can consist

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

181

of many subsystems running on various domains such as home domain, office domain,
university domain, etc. Furthermore, many ubiquitous systems can collaborate with each
other to build a large pervasive environment. The use of ontology can help sharing the
knowledge about data among different domains and systems. However, such a distributed
and dynamic environment requires an efficient mechanism to store and retrieve context
data over multi-domain repository and at the same time we also required the metadata of
this multi-domain to assimilate and understand different domain and context within these
domain.

8.2.5 Knowledge Sharing and Querying
The knowledge sharing and querying process in CAMUS is very simple and elegant.
Each access for querying and sharing requires going through the metadata interface and
getting the required information access criteria from there, and then the actual access is
being made depending upon the nature of query and information share.

8.2.6 Provision of Summary Data
CAMUS offers context summarization and garbage collection for the un-referenced and
redundant context data. Similarly a variety of different reasoning engines are available in
CAMUS to apply different type of reasoning required by any application, which is
running on top of CAMUS. Summary data provide a lot of ease in information retrieval.
Question arises here what to summarize and how to summarized the required data. The
provision to keep summary data in the repository is there and the query processing
exploits the fast that this summary data can decrease the query time.

8.2.7 Conclusion
In this chapter we discussed the role of repository in CAMUS, we are still evaluating
different databases for performance reasons. There is no standard repository available to
store and manipulate ontological data. The methodology we suggested here is a
framework for knowledge management is ubiquitous environment. The selection of the
repository is still on going project and will be incorporated in the next version of this
technical report.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

182

8.3 Context Summarization & Context Garbage Collection

8.3.1 Introduction
The idea of Ubiquitous Computing [1] is gaining the popularity with every passing day.
Several research groups are developing their own ubiquitous computing projects [2] [3]
[4] [5]. Ubiquitous (or pervasive) computing provides a computing environment where
computing resources are spread through out, present everywhere in the environment and
providing services to user seamlessly & invisibly without any explicit user intervention.
A ubiquitous computing environment, thus, contains a number of devices, sensors, and
software systems.

Context Awareness is among the foremost important features of any ubiquitous
computing environment. In order to provide appropriate services to user, an application
needs to be aware of the user and environmental context. Similarly at lower levels of
abstraction, an application (or middleware) is also required to be aware of the
computational context including device and network state. So what is ‘context’ itself? We
take context as the ‘implicit situational understanding’ and consider all the information
that defines a situation as context. So, location, temperature, network bandwidth, device
profile, user identity can all be taken as the context information or simply context.

Since a Ubiquitous Computing system needs to deal with such huge and diversified
information (context), there should be an appropriate context model to define, represent,
and store the context efficiently in some context repository. The management of context
information and data in ubiquitous computing imposes lots of issues and challenges. M. J.
Franklin [6] has identified a number of such issues in ubiquitous data management such
as those posed by adaptivity, ubiquity, mobility and context awareness

We approach the context (or data) management in ubiquitous computing from a different
perspective. We are working on to identify the relevance and significance of information
that a ubiquitous computing system receives from sensors and its surrounding. We
believe that identifying and removing the irrelevant context (we call it ‘garbage collecting
context’) and summarizing the available or incoming context (which we call the ‘context
summarization’) will result in the improved performance of knowledge reasoning,
inference making, machine learning and efficient use of computing resource including the
storage space required by the Context Repository.

8.3.2 Problem Definition
Usually a ubiquitous computing environment comprises of a number of different sensors
providing context information like

• Environmental context (temperature, pressure, light),
• Audio,
• Video,
• Location context,
• Computational context (network bandwidth, underlying operating system,

hardware specification)

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

183

• The list goes on and on…

The context information comes in a continuous stream with each sensor emitting the data
regularly (at least during some interested activity). We are heading towards flood of
context data. Such a huge amount a data requires proper management and should be dealt
with great care. At this point, we need to answer what to do with such a huge amount of
data? Do we need to store all of this data? More importantly do we really need such a
large amount of data?

Several data items sensed from the environment are required for some instant processing
and reasoning, e.g., the presence of a person can be used to trigger the activity of turning
lights on or caching the data related to the particular user. But most of the time, we also
need to store the context for later use; knowledge reasoning, inference making and
machine learning. For instance, we may need to keep the context of user presence for
some on going (near future) activities, we may also need to store this information to
reason about what she is doing and to make the inference what she might be up to. We
also need this and other related context information (like time, and other activity details)
for machine learning. Using various similar activities, a system can extract the patterns of
activities and use such patterns to infer expected user intentions.

But storing all such context information imposes several issues. First, it requires
considerable amount of storage space. Since ubiquitous computing systems are
essentially distributed, therefore, migrating larger amount of data puts significant burden
over network traffic. Secondly, the query processing and data retrieval on large context
repository requires significant computing resources decreasing the overall throughput of
the system. Thirdly, several contexts needs to be discarded and should not be stored
permanently. For example, the data with low precision, because of noise, needs to be
filtered out before sensitive operations (e.g., heartbeat rate of a patient). Privacy control
also prevents us from storing each and every information, e.g., the information that user
is in washroom. Lastly, the performance and efficiency of techniques such as knowledge
reasoning, inference making and machine learning depends heavily on the size of
supplied data.

So what can be done then? We present our proposed solution to cop up with such issues.

8.3.3 Proposed Solution
First we need to identify the low precision, irrelevant and redundant context and the one
that is no longer useful and remove such context information. We call this process as
Garbage Collecting Context (GCC).

Secondly, we need to summarize the actual (raw) context in such a way that it is more
meaningful, can be used more efficiently for reasoning, etc and takes up less storage
space. We name this process as the Context Summarization (CS).

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

184

A simple analogy is the human behavior towards the received news. Every day, we read a
lot of news in newspaper, on internet and through television. But do we (need to)
remember all the words and information that make up a particular activity or event? What
we actually (need to) remember is some compact information about a particular event
that what has actually happened. For example, Bob watches a soccer match for 70
minutes with a lot of attention but after the match is over, he does not remember exactly
what had happened in the 14th minute of the game. What he actually remember is some
pattern or a summary of the match like who has won the match, few ups and down during
the match and how many goals were scored and by whom. This is very close to what we
mean by Context Summarization that instead of storing each and every raw information,
only keep the summarized and meaningful context information. Coming back to the
scenario, after the match is over, Bob tends to forget some information, for example, how
far did the ball go when Player X kicked it and who received it. Also, as time goes by, he
also tends to forget more details like a spectator had broken in to the game field. This act
of discarding irrelevant information is analogous to the concept behind Garbage
Collecting Context

In the following subsections, we will discuss, in more detail, about Garbage Collecting
Context and Context Summarization.

8.3.3.1 Garbage Collecting Context (GCC)
Garbage Collecting Context is analogous to the concept of garbage collection in
programming languages [7] [8] where we try to identify the memory areas no longer
needed by a program and free it. Similarly in GCC, we try to identify the relevance and
significance of context data and filter out (remove) the irrelevant, redundant and useless
context.

Garbage Collecting Context can be used at various places. It can be used to filter out the
noise in the data, i.e., the data with low precision so that it does not affect the efficiency
of system actions taken on the basis of incoming context. For example, in some hospital
system if a particular context value of the heartbeat rate of a patient is not sensed
accurately because of some noise and interference, we should discard it before entering
the system. Several systems [5] provide the precision value or the probability of the
correctness of sensed value which can be employed.

Garbage Collecting Context (GCC) can also be used to identify and remove the context
that is no longer needed by an application. For example, if in an application, we are
getting and storing temperature values after every 5 minutes then an application may not
require such context information for a large period of time. It might be useful to discard
this history after certain period of time say 3 days. But generally, discarding information
is not considered as a good idea; therefore, here we can employ the idea of context
summarization and replace the raw history with this summarized history.

Privacy control can also be dealt using the Garbage Collecting Context. In this case,
certain privacy policies determine which context should not be stored and included in the
system processing and should be discarded. For example, the location of user in private

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

185

places (like washrooms) and activities during the lunch break should not be processed
and stored permanently in the system. Similarly, the list of private telephone calls
received and made by the employees (e.g., to or from family members) should not be
preserved by the system.

Garbage Collecting Context (GCC) Manager is a strong candidate to deal with such
issues and solve them efficiently.

8.3.3.2 Context Summarization (CS)
Where Garbage Collecting Context (GCC) identifies and removes the irrelevant and
insignificant context, the Context Summarizer (CS) operates on the incoming and
existing context data to
extract the useful information from the original data, and
convert existing context information to more useful form

so that the output context consumes less storage space and improve the performance and
efficiency of query processing, data retrieval, reasoning mechanism and machine learning.
The summarized context thus produced, replaces the existing raw context.

8.3.4 Context Summarization (CS)
Lets consider an example of context summarization. Consider a temperature sensor
emitting the temperature value after every 5 minutes. We can simply store this as it is
coming. Table 1 demonstrates this case.

Table 1. Temperature values stored after every 5 minute

Time Temp.
12:05 23 °C
12:10 21 °C
…
15:35 15 °C
…

Using Context Summarization, for example, we can summarize this information and
group on the daily basis. Table 2 demonstrates one such implementation

Table 2. Temperature values stored daily

Date Avg.
Temp

Max.
Temp

Max.
Temp At

Min.
Temp

Min.
Temp At

12/01 8 °C 14 °C 15:15 2 °C 04:35
12/02 7 °C 15 °C 14:55 0 °C 06:05
12/03 9 °C 13 °C 12:40 -1 °C 03:50
…

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

186

Another possible implementation could be achieved when a day is divided into several
periods like morning, afternoon, evening, early night and late night and context
information is kept for each such period. Table 3 demonstrates such approach

Using the similar concept, location and computational environment context (like network
bandwidth and processor load at a particular time) can also be summarized.

Table 3. Temperature values stored for different periods of day

Date Period Avg.
Temp

Max.
Temp

Min.
Temp

12/01 Morning 5 °C 8 °C 3 °C
12/01 Afternoon 10 °C 14 °C 8 °C
12/01 Evening 9 °C 11 °C 7 °C
12/01 Early Night 7 °C 8 °C 5 °C
12/01 Late Night 4 °C 5 °C 2 °C
…
12/04 Morning 4 °C 8 °C 1 °C
12/04 Afternoon 8 °C 11 °C 5 °C
…

The above examples demonstrate the summarization on historical data, i.e., the data that
has been recorded earlier. The context summarization can also be used as the data is
received from the sensor. For example, when receiving the data from some audio and
video sensors we can summarize it by extracting the useful information from it. With
audio, we can extract information like Intensity, Spectral centroid, Transient detection,
Low Energy ratio and Audio type (Music, Talk, Telephone Ring, etc). From video sensor,
we can extract information like Pixel percent change, Pixel change variance, Motion
pattern, Luminous intensity, etc. As a result, instead of storing the complete audio &
video context, we can summarize it and only store the relevant information that what the
particular audio and video data represent.

One of the benefits of performing the context summarization is reduced storage space.
Such a compaction of data repository will save significant amount of storage space which
will result in the faster query execution and data retrieval. It will also make the data
migration in distributed environment more efficient as the larger the size of context data
needs to be migrated the more will be the burden on network traffic. But this is not the
only motivation for context summarization. After all, storing the data in Giga Bytes
(GBs) is not much a problem in terms of storage space. The primary motivation behind
the idea of Context Summarization (CS) is to store only the relevant context information
in such a way that it is more useful for context consumers.

Reasoning about the context and drawing inferences based on the context is the primary
reason why we are keeping the context in context repository in first place. Reasoning and
inference making are the primary tools for providing context aware services to the user.
For example, if a ubiquitous computing system knows that when Bob comes to his office

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

187

in the morning, he likes to check his emails, then a system can start downloading his
emails when Bob enters the room in the morning. What makes a reasoning engine
perform more efficiently is the amount of source data and the quality of supplied data.
We believe that if the context summarization is done properly according to the nature of
target context then it will result in less data; optimized for reasoning and inference
making. Likewise, machine learning also depends heavily upon the historical data and if
it is supplied with relevant, compact and optimized context data (by context
summarization) then it is also expected to perform better and will provide efficient results

Context Summarization is a goal driven task, i.e., if we know why we are summarizing
the data and for what purpose it will be used, then the method opted is likely to produce
more efficient results. In short context summarization is the process of transformation of
raw context data into summarized more useful, relevant context data. Figure 1 depicts
this

Figure 1. Context Summarization (CS) and Garbage Collecting Context (GCC) Process

8.3.4.1 Instantaneous & Delayed Summarization
Context Summarization can be classified into ‘Instantaneous’ and ‘Delayed’ in terms of
when the summarization is applied. In Instantaneous Context Summarization, the
context is summarized instantly as it is received from the context sources; sometimes,
even before it being stored in the Context Repository. For example, the summarization of
audio and video context (as discussed earlier in this section) comes in this category.
Instantaneous Context Summarization is usually irregular and event-based and is
performed more frequently.

Delayed Context Summarization is usually performed on the context already stored in
the context repository. The summarization of temperature (as discussed earlier in this
section), location, humidity and available network bandwidth comes in this category.
Delayed Context Summarization, usually, is regular and periodic, i.e., performed in the
background after a certain regular interval or at some pre-specified time. Delayed CS is
usually performed less frequently and may consume considerable amount of computing
resources

Figure 2 demonstrates the flow of context in Instantaneous & Delayed context
summarization

Raw
Context

Summarized
Context

Garbage
Collecting
C t t (GCC)
Context
Summarization (CS)

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

188

Figure 2. Instantaneous & Delayed Summarization

8.3.4.2 Three Levels of Summarization
Context Summarization can be performed at three levels. First of all, summarization can
be applied at the sensor layer by summarizing the context information just as it is
received from sensors. The summarization of audio/video context through feature
extraction can be carried out efficiently at this level. Secondly, the summarization can be
carried out at the middleware level when the context has been retrieved from the sensors
and system environment and stored in the context repository. The summarization of
numerical valued contexts (like temperature, pressure, available network bandwidth, etc)
through aggregation and generalization techniques and that of location and activity
information through pattern identification can be performed at this middleware level.
Finally the summarization can also be carried out at the application level. Here the
application specific logic specifies how to carry out the summarization and on which
context information. The summarization of user and device profile through categorization
technique falls under this level of summarization. Figure 3 depicts the three levels of
context summarization

Figure 3. Three Levels of Context Summarization

Context
Summarizatio

Sensor Level
CS

Middleware
Level CS

Application
Level CS

Audio/
Video

Temp,
Location

User,
device

S

CR

S S S S S

Middleware

Sensor
L

Middleware

CR

Summarizer

Instantaneous
Summarization

Delayed
Summarization

Sensor
L

Summarizer

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

189

8.3.4.3 Autonomic Context Summarization
Context Summarization is purely done for the ubiquitous systems internal use; hence it
must be managed by the system with the least possible involvement of the human
administrators. Our context summarization model [21] is policy driven where context
summarization techniques exists as self managed components with each serving each
different category of summarization. The administrator only specifies the policies
through meta-data for each context type and the system configures itself accordingly. The
system do not remove the context history just as it summarizes it but keep it in the
secondary or backup storage and performs the lazy deletion as the history gets matured,
thus providing system the ability of self healing which proves handy when something
goes wrong. Thus our model justifies the self configurability, self management and self
healing properties of IBM Autonomic Computing System model [22]

8.3.5 Techniques of Context Summarization
Now we will present various techniques that can be employed for Context Summarization
in ubiquitous computing systems. We have identified several categories of context
information based on the similarities in the context information and nature of context.
Each technique is designed for a particular category of context and depends upon the
nature of the context.

8.3.5.1 Aggregation
In aggregation, the history of context information is aggregated to generate compact and
consolidated context. Numerical context types like temperature, light intensity, pressure,
humidity, available network bandwidth and state of current system resources can be
summarized using this technique. In previous section, we have demonstrated how this
technique can be used to summarize numerical context information history.

Aggregation is a delayed, regular and periodic type of context summarization, which
usually works in the background periodically after certain time interval or at some
specific time and is usually less frequent. The Aggregation Context Summarization
removes the original (raw) context after the context summarization has been performed.

Note that aggregation is performed when the context information has become the history
and is not directly useful for application. Such historical information is useful mostly in
identifying user preferences, machine learning and adaptation, reasoning and inference
making.

8.3.5.2 Categorization
This technique of context summarization categorizes different context entities and
summarizes the context values of these entities. For example, context information like
user profile and device profile can be categorized to form user or device groups having
some similar properties. In this way, we can identify the activities and features of a
particular group or category like we can track the network bandwidth utilization by some
particular user group (say doctors) or by some particular device group (say PDAs) during
office hours.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

190

Categorization is delayed and usually static type of context summarization, i.e., it is not
performed and changed frequently. Categorization can be performed at system startup by
some human or the system can learn itself and define categories as it is executed for
elongated period of time. In any case, the categorization supports Machine Learning and
higher level reasoning. Unlike other techniques, Categorization does (should) not remove
the original context information such as existing user or device profiles.

8.3.5.2 Context Extraction
In Context Extraction, useful and interested context is extracted from continuous context
streams such as audio and video streams. For example, Context Extraction can be applied
to video stream received from video sensors like Camera, Webcam to extract features like
pixel percent change, pixel change variance, picture motion pattern (such as stable,
regular, irregular), luminous intensity, etc. In the similar way, audio context can also be
summarized.

Context Extraction is an instantaneous, irregular and event based context summarization.
It can start at any time whenever an interested activity starts. Unlike other techniques of
context summarization, it can be triggered even before the context is stored in the context
repository. In fact, it may discard the original (or raw) context even before it being stored
in the repository; hence resulting in only storing the extracted features and not the
original data. It results in saving a lot of storage space but may take considerable time in
doing so. Some ubiquitous computing projects [16], including our project CAMUS [5],
have been using this technique for some time.

8.3.5.3 Pattern Identification
Context information can be summarized by identifying existing patterns in the context
repository or history of activities. For example, the location context can be summarized
using this technique. Consider the location context history stored in the context repository
as depicted in Table 4

Table 4. Location Context History of Users and Rooms

Time User Room
09:05 1 1
09:02 2 1
09:02 3 1
10:08 1 2
10:37 5 2
10:59 6 3
11:26 3 3
11:44 3 3
…

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

191

Using pattern identification, a system may deduce the pattern of user’s location during
week days and come out with something as presented in Table 5.

Table 5. Pattern Identification for User Location

Time Period

User Room Probability
From To

09:00 12:00 1 1 0.76
13:00 17:00 1 1 0.83
09:00 12:00 2 2 0.67
13:00 17:00 2 1 0.89
14:00 19:00 4 3 0.36
…

In the similar way, system can find the pattern of room occupants during various time
periods. Using categorization along with pattern identification, system may also infer
which user group (doctors, programmers, operators) occupies which room at different
time periods.

Pattern Identification is again delayed, regular and periodic class of context
summarization, i.e., it is invoked periodically after certain time interval or at some pre-
specified time and works in background. It is resource intensive and thus, performed less
frequently. On the positive side, it results in reducing considerable amount of storage
space and also supports higher level inference making, machine learning and in
predicting future intentions of a user or expected behavior of a device in the current
situation. As mentioned earlier, pattern identification works on the existing history of
context and replaces the larger history with patterns of activities.

8.3.5.4 Generalization
In generalization, we map various ranges of context values to a general higher level
context. For example, we can map the raw temperature, network bandwidth and user
movement speed to general concepts as presented in Table 6, 7 and 8 respectively.

Table 6. Generalization of Temp. Range

Temp. Range
(°C)

Generalized
Weather

20 ~ 30 Hot
10 ~ 19 Moderate
 0 ~ 9 Cold

Table 7. Generalization of Network Bandwidth

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

192

Network Bandwidth
Range Available

Generalized
Network Traffic

1 mbps or more Mostly free
500 kbps ~ 1 mbps Moderately used
Less than 500 kbps Busy

Table 8. Generalization of User Movement Speed

User Movement
Speed (km/hr)

Motion
Pattern

 1 ~ 5 Walking
 6 ~ 15 Running
16 or more Rushing

The examples presented, until now, only contain the one to one mapping of the context
values to higher level context (or concept) so where is the summarization in this
technique? Actually generalization is an instantaneous kind of summarization performed
between the sensor and middleware. This real time summarization only supplies the
values to middleware when there is the difference of context general state. For example,
suppose the generalization CS module informs the middleware that the current room
temperature is moderate then it will only re-inform the middleware (and thus the system
above) when the temperature general state is changed from moderate state (to cold, hot or
other).

This type of summarization will definitely reduce the processing burden from the
middleware in addition to saving the storage space used otherwise for keeping each and
every sensed temperature value in the context repository. Generalization is mostly
instantaneous kind of summarization working between the sensor layer and middleware.
We can combine generalization technique with other techniques like Aggregation and
Pattern Identification to further optimize the system performance.

8.3.5.5 Drift Calculation
This technique calculates the drift or the change of behavior of contextual activities from
some fixed known points. For example, consider the network bandwidth of a particular
server monitored regularly in a ubiquitous system. The server is supposed to have 1 Mbps
network speed. The system hourly monitors the available speed. With drift calculation,
we can calculate the drift rate of the network speed during peak hours, normal hours or
the average drift from the assigned speed. The system, for instance, may find that during
peak hours 5 pm to 10 pm the drift rate is 20% else the drift rate is less than 10%. Now
we can keep only this drift rate into the context repository as inferred result from the
network speed monitoring.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

193

Similarly, drift calculation is also useful in identifying the user preference. The system
can calculate how often the user behavior is different (drifts) from the system assumed
behavior. For example, a system may calculate how often it makes appropriate decision
for user’s favorite TV show or other user intentions and keeps on recording the drift in
the context repository.

Mostly drift calculation is delayed summarization and is performed at middleware level.
It is especially useful for application adaptation for user preference and machine learning.

8.3.6 Related Work
Unfortunately, Garbage Collecting Context (GCC) and Context Summarization (CS)
have not yet got the attention of researchers. One primary reason is that most of the
ubiquitous computing systems are academic projects and are still in the phase of
development. Not many systems have been deployed in real environment and actually
used for elongated periods. The issues identified in this work come in front only to one’s
attention when the actual system is deployed and run for considerable time in real
environments. Also, the focus of research community in ubiquitous computing is not
towards the context data management, its techniques and issues in this field. Most of the
research is still going on in finding ways to make ubiquitous computing operational in
first place.

Several existing ubiquitous computing systems support features like noise filtering,
privacy control, feature extraction [9] [10] [5] but we believe that using separate
components for GCC and CS with clearly defining the responsibility of each component
will produce better results; mainly because of the separation of concerns. Also the
perception provided by GCC and CS attacks the issues in different and clearer way.

In Database Management Systems (DBMS), there are techniques that deal with similar
problems. Data mining [11] and data ware housing [12] use the concept of histogram [13]
and multidimensional views of database and work on the aggregate, consolidated data
instead of raw data to support the higher level decision making and to identify the hidden
patterns in the data. This can be considered as related to the idea of context
summarization. Hence, when we extract underlying meaning from the context data, it can
be considered as something like ‘Context Mining’ where we extract higher level context
from the lower level context. Online Analytical Processing (OLAP) and data mining is
not done on the actual data but on the historical, consolidated and aggregate data while
we are performing the context summarization on the actual context. The goal of data
mining and OLAP is somewhat similar but we want to transform the raw context to
summarized form taking less storage space and provide improved and efficient reasoning
and machine learning. Anyhow, the concepts explored in the field of data mining and
OLAP are highly useful for the Context Summarization.

Researchers in DBMS have also analyzed the time series data streams for very large
databases [14] [15]. Here, they analyze the data coming in continuous streams with time.
They have proposed solutions on how to manage, represent and store the time series data
streams. This is also highly related to the context summarization.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

194

In traditional DBMS, the data is seldom deleted. But in our context summarizer, we do
remove the raw context once it has been summarized and higher context have been
extracted. We believe that we can afford to remove certain context data in ubiquitous
computing environment and replace it with summarized information. Why? The answer
lies in why, in first place, we are storing the context? We are storing the context and
maintaining context history so as to reason on context, draw inferences from the context
and make the machine learn. As we mentioned above that if the context is summarized
properly, keeping the target usage in mind, the application can reason, infer and learn
about the activities more efficiently as what they need is the history and consolidated data
which we are providing as a result of context summarization.

8.3.7 Proposed Model for GCC and CS
In this section, we will present our proposed model for designing and developing
Garbage Collecting Context (GCC) and Context Summarizer (CS) and provide few
implementation guidelines.

The first question, while designing and developing the GCC and CS, is should these
components be part of middleware or not? We believe that making these components part
of a middleware will yield us the re-usability of design and code and the specific
applications will not be required to re-write all the logic and code again.

We prefer designing these components (GCC and CS) as frameworks [17] [18] so that
applications only need to provide the hotspots (areas of specification) for their specific
needs. Hence, Garbage Collecting Context (GCC) can be developed in such a way that
application specific techniques for Noise Filtering and Privacy Policies can be induced
even while the application is operational. XML provides a good solution to specify which
kind of data can be considered as garbage. For example, an application can specify,
through XML, that from 1 pm to 2 pm, there is a lunch time at room X, so the location
and other activities of users over there should not be monitored. The GCC contains some
pre-specified noise filtering techniques and privacy policies while newer or updated
policies can also be inducted in it exploiting the framework based design of GCC module.
Figure 4 shows the proposed architecture of Garbage Collecting Context (GCC) module.

Figure 4. Garbage Collecting Context Module

The GCC retrieves context data from Context Repository (CR), identifies noise
(corrupted) context using its Noise Filters (NF), applies Privacy Policies (PP) to remove

Updates

GCC Module
NF NF NF

PP PP PP

CR

Receives

NF Noise Filter PP Privacy Policy
CR Context Repository

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

195

privacy sensitive context and updates the context repository. Depending on the
implementation, GCC may not actually delete the context as it identifies the context as
garbage but only mark that particular context information and later remove the context or
move such context to some other repository for some human or system analysis.

Context Summarizer (CS) can also be developed with the framework technique. There
are various context summarizer sub-modules for each different category of context. We
call these sub-modules as Context Category Summarizer (CCS). Each CCS is responsible
for dealing with each different category of context. Thus temperature, humidity, network
bandwidth, luminous intensity can all be summarized using a single Context Category
Summarizer (CCS). Context Summarizer (CS) is supplied context information along with
Context Meta-Data (CMD). This context meta-data, usually represented through XML,
specifies the type (or category) of supplied data, so that the CS may decide which
Context Category Summarize (CCS) should be used to summarize this context
information. All Context Category Summarizers (CCS) implement a particular interface
so that the CS can access each of the CCS uniformly. Because of the framework based
design of the CS, new CCS can be added and the existing CCS can be updated while the
application is operational. Figure 5 shows the architecture of Context Summarizer (CS).

Figure 5. Context Summarization Module

Context is received from various context sources like sensors, computational and
departmental infrastructure. The received context is then stored in some Raw Context
Repository (RCR). Context Summarizer (CS) usually receives the source context data
from this repository (RCR), summarizes and stores it in a separate repository called
Summarized Context Repository (SCR). In practice, the RCR and SCR are not physically
and logically different databases. Instead, they are managed in separate database tables,
in case of related database management systems. Figure 6 presents the flow of Context in
the presence of Context Summarizer.

CCS Context Category Summarizer sub-module
CMD Context Meta Data
RCR Raw Context Repository
SCR Summarized Context Repository

Stores

 CS Module
CC CC CC

CC CC CC SC

RC
Receives

CMD Data from
Sensor

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

196

Figure 6. Context Flow in case of Context Summarizer

We are using our middleware CAMUS [5] to apply the context summarization. The interaction

of summarization module with other components of middleware is presented in Figure 7.

Figure 7. Interaction with other middleware modules

First we extract features (unified representation of sensory data) through our Feature
Extraction Agents (FXA) and store all these features in Feature Tuple Space (FTS)
which is an in memory repository of current context or the latest information received
from sensors. As a new instance of information is inserted in FTS, the older one is
transferred to the Context Repository (CR) represented using ontology in OWL through
Feature-Context Mapping Layer. From then, all the middleware modules (reasoning
engines, middleware services) and application access this information from the context
repository. As data is stored in the repository, we summarize this information timely and
store back to repository. One approach (used in case of temperature, humidity, etc) the
raw information is removed from the repository and only the summaries or aggregates are
used to answer queries. Another approach is to keep multiple summaries of different
strength are kept and used to reply the query with appropriate confident values. A hybrid

HAL FX

FTS Manager

 Tuple
Space

Feature Context

Context Data ManagerC

RE Manager R

App App App

Context Delivery Manager

C
CS

CV

 CS Module

 RCR

1.Get Raw Context

Data from
Context Sources

3. Remove Raw
Context

2. Summarize & Store

 SCR

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

197

approach can also be used in which both summaries and raw information are kept;
specific or precise queries are answered from raw data while the general queries are
answered through summarized information

Query Translation

Context Summarization modules change the context repository and form data units with
different schema than the original one. How can context consumers cater with this? How
do they know whether particular information is in summarized state or it is still in raw
form? As in Figure 2, there is a special module called Query Translation (QT) which
encapsulates context repository (CR). All other modules (CS, Reasoning Engine,
Applications, etc) interact with repository through QT. Query Translator makes all the
access to CR transparent, i.e., even the modules and applications are not required to be
aware of summarization process. It keeps track of partition of summarized and raw data
and directs the access to these accordingly by intercepting each and every access to CR.
If the required data has been used in the summarization, it directs the queries to the
summarized data repository. The results produced due to QT are not 100% accurate;
hence it also returns a confidence value with each query result. Further, a query may also
specify the minimum degree of confidence for the required results.

Context Category Summarizer (CCS)

Each category of context is summarized by a particular Context Category Summarizer
(CCS); hence there is a different CCS for aggregation, pattern identification, etc based
information. For example, temperature, available network bandwidth and noise level can
be summarized using aggregation based CCS. Each CCS instance contains

(a) summarization algorithm,
(b) general parameters (key field, required fields, etc),
(c) specific parameters (source & target data source, summarization strength, time

interval for repeated invocation of summarization),
(d) query translator for summarized information

Context Summarization Manager also maintains a list of context information used by
different CCS for summarization, an example for such a table is present in Table 9.

Table 9. List of context information summarized by different CCS

CCS_
ID

CCS_
Instan
ce_ID

Context_Type
_ID

Last_Updated

017 1 1 (temperature) 09/19/05 05:42

017 2 4
(light intensity) 09/19/05 11:37

019 1 21 (location_A) 09/19/05 17:16

Using this list, a Query Translation Manager can identify whether a particular context
information type is summarized and also if the required data has been in summarized or it

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

198

is still in raw format. Moreover, if the required information is in summarized state, then
which CCS’s QT should be invoked to get the query result? The general process flow of
query processing is presented in Figure 8

Figure 8. General Process Flow of Query Processing

Issues & Challenges

Context Summarization (CS) has its own unique research issues and challenges both at
conceptual and implementation level. The issues range from questions like
what/when/how context can be summarized to the performance and security of the
ubiquitous computing system. In the following subsections, we will identify several such
issues and wherever possible identify few applicable solutions.

Performance Overhead

Perhaps the foremost concern to apply Context Summarization (CS) techniques is the
performance cost. What will be the performance requirement and what will it provide in
return? Do the benefits achieved by these methods justify the computing resource
consumption? We believe that a proper application of CS (like those discussed in section
4) will yield the performance improvement and will not eat up many resources. In any
case, the overall system should not be ceased or hung-up during the execution of CS
modules, the resources (like context repository) should not be locked for noticeable
period of time and the regular execution of the system should continue without any
disturbance or interruption by these modules. But the problem is how to achieve this? We
need Context Summarization only when there is considerable amount of context
information; a considerable amount of context means a considerable amount of
processing and resource consumption to produce useful output. Designing algorithms and
techniques to minimize this resource consumption is probably the biggest issue in
Context Summarization.

Request
(Query)

Find Related
CCS

Apply QT of
CCS Instance

Find in
Gen. DB

Find Related
CCS Instance

Return
result with
100% conf

Return result
with ‘C’ conf.

Y

N Summ-
arize

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

199

Security & Risks

Security is the most questionable part of today’s computing systems. What security
threats would the techniques of context summarization will pose? The CS modules
operate totally inside the middleware and ubiquitous systems and directly access and
modify the context information which is the most valued asset of any ubiquitous system.
Hence, the components and modules must be administered and validated carefully.

About the risks involved, firstly Context Summarization (CS) results in some data and
precision loss. Failing to compensate this precision lost may result in decreasing the
performance and overall throughput of the system. Secondly, improper Context
Summarization may make the reasoning and machine learning even more difficult,
complicated, inefficient, incorrect and misleading instead of improving it. Finally, CS
makes changes to the existing Context Repository (CR). Several modules of middleware
and application might be accessing the CR at the same time. Such a sudden modification
might be unexpected for these modules and may make them produce unexpected results
and must be avoided.

Incorporation of Summarized Context

Incorporation of summarized context into existing context repository is another research
issue. The important point to note here is that the summarization process is performed
when the ubiquitous system is completely operational. The context information might be
in use when summarization modules access it to summarize and attempt to remove some
information replacing them with the summarized context. But how the application
processing can be diverted to the summarized context in between the processing? Our
idea is to direct all the access to context repository first to the summarized part of
repository. If the system requirement can not be fulfilled by it only then the access should
be forwarded to the un-summarized part of the repository. The access to un-summarized
repository should block all the CS modules on this part of un-summarized repository until
the request has been fulfilled. To avoid such collision, we also recommend making the
summarization on context history as periodic and scheduled according to the system load.

Other Issues

Some other research issues and challenges are;

• Using ontology for context representation is gaining acceptance in ubiquitous
computing community [5] [20]. We need to define & implement techniques of CS
that can efficiently operate on the ontology based context repository [19]

• How are we going to deal with the distributed and ubiquitous nature of
middleware, data repository and applications?

• What are the security, trust and service level guarantees required for systems
using CS techniques?

• What could be the possible impacts of these techniques, especially when
something goes wrong?

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

200

In order to make Context Summarization (CS) feasible, we need to solve these issues and
answer the challenges posed by these concepts.

Risks Involved

Garbage Collecting Context (GCC) and Context Summarization (CS) are sensitive in
nature as they directly access context information and modify it. Information is always
one of the most important assets of any system and organization. Hence, techniques like
these must be applied with great care. In this section, we will briefly mention about some
risk factors that should be considered while developing and implementing GCC and CS
techniques

Garbage Collecting Context (GCC) and Context Summarization (CS) both will result in
some data and precision loss. Failing to compensate this precision lost may result in
decreasing the performance and overall throughput of the system.

Improper Context Summarization may make the reasoning and machine learning even
more difficult, complicated, inefficient, incorrect and misleading instead of improving it

GCC and CS will make changes to the existing Context Repository (CR). Several
modules of middleware and application might be accessing the CR at the same time.
Such a sudden modification may be unexpected for these modules and may make them
produce unexpected results and it must be avoided.

Future Work & Conclusion

The foremost important issue is the performance cost and the selection of time interval
for the invocation of summarization. Synchronization of the different CCS modules is
also an important consideration. If too many CCS modules start performing
summarization then the overall system performance might degrade. Also there might be
some queries for the data that is currently being summarized; we are also working on
implementing the appropriate locking mechanism. Another interesting future work is to
implement hierarchical summarization with different summarization strength and which
allows inter-module negotiation [23] for required summarization strength and confidence
values for queries. For our future work, we also want to use the concept present in [23]
for summarization strength negotiation.

In the conclusion, we will say that Garbage Collecting Context (GCC) and Context
Summarization (CS) are new, interesting and useful research areas and include a number
of interesting research issues. We have presented both the benefits that can be achieved
and risk factors that are involved in using these techniques and have also identified four
different techniques for implementing Context Summarization (CS). We have also
presented our proposed model for implementing these concepts and identified certain
research issues and challenges we expect to face. We have concluded that these are
sensitive operations and must be handled with great care and applied after rigorous
testing. Finally, ‘to summarize and how to summarize?’ that is the question!

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

201

References

M. Weiser, The computer for the 21st century. ACM SIGMOBILE 1999 Review
Dey, A.K., et al.: A Conceptual Framework and a Toolkit for Supporting the Rapid
Prototyping of Context-Aware Applications. Anchor article of a special issue on Context-
Aware Computing, Human-Computer Interaction (HCI) Journal, Vol. 16. (2001)
Chen Harry, Tim Finin, and Anupam Joshi: An Intelligent Broker for Context-Aware
Systems. In: Ubicomp 2003, Seattle, Washington
Gaia: A Middleware Infrastructure to Enable Active Spaces. Manuel Román et al., In
IEEE Pervasive Computing, Oct-Dec 2002
Hung Q. Ngo, Anjum Shehzad, Saad Liaquat, Maria Riaz, Sungyoung Lee: Developing
Context-Aware Ubiquitous Computing Systems with a Unified Middleware Framework.
EUC 2004: 672-681
Michael J. Franklin, Challenges in Ubiquitous Data Management. . Informatics: 10 Years
Back, 10 Years Ahead, LNCS #2000, R. Wilhiem (ed)., Springer-Verlag 2001
Henry Lieberman , Carl Hewitt, A real-time garbage collector based on the lifetimes of
objects, Communications of the ACM, v.26 n.6, p.419-429, June 1983
Richard Jones, The Garbage Collection page,
http://www.cs.ukc.ac.uk/people/staff/rej/gc.html
Mike Spreitzer, Marvin Theimer, Providing location information in a ubiquitous
computing environment, ACM SIGOPS Operating Systems Review , Proceedings of the
fourteenth ACM symposium on Operating systems principles Dec 1993, Volume 27 Issue
5
Jason I. Hong, James A. Landay, Support for location: An architecture for privacy-
sensitive ubiquitous computing, Proceedings of the 2nd international conference on
Mobile systems, applications, and services, June 2004
Alex Berson , Stephen J. Smith, Data Warehousing, Data Mining, and OLAP, McGraw-
Hill, Inc., New York, NY, 1997
Inmon, W.H., Building the Data Warehouse. John Wiley, 1992
D. Barbara et al., The New Jersey Data Reduction Report, Bulletin of the IEEE Technical
Committee on Data Engineering December 1997 Vol. 20
Lin Qiao et al, Data streams and time-series: RHist: adaptive summarization over
continuous data streams, Proceedings of the eleventh international conference on
Information and knowledge management, Nov 2002
Approximating a Data Stream for Querying and Estimation: Algorithms and Performance
Evaluation, Proceedings of the 18th International Conference on Data Engineering
(ICDE'02), Feb 2002
Moore, D., I. Essa, and M. Hayes, Exploiting Human Actions and Object Context for
Recognition Tasks, In Proceedings of IEEE International Conference on Computer
Vision 1999 (ICCV’99), Corfu, Greece, March 1999
Mohamed Fayad, Douglas C. Schmidt, Object-Oriented Application Frameworks,
Communications of the ACM, Volume 40 Issue 10, Oct 1997
Erich Gamma , Richard Helm , Ralph Johnson , John Vlissides, Design patterns:
elements of reusable object-oriented software, Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, 1995
Jena – A Semantic Web Framework for Java http://jena.sourceforge.net/

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

202

Anand Ranganathan, Roy H. Campbell, An infrastructure for context-awareness based on
first order logic, ACM Personal and Ubiquitous Computing, Volume 7 Issue 6, Dec 2003
Faraz Rasheed, Y.K. Lee, S.Y. Lee. Context Summarization & Garbage Collecting
Context: In Proceedings (II) of the International Conference on Computational Science &
its Application 2005 (ICCSA 2005) (Singapore).
The Vision of Autonomic Computing. IEEE Computer, January 2003
Khedr, M. Karmouch, A: Negotiating context information in context aware systems.
IEEE Intelligent Systems Dec 2004

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

203

8.4 Bayesian Reasoning in CAMUS

8.4.1 Introduction to Bayesian Reasoning
Bayesian reasoning is based on the celebrated Bayesian rule of conditional probabilities.
Application of the Bayes’ rule in very complex cause-effect maps requires intense
computational and memory resources. Bayesian Networks were developed keeping this
limitation in mind. Bayesian networks efficiently represent the cause and effect
relationships which exist between the various domain features and at the same time they
also provide adequate mechanisms for belief updation based on evidences extracted from
the domain. Traditional reasoning mechanism like rule-based reasoning do not
incorporate provision for uncertainty, Bayesian Networks have been designed so that
reasoning can be performed under uncertain conditions.

A Bayesian Network consists of variable-set V (discrete/continuous random variables), a
directed acyclic graph G and a joint probability distribution P defined over all the
variables in the set V [1,2]. A sample Bayesian Network is shown in figure-1.

Figure-1: A sample Bayesian Network along with the probability distributions.

As the number of variables in a network grow the size of the joint probability distribution
also grows exponentially. Thus it is better to store the conditional probability of each
variable conditioned on its parent-set locally, as shown in fig-1. These locally stored
probabilities can be combined using the chain rule [1,2] to construct the overall joint
probability distribution P.

Bayesian Networks allow a structured representation of all the related concepts in a
domain along with adequate representation of the strength of this relationship. The main
language used for representing this strength is the probability calculus and the main
motivation for using probability calculus comes from the well-formed axiomatic
foundations of probability theory and the ease with which related beliefs can be
combined [2].

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

204

The inference mechanisms for Bayesian Networks are also very well established and a
number of inference algorithms exist which can be used to perform inference on sparse
graphs. Algorithms for performing both exact and approximate reasoning exist and can
be used depending on the domain being modeled and the requirements. Along with these
algorithms for inference generation Bayesian Networks can also be learned from data,
and similarly they also provide adequate mechanisms of adaptation and tuning.
Adaptation can be viewed as online learning, and tuning is parameter adjustment
(probability measure) in a supervised manner.

 Bayesian Networks have been used in expert systems, decision support systems, fault
and anomaly detection for industrial processes, automated planning etc.

8.4.2 Motivation
In a ubiquitous environment the system is supposed to infer high-level concepts from
sensor and device readings. These sensor and device readings provide only very specific
data about certain environment entities such as temperature, pressure, etc. As the system
is unable to determine the exact nature of the concept (with complete confidence) the
environment can be labeled as being partially-observable. For such partially-observable
environments employing a technique which does not cater for uncertainty would be
inappropriate.

As an example of the above mentioned description of a ubiquitous environment, consider
the case in which the system needs to infer whether the user is having lunch or not. For
inferring such an activity it is needed that we have some data about the location of the
user, time of the day, and some data about his actions. Let’s assume that the system has
sensors for estimating the location of the user, similarly there are some pressure sensors
on the chair in the dining room. If now a snapshot of the environment is taken into
consideration and we find that the chair is indeed occupied, and also that the location of
the user is the dining room. These pieces of information are not enough to correctly state
whether the user is having lunch or not. It could be that he is reading some thing, and that
he is just sitting there talking over the phone. Thus the system is now faced with multiple
hypothesis (candidate conclusions) and it is needed that one of them should be adjudged
as the most likely one. One way to break this tie among candidate conclusions is to give a
score to each of these conclusions based on experience. This would require some data
about the habits of the user, where and when he takes his lunch, how often he talks on the
phone while in the dining room, does he usually reads in the dining room while not eating
anything, thus the system requires some sort of probabilistic knowledge to rate these
candidate conclusions. Once these conclusions have been rated the conclusion having the
highest score can be considered as the most plausible conclusion which can be reached
given the data at hand. Thus all that a system can do is behave in a normative manner,
and predict these events in an uncertain manner. A Bayesian network for the example is
shown in figure-2.

8.4.3 Where to use Bayesian Networks in A Ubiquitous Environment
Bayesian Networks are used for reasoning under uncertainty and should only be used for
carrying out those tasks which involve a very complex structure of reasoning. They

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

205

should not be used for a task which can be solved without reasoning for example turning
on the lights when motion has been detected. These kind of trivial tasks do not require
much knowledge and it would be very costly as far as performance costs are concerned to
use a Bayesian network for such a trivial task.

In Ubiquitous environments Bayesian Networks are best suited for accomplishing more
complex tasks such as activity recognition, conflict resolution in a multi-user
environment, assessing and modeling situations and advising the best action to take.

The design of a Bayesian Network is not an easy job, it requires that variables be
identified and adequately modeled and then probability distributions for the root nodes
be specified a priori. This requirement of prior measures can be fulfilled either through
experience (a subjective guess by the designer) or they must be extracted from a large
database of cases (objective measure based on recorded cases). Thus the most difficult
task in the design of a Bayesian network is the specification of these probability measures.
As this task requires a lot of skill and time it is not possible to model all the
functionalities of a ubiquitous system through Bayesian networks hence it is needed that
they be used only where complex decision making is required.

Figure 2: A candidate Bayesian Network for the example.

8.4.4 Bayesian Reasoning in CAMUS
Context reasoning provided by the knowledge processing layer of CAMUS, has been
designed to accommodate multiple reasoning paradigms, for reasoning about uncertain
contexts [4]. The reasoning modules can be developed separately and then plugged into
the context-reasoning layer.

Location

Time

Chair

Activity

Every node represents a
discrete random variable and
each link contains the
conditional probability,

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

206

Figure 3: The design of CAMUS reasoning layer.

As can be seen from figure-3 that CAMUS provides a Reasoning Manager for managing
multiple reasoning modules and a context-aggregator for invoking the reasoning
processes and also managing the storage and retrieval of the high-level context so formed.

Another aspect to be considered is the knowledge-representation used in the context-
repository of CAMUS, currently CAMUS uses OWL for representing ontologies about
domain entities. Every reasoning paradigm has its own knowledge-representation so there
is a need for translating the native knowledge-representation of the system into a
representation which can be understood by the individual module. Similar translation is
also needed for storing the high-level context formed through reasoning into the native
knowledge-representation scheme of the system.

8.4.4.1 Design of the core Bayesian reasoning module

The main Bayesian reasoning module consists provides the basic operations for loading a
Bayesian Network, absorbing evidences from the domain and providing the inferences on
the basis of these evidences.

+setFileName(in fileName : string)
+getBayesianNetworkName() : string
+setEvidence(in node : string, in attribute : string) : int
+initializeInference()
+initializeInference(in inferenceMethod : string)
+getMarginal(in node : string) : <unspecified>
+removeEvidence(in node : string)
+removeEvidence()

-currentBN
-inferenceMethod
-fileName

BNReasoner

Figure 4: The core Bayesian Reasoning Module

The core module is able to handle a single Bayesian at any time instance. The network is
designed and stored in an XML format. Other functionalities provided by the reasoning
module is the entry and removal of evidences at any node in the network.
Various Inference mechanisms such as Pearl’s Message Passing Algorithm [1], Junction
Tree Algorithm for belief propagation [2], and the Bucket Elimination algorithm [2,3].
The output of the inference algorithm is the marginal probability distribution of each

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

207

<owl:Class rdf:ID="InDoor_loc">
<rdfs:subClassOf>

<owl:Class rdf:ID="Location"/>
</rdfs:subClassOf>

</owl:Class>

variable. This marginal probability distribution represents the posterior odds (the belief in
the variables’ state) corresponding to the evidence entered and the prior distributions.

8.4.4.2 The Bayesian Reasoning Manager Module

As the core reasoning module is able to manage only a single Bayesian network, the task
of the manager module is to spawn new instances of the core module, so that multiple
networks can be loaded into the memory and concurrent reasoning can be managed.
The Bayesian reasoning manager module receives requests from applications, and
spawns new instances of the core module in the form of JINI™ services. These services
are then provided the necessary input such as the XML files for the network structure and
the probability distributions. A sequence diagram which shows the complete working of
the Bayesian Reasoning process in CAMUS is given in figure 5.

Figure 5: Sequence diagram for the Bayesian Reasoning Process.

The application can interact with the spawned reasoning service directly, and ask for any
high-level inference which it wants.

8.4.4.3 Translation Modules

As mentioned previously there is a need for translating the knowledge maintained in
CAMUS in the form of ontologies to a form that is required for creating a Bayesian
Network. As an example consider the following piece of OWL:

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

208

Figure 6: Description of indoor location

The above piece of description logic defines the ‘indoors’ as a sub-class of location. One
way of modeling this piece of knowledge in a Bayesian Network would be to define a
discrete random variable named location, and represent the “indoor” as a state of this
variable.
Similarly the context information is also represented as an ontology (in OWL) hence it is
also needed that the higher-level inference generated by the reasoning module should also
be converted back into the OWL format. Hence translation is needed twice in the
reasoning process, once when the reasoning is to be initialized and again when the
reasoning results are to be provided back to the application.
This translation also defines a mapping for the incoming data from the sensors and
devices registered with the middleware to the variables in the network. Thus a mapping
client is needed which can map this incoming data directly to the network nodes and
instantaneous evidence absorption and propagation can be performed in the Bayesian
Network.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

209

8.5 User Preference Learning

8.5.1 Introduction
The most famous application of Context-aware computing are smart environments, such
as smart home, smart office, smart campus, etc. Absorbing and developing the key idea
of ubiquitous computing as well as context-awareness, a smart environment contains a
large number of invisible sensors and actuators which enable the system to “think and
work” base on its perception of user’s context.

The logic to go from input to output of a smart system or from the sensor data to context
and then to control commands depends on each system, each user and each kind of
service. However, because the most important purpose of a smart system is to satisfy a
user, every decision will be based on the user’s preference. Therefore learning user
preference becomes the most important task.

Here we need a formal concept for user preference. User preference can be understood as
what the user wants the system to do in certain situation. For example, when Alice enters
the house in a hot sunny day, she wants the air conditioner to be started 10 minutes before
that, maintain the temperature of 20oC, and the curtain should be closed, while in rainy
days she likes to open the curtain to enjoy the rain. But as for Bob, he wants the curtain to
be closed on rainy days, and opened in sunny days.

The task of learning user preference has become very difficult due to many issues.
First, the preference of user does not static. It changes quickly by time, which makes
online learning (or adaptation) a crucial requirement.

Figure 1: Problem when lack of adaptation.

Second is the uncertainty, which comes not only from the inaccuracy of sensor data but
also from the ambiguity of users about their own preference.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

210

Third, when there are many users in the smart environment, the desire of one user can be
affected by others. It raises the challenges of distinguishing the preference of each user as
well as resolving the conflicts among different user preferences.

Figure 2: Conflict among user preferences.

Figure 3: Distinguish among user preferences.

To deal with uncertainty in ubiquitous environment, Bayesian network [7] and Bayes
theorem are widely used. Martin Muhlenbrock et.al. [8] uses a Bayesian approach to infer
the notions of activity and availability from labeled sensor data in an office environment.
The approach is rather simple without considering the multi-user activities. In another
ubiquitous system project, to resolve conflicts for Context-aware Media services in smart
home environments, GIST [9] proposes Conflict Manager which applies Bayes theorem.
In order to resolve conflicts among users, the Conflict Manager sums preferences of users
who are collided with each other and recommends the specific contents ordered by the
summed preference. It also resolves conflicts among Media services by selecting a Media
service with the highest priority. Furthermore, Conflict Manager resolves conflicts among
Media services occupied to users by recommending the Media services. However, this
approach lacks of a comprehensive model for user preference.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

211

The Bayesian Metanetwork is first proposed by Vagan Terziyan et.al. [10], to select the
appropriate substructure from the basic network level based on contextual features from
user’s profile (e.g. user’s location). Two models of the Metanetwork are considered: C-
Metanetwork for managing conditional dependencies and R-Metanetwork for modeling
feature selection. An example of this approach is shown in Fig. 4.

Figure 4: An combination example of R-Metanetwork and C-Metanetwork

However, neither adaptation algorithms for Bayesian Metanetwork nor detailed
application for these models are mentioned. One meta-levels of C-Metanetwork is merely
described as second order conditional dependencies among probabilistic distributions in
previous level (i.e. all the nodes are conditional dependencies), and the R-Metanetwork
only model the relevant features selection in a “Nodes-exist-or-not” manner. The big
drawback of this approach is that the selection of relevance features and the distribution
of conditional dependencies are modeled separately in two different Metanetworks, while
in real world the change in a Bayesian network structure often leads to changes in
conditional dependencies.

The limitations of current approaches raise the need of a method to learn user preference
in ubiquitous environment which can satisfy following requirements:

- Dealing with uncertainty;
- Learning correctly and efficiently the preference of each user in a Multi-user
environment;
- Reusable;
- Utilization of the domain knowledge and user-defined rules;
- Online adaptation to the newest user preference.

Besides, we see that when combining the preferences of many users, we often base on
user priority. Priority can be fixed, but normally it changes by time, or by situation; for
example a sleeping user will be considered more important than others. Hence the
context-aware system should be able to learn and adapt to the changes of user’s situation-
based priority.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

212

To address these issues, we propose a Bayesian RN-Metanetwork (RN stands for
Relevant Network). A Bayesian RN-Metanetwork consists of many levels. In each level,
there are many sets of Bayesian networks; the distribution of each set depends on the
local probability distributions associated with the nodes of the next level network. we use
the Bayesian RN-Metanetwork to learn both user preference and priority at the same time,
as well as to resolve the conflict among many user preferences.

My approach differs from the previous ones in at least four aspects.

- First of all, by handling the relevant Bayesian network selection, the Bayesian RN-
Metanetwork models can cover both the relevant feature selection and conditional
dependency distribution at the same time. Its computations are simpler than those of C-
Metanetwork and R-Metanetwork, but it can be used very efficiently for learning in
multi-user or multi-agent systems. It also inherits the propagation algorithms of
traditional Bayesian network, why in case of C-Metanetwork and R-Metanetwork
proposal, the old propagation algorithms can not be applied, and they also have not given
any algorithm for it.

- Second, the Bayesian RN-Metanetwork model is very suitable for multi-agent systems.
Especially in ubiquitous environments, due to the complex, diverse and open-ended
characteristic of the system, the multi-agent paradigm brings much more advantages than
the single-agent paradigm.

- Third, the adaptation algorithm for Bayesian RN-Metanetwork is fully described to
adapt the model to the continuously changing preference of users.

- Finally, no matter how many users are there in the environment, the priority and
preference of each user is calculated separately. This is very useful for widening the scale
of systems, as well as knowledge reuse.

8.5.2 Traditional Bayesian network
Probabilistic graphical models are graphs in which nodes represent random variables, and
the (lack of) arcs represent conditional independence assumptions. Hence they provide a
compact representation of joint probability distributions. Directed graphical models also
called Bayesian Networks or Belief Networks [7].

In addition to the graph structure, it is necessary to specify the parameters of the model.
For a directed model, we must specify the Conditional Probability Distribution at each
node. If the variables are discrete, this can be represented as a table (CPT), which lists the
probability that the child node takes on each of its different values for each combination
of values of its parents. Consider the following example, in which all nodes are binary,
i.e., have two possible values, which we will denote by T (true) and F (false).

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

213

Figure 5: Example of Bayesian network.

Bayesian network is widely used in probabilistic modeling and dealing with uncertainty
in machine learning. Some ubiquitous systems are using Bayesian network to learn the
user activity, availability, etc. However, this “traditional” approach is restricted to simple
use cases such as single user activity or single user preference. The next session explains
why we need to replace the traditional Bayesian network by a Metanetwork, by
discussing an example of multimedia service preference learning in a Smart Home
system. It also introduces the concept of Bayesian RN-Metanetwork.

8.5.3 The Drawback of Traditional Bayesian network in Preference
Learning
Let consider an example of using traditional Bayesian network to learn user preference
about multimedia service. we assume that the multimedia service preference of user
depends on user location, current activity, time and is different from user to user. If there
is only one user in a system, this user’s preference can be modeled by a basic Bayesian
network as depicted in figure 6.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

214

Figure 6: A simple Bayesian network to learn multimedia service preference of one
single user. User’s current activity is also related to user location.

In this case, it will be very easy for the system to learn the preference of user based on
user’s commands to select services. Location is acquired from location sensors such as
RFID or wireless LAN (PDA), and current activity can be inferred using another
Bayesian network [8]. Then the conditional probabilities in this model will be calculated
using Bayes theorem.

However, when many users are present at the same time, there will be conflicts among
the preferences. When a service is selected, the system can not know whose preference
that service is. If there are three users in a smart home, one can think about another model
to learn the user preference which is depicted in Fig. 7.

Figure 7: A Bayesian network to learn multimedia service preference of 3 users A,
B, C. Each user’s activity can be affected by others’ location (in case of group activities)

Although a model likes the one in Fig. 7 is easy to create, the size and complexity of the
network increases exponentially with the number of users and number of features which
affect the preference. Moreover, using this model the system can not learn the preference
of each user. In next sub-sections we introduce our approach using Bayesian RN-
Metanetwork.

8.5.4 Bayesian RN-Metanetwork
The Bayesian network model can be divided into many sub-models, each of which
models the preference of one single user with no affection from others. Then a Bayesian
RN-Metanetwork will be used to manage the distribution of those sub-models and
combine them in calculating the final preference.

Definition of Bayesian RN-Metanetwork: The Bayesian RN-Metanetwork is a set of
Bayesian networks, which are put on two levels in such a way that the distribution of
probabilistic networks on first level depends on the local probability distributions
associated with the nodes of the second level network.

The Bayesian RN-Metanetwork is a triplet:

RMBN = (BN0, BNS, R)

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

215

where BNS = {BNS1, BNS2, ... BNSn} is a set of sets of Bayesian networks in first
layer and BN0 is the second level Bayesian networks; R = {R1 ... Rn} is a set of
interlevel links. The probability distribution of each Bayesian network is included inside
it. Each Ri is a link “vertex – network set” meaning that stochastic values of vertex vi in
the network BN0 correspond to the distribution of one set of Bayesian networks in the
first level.

Bayesian RN-Metanetwork supports multi-agent systems. As depicted in Fig. 8, each set
of Bayesian networks in the first level is hold by an agent. Each agent uses the
distribution of its Bayesian networks to calculate some needed values, and they
communicate with other agents through some interfaces. The interfaces consist of
common nodes between agents’ networks. The mechanism for belief updating in a multi-
agent Bayesian network system is described in [29].

Figure 8: A Bayesian RN-Metanetwork structure.

The RN-Metanetwork can be freely expanded because any Bayesian network included
can be itself another Metanetwork.

8.5.4.1 Modeling User Preference and Priority using Bayesian RN-Metanetwork

When many users are present in a smart environment, and each user has his or her own
preference about a certain service, the last decision to select the service is related to the
priorities of the users. For example, grandparents have higher priority than their
grandchildren, so when the grandfather and his grandson are present in a smart home, the
room temperature is adjusted based on the grandfather’s temperature preference rather
than that of the grandson.

Therefore, when modeling the user preference, we also need to model the user priority.

The user priority can be categorized into 2 types: situation-independent priority and
situation-de-pendent priority. Situation-independent priority means that the priority of a
user does not change when situation changes, i.e. it does not change by time or by place
or under any condition. In contrast, situation-dependent priority changes when situation
changes, such as when user changes his place or activity. For example, normally the

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

216

father has higher priority than his son, but when the son is sleeping, the audio volume and
light are adjusted based on the son’s preference at that time (audio OFF and light OFF).

The user preference in case of situation-independent priority can be modeled using the 2-
level Bayesian RN-Metanetwork. Fig. 9 shows the Bayesian RN-Metanetwork for
modeling user preference about Multimedia service in a 2-user system.

Figure 9: A Bayesian RN-Metanetwork to learn multimedia service preference of 2
users A, B in case of situation-independent priority.

The model is based on following idea: The priority of one user can be understood as how
much that user can contribute into the final decision. In the model, the distribution of
relevant Bayesian networks which model individual user preferences indicates the
proportion of each user preference in the compound preference. Hence the meta-level of
this Bayesian RN-Metanetwork also models the user priority. We can see that the user
priority in this case depends only on the user presence. Table 1 shows an example of
value of the conditional distribution of relevant Bayesian networks (or user priority).

Table 1
Conditional probability of Used_BN node in 2nd level Bayesian network in Fig. 4.

Presence_A Y N

Presence_B Y N Y N
Use_A_pref 0.5 1 0 0

Use_B_pref 0.5 0 1 0
Use_Nouser_pre
f

0 0 0 1

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

217

From the conditional probability table, we see that the two users have same priority.
When both users are present, each of them contributes 50% into the final preference
decision.

In case of situation-dependent priority, the 2nd (or meta) level is replaced by a
metanetwork. In other words, one more level for learning priority based on situation is
added. Fig. 15 depicts the Bayesian RN-Metanetwork for the multimedia services
preference in situation-dependent priority case.

Figure 10: A Bayesian RN-Metanetwork to learn multimedia service preference of 2
users A, B in case of situation-dependent priority. Priority depends on not only user
presence but also user activity.

Tables 2, 3 and 4 show the sample conditional probability of Used_Prio_BN node and
Used_Pref_BN nodes. Note that the value range of Current activity nodes is reduced for
easier demonstration (normally we have a lot of activities such as Reading, Walking,
Eating, Working, etc.).

Table 2
Conditional probability of Used_Prio_BN node in 3rd level Bayesian network in Fig. 5.

Presence_A Y N
Presence_B Y N Y N

Use_AB_prio 1 0 0 0
Use_single_prio 0 1 1 1

Table 3
Conditional probability of Used_Pref_BN node when both A and B are present.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

218

CurrentActivity_
A

Working Sleeping

CurrentActivity_
B

Wor
king

Slee
ping

Wor
king

Slee
ping

Use_A_pref 0.5 0.3 0.9 0.5
Use_B_pref 0.5 0.7 0.1 0.5

Use_Nouser_pre
f

0 0 0 0

Table 4.

Conditional probability of Used_Pref_BN node in 2nd level Bayesian network when
there is no conflict.

Presence_A Y N

Presence_B Y N Y N
Use_A_pref - 1 0 0

Use_B_pref - 0 1 0
Use_Nouser_pre
f

- 0 0 1

When the priority model is simple and we don’t want to make it redundantly complicated,
we can use a traditional Bayesian network for the priority model, instead of using 2 layers
of Bayesian RN-Metanetwork. The traditional Bayesian network for priority model in Fig.
10 is illustrated in Fig. 11.

Figure 11: Simple Bayesian network for situation-dependent user priority

The algorithms for calculating the combined preference and learning user preference and
priority are explained in next sections.

8.5.5 Probability Propagation and Adaptation for 2-layer Bayesian RN-
Metanetwork
In this session, we will explain the algorithms for Probability Propagation and Adaptation
for the basic 2-layer Bayesian RN-Metanetwork. The algorithms are illustrated by
computations on the model in Fig. 9.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

219

8.5.5.1 Notations and Definitions

The Bayesian RN-Metanetwork in Fig. 14 has parameters:

+ 1st level:

- This level has only one set of Bayesian networks: 2 Bayesian networks modeling the
preferences of 2 users and one Bayesian network for the case of no user.

- The attributes of the Bayesian networks: Time (denoted T), Location_A/B (denoted Li,
i=1, 2 corresponding to A and B), CurrentActivity _A/B (denoted CAi), ServiceCategory
(denoted Sx, x=1, 2, 3 for its duplications in 3 networks) and has the values
{SV1,SVj}.

- The prior probabilities: P(T); P(Li); P(CAi), P(Sx).

- The conditional probability P(Si|T, Li, CAi), i=1, 2 and P(S3|T).

+ 2nd level:

- The attributes: Present_A/B (denoted Pri) represents the Presence of user A/B with the
values {yes/no}; Pr denotes the set of all Pri.

- The relevance node: Used_BN (denoted BN) holds the probability to have each
Bayesian model in the predictive level with the values {BN1, ... BN3}.

- The prior probabilities: P(Pr) denotes the probability distribution of the set Pr and P(Pri)
denotes that of each item in the set.

- The relevance probability: P(BN). The conditional probability P(BN|Pr)

8.5.5.2 Probability Propagation

Given the evidence P(Pr), P(BNx) is calculated as:

(Pr)Pr).|()(PBNBNPBNP xx ==

Then the probability of the target attribute ServiceCategory can be estimated:

)(.)()(
3

1
x

x
x SPBNPSP ∑

=
=

with P(Sx) calculated given the evidence T, Li and CAi

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

220

⎩
⎨
⎧

=
=

=
3)().|(

2,1)().().().,,|(
)(

xTPTSP
xCAPLPTPCALTSP

SP
x

xxxxx
x

In other words, the probability of ServiceCategory preference of each user will be
calculated separately, and then combined with the weight coefficients which are the
distributed probabilities of the Bayesian networks in Predictive level.

The target ServiceCategory SVj with highest P(S=SVj) will be selected.

The Bayesian RN-Metanetwork provides an easy but efficient method for modeling many
kinds of user preferences, from multimedia services such as music, television, radio, web
page, public information, etc. to the environment parameter such as light, temperature,
etc. All we have to do is identify the features which affect the preference of users, build
the preference model for each user (a rather simple task if we consider the current
development of Bayesian network research) and finally combine them by a RN-
Metanetwork. When the system learns, each preference model is updated separately so
that they can be reused in other systems.

8.5.5.3 Adaptation

Even though some approaches address learning issue as the initial of the conditional
probabilities from example data sets, the true meaning of learning in a ubiquitous system
is online learning. When a ubiquitous system starts working, there is no example data but
only the domain knowledge and user-defined rules. For example, the contextual level
network can be initialized by the users’ initial priorities. However, the task of online
learning, or adaptation, is crucial.

Each time the system makes a decision about which service category to be selected, it

then wait a time interval wt for the response of users. There are 2 cases of user
responses:

Approval: If there is no response, then the system assumes that the users are pleased with
the decision. In this case, the decision together with the evidences will be considered a
single sample and be used to update the Bayesian networks conditional probabilities.

Denial: If one user gives a control command to the system to change the selected service
category, it means that the user may not satisfy with the decision of the system. This is a
serious case, and the system should not make the same wrong prediction again. So the
user’s selection together with the evidences will be considered N samples (N>>1) and be
used to update the Bayesian networks conditional probabilities.

The adaptation algorithm is based on two assumptions:

Assumption 1: The contribution of one user preference in the combined preference is
equal to his contribution in making a decision.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

221

The assumption means: When the system estimates the preference of many users, it gives
each user’s preference a weight. In the other hand, whenever a control command is given
by a group of user, each user has his contribution in that command. The weight in first
case and the contribution in second case are assumed to be equal.

Assumption 2: Every user has the tendency of selecting the option which has highest
probability calculated by his preference model. This option is called the most favorite
option.

The assumption means: Given the evidences, calculate the posterior distribution of a
preference using the preference model of one single user (one of 2 Bayesian networks for
2 users A and B in the previous example, for instance), the option with highest
probability can be considered that user’s most favorite, and is most likely to be selected
by the user himself.

Assumption 2 leads to a definition:

Definition: a decision matches user preference if it matches the most favorite option of
that user.

Based on the above assumptions and definition, the adaptation algorithm for RN-
Metanetwork is introduced:

Adaptation Algorithm

Step 1: update the meta-layer network
- In Approval case, there is no need to update the meta-layer network (users satisfy with
the current priority)
- In Denial case:
+ Find the most favorite option of each user

))(max(arg ii SPSV =∗

where SV*i denotes the most favorite service of user i.
+ Count 1 for the value of relevant node related to the user’s preference model if the final
decision is the same with user’s most favorite option. We use the sequential updating
introduced in [30]. Do the following adaptation:

If SV*i = SV* then

s
qsBNP

BNP i
ei

1.).(
)Pr|(

+
=

And

s
qsBNP

BNP j
ej

.).(
)Pr|(=

 with ij ≠

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

222

with SV*: the finally selected services, Pre: the set of evidences of the presences of users,
q: the fading factor, q (0,1), s: the effective sample size which is calculated by: 　

q
s

−
=

1
1

Step 2: update the preference model of each user based on the contribution of that user
into the decision
For each user i: Calculate wi, the distribution probability of that user’s preference model:

)(ii BNPw = . Count wi for the final selected option and update the user’s preference
model 1 or N times, in approval or denial case respectively.

s
wqsCALTSVSPCALTSVSP iieieieii

eieieii
+=

==
.).,,|*(),,|*(

And

s

qsCALTSVSP
CALTSVSP ieeejii

eeejii
.).,,|(

),,|(
=

==
 with *SVSV j ≠

where Te, Lei, CAei denote the evidences of the Time, user location, user current activity
of user i, Pi(S | Te, Le, CAe) denotes the distribution of conditional probabilities in
preference model of user i qi: the fading factor which is calculated separately for each
preference model, to maintain the same experience size.

s
ws

q i
i

−
=

8.5.5.4 Probability Propagation and Adaptation for multi-layer Bayesian RN-
Metanetwork

In nature, multi-layer Bayesian RN-Metanetwork is a 2-layer Bayesian RN-Metanetwork
with the meta-layer is a Bayesian RN-Metanetwork itself.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

223

Figure 12: The first 2 levels of a 3-level Bayesian RN-Metanetwork equals with a
Bayesian network with same input and output nodes and the intermediate node
User_Prio_BN is omitted.

Therefore, the probability propagation algorithm and adaptation algorithm which were
described in the previous section can be applied for multi-layer Bayesian RN-
Metanetwork in a recursive manner.

The probability propagation process for the Bayesian RN-Metanetwork in Fig. 10:

Step 1: applying the probability propagation algorithm for the first 2 layers to calculate
the marginal of User_Pref_BN

Step 2: use the marginal of User_Pref_BN as the distribution for the Bayesian networks
in third layer to calculate the marginal for Service_Category.

The adaptation process for the Bayesian RN-Metanetwork in Fig. 10:

Step 1: in case of denial, applying the adaptation algorithm for the first 2 levels of the
Bayesian RN-Metanetwork.

Step 2: calculate the marginal of User_Pref_BN and use it to do adaptation for the third
level.

In general, the recursive probability propagation and adaptation mechanism for multi-
level Bayesian RN-Metanetwork are illustrated in Fig. 13.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

224

Figure 13: The recursive probability propagation and adaptation mechanism for
multi-level Bayesian RN-Metanetwork.

8.5.6 Evaluation
One can argue that the traditional Bayesian network is still faster than the Bayesian RN-
Metanetwork, because for Bayesian RN-Metanetwork we have the overhead of the meta-
layer propagation, as well as all the preference models and the priority models should be
propagated. In fact, the Bayesian RN-Metanetwork is slower just in case the distribution
of every Bayesian network in the first layer is not equal to 0, or by other words, when all
users are presented in the system.

Let estimate the calculation time for the Multimedia preference example above when
using the traditional Bayesian network and Bayesian RN-Metanetwork.

Analysis in [31] shows the runtime for the brute force method of enumeration is ()mO q ,
where q is the size of the alphabet (in our example: q = number of values for Service
Category i for the preference model, or number of users + 1 in the meta network) and m
is the number of unknown variables.

We have seen that Pearl's algorithm, for the special case of a polytree, has an efficient

runtime of ()eO Nq , where e is the maximum number of parents on a vertex [32]. It can
be seen that in that in the case of the turbo-decoding algorithm [33], the runtime is linear
in the size of the network, as evidence is propagated a constant number of times.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

225

Here because both the number of unknown variables and the number of maximum
parents will increase when the node number increase, we assume that in general the

runtime is ()xO q with x is proportional to the size of the network.
From Fig. 12, the size S of the network in traditional case is proportional to the number
of user. So with N = number of user and q = number of values for Service Category i for

the preference model, the propagation time is)O(q Nα
 with α is proportional to the

number of node in a single user preference model.

From Fig. 13, the size S’ of each preference network in Bayesian RN-Metanetwork
remains the same for every user. S’ = S / N. We have the propagation time of each

preference network is)O(qα and the propagation time of meta network in Fig. 13 is O(1)
given that we know the location of all the users.

Then the numbers of preference model should be propagated k has the binomial
distribution, because this is the distribution of obtaining exactly k (Presence = Yes) out of
N trials.

kNk pp
kkN

NNkP −−
−

=)1(.
!)!(

!)|(

Where p is the mean probability of one user is presented in the location.
The expected value of k:

N.p E[k]=

Then the expected propagation time is:)O(Npqα

We have)O(Npqα <)O(q Nα
. The Bayesian RN-Metanetwork is still more efficient.

In case of situation-dependent priority, the propagation runtime is added with the time for
calculating the priority given the evidences about situation.

The runtime for each priority model is)O(q
*Nα

with N* is the mean of the binominal
distribution of taking k users from N users. We have N* = N.p. Hence the expected

propagation runtime for a priority model is)O(q Npα
.

Then the total propagation runtime is:

)qO(Npq Npαα +

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

226

In this case, it is hard to tell whether the Bayesian RN-Metanetwork is faster or slower.
However, besides the speed, the advantages of Bayesian RN-Metanetwork come from at
least two aspects:

- First, with the division of a large network into small and single-user models, the design
of any Bayesian RN-Metanetwork becomes much easier, especially when we have to
assign the conditional probabilities for the network.

- Second, we have the separate models for priority and preference. We also have separate
models for each user. This dramatically increases the reusability of the models.

8.5.7 Implementation
To illustrate the use of this proposed approach, we will describe in details some models
of user preference, which are implemented in Hugin Tool [39]. These are the most
common user preferences in smart home systems, such as the preference for light,
temperature, curtain, multimedia service category. The models go along with some
numerical examples to show how they work.

This chapter will also contain the implementation details for the Bayesian RN-
Metanetwork, as well as the user preference learning mechanism in CAMUS.

8.5.7.1 Implementation of User Preference models for Smart-Home Systems

Every system has its own input-output and hence has specific kinds of user preference.
One of the famous scenarios is a smart home system where various sensors, controls
(actuators) are installed, and many users are involved. In our implementation, we assume
that there are 2 users in the house. The preference and priority models which are
presented in this chapter are implemented in Hugin, a tool for building Bayesian
networks [39].

Categories of User Preference in a Smart Home System

As previously said, user preference is what the user want the system to do in certain
situation. In more details, it is the relation between the context of user, which consists of
sensor data and other input information, and the control commands which the system give
to the actuators inside it. Therefore, to know what kind of user preference we have in a
system, we should know all the input information / sensor data as well as command
controls a system should have.

The preference learning module in a Smart home system takes as it input the time, the
location of user, home environment sensor data, including indoor/outdoor light intensity,
audio intensity, indoor/outdoor temperature, current weather, etc. It also receives the
current activity of the user from the activity reasoner, which can be implemented using a
Bayesian network [8]. Light preference may consider the affection range of each light,
while Temperature preference takes into account the duration of user staying in the room

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

227

(for example, if the user has just enter the room and the outside is hot, he will need cooler
temperature than the user who has stayed in the room for a long time.

The outputs of the preference learning module in a Smart home system are the preferred
light intensity level (commands for the light control), temperature level (commands for
air conditioner and heater control), multimedia service categories (such as television
channel, music genre and audio broadcasting channel), curtain control (close / open), etc.
Because the multimedia service has already discussed above, in this section we will only
describe the models for curtain control, light and temperature preference.

There is an assumption that there is no body sensor to tell about the user health status or
emotions. Otherwise, the preference will depend a lot on user emotion and health.

Curtain Control Preference

In some systems, a curtain can have only 2 statuses CLOSE and OPEN. In other system,
the curtain control can open the curtain to some levels. Assume that we have 3 levels for
curtain control: CLOSE, OPEN and HALF_OPEN.

Normally, user wants to open or close the curtain depending on the outside weather, light
intensity, sunlight direction and the activity which is happening in the room. For the
weather, we can have some rain sensors to detect rain, and sunlight sensor to detect
whether the sunlight enters the room or not.

Figure 14: The curtain control preference model of one user

Figure 15: The priority model for curtain control preference (for 2 users) using
traditional Bayesian network.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

228

The priority of curtain control is related to the presence and the current activity of the
user.

Initial the priority model:

To initialize the CPT, we can learn the conditional probability from the history data, or
enter the probability manually, or use expression. This is an example of Hugin
expression for the CPT of User_CurtainPref_BN node:

if (and (UserA__presence == "NO", UserB__presence == "NO"),
Distribution (0, 0, 1), Distribution (0.5, 0.5, 0))

The Distribution function in this expression is the distribution of the states of
User_CurtainPref_BN node, which are BN1, BN2 and BN0. These states are the
preference models of user A, user B and the model in case no user is presented.

This expression gives the equal priority for both users without concerning the current
activity of each user. If we allow the user who is sleeping to have higher priority, the
expression would be like this:

if (and (UserA__presence == "NO", UserB__presence == "NO"),
Distribution (0, 0, 1),
if (and (UserB__hasActivity__type == "SLEEPING",
 not (UserA__hasActivity__type == "SLEEPING")),
Distribution (0.2, 0.8, 0),
if (and (not (UserB__hasActivity__type == "SLEEPING"),
UserA__hasActivity__type == "SLEEPING"),
Distribution (0.8, 0.2, 0),
Distribution (0.5, 0.5, 0))))1

Using the function “Transfer to table” of Hugin [39], we will have a CP table, a part of
which is showed in the following figure.

Figure 16: CPT of the curtain control priority model

Light Control Preference

Most lights have 2 common states: ON and OFF. Assume that there are 4 levels of light
intensity in the room: BRIGHT, NORMAL, DIM and DARK. The intensity levels which
each light can produce range among BRIGHT, NORMAL and DIM.

1 The expression is in the format of Hugin expression, building by the Hugin tool [39].

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

229

The light control preference of one user will be related to the current activity of all the
users involved, current light intensity in the room, outside light intensity and the curtain
status. All the lights which have the same affective range with the user location will be
considered in the model.

Figure 17: The Bayesian network models for the light control preference of one user

The priority of the light intensity control also depends on the current activity of user. For
example if the user is sleeping, light should not be bright.

Figure 18: The priority model for curtain control preference (for 2 users) using
traditional Bayesian network.

The initial of priority model is similar to the previous session.

Temperature Preference
Every air conditioner has its own types of control. However, the control can be mapped
into some certain level of temperature. Assume that there are 3 levels: High, Moderate
and Low.

The temperature preference of user depends on inside and outside temperature, user
activity and the occupation duration. The temperature preference priority depends on the
occupation duration. A user who has just been walking outside needs the help of the air
conditioner or the heater more than a user who has stayed in the room for a long time.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

230

Figure 19: The Bayesian network models for the air conditioner control preference of
one user

Figure 20: The priority model for air conditioner control preference (for 2 users)
using traditional Bayesian network.

8.5.7.2 Adding more user preference models into a Bayesian RN-Metanetwork

When a new user joins the system, the preference model should be updated. The process
for integrating a user into a multi-user preference model has 3 steps:

Step 1 (optional): create the preference model for that user based on the common
preference model for a single user.

From the common preference model, we make a copy and then rename the nodes related
to user to the name of that user.

For example, the air conditioner control preference model for UserA will be:

Figure 21: Air conditioner control preference model of UserA

This step can be omitted if the user preference model has already built before.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

231

Step 2: add the new preference model into the set of preference model in the predictive
level (first level) of the Bayesian RN-Metanetwork.

Step 3: update the priority model:

- Add the nodes related to the new user into the priority model

- Add one more state which is equivalent to the new user preference model

- Update the CPT:

+ Where new user presence has value NO, the conditional probability can remain the
same, and 0 is filled for the probability of the new state.

P(BNN|X,Y,PrN=NO) = 0
P(BNi|X,Y,PrN=NO) = Po(BNi|X)

with N denotes the current number of users,

X denotes the set of nodes which related to old users
Y denotes the set of nodes which are related to new user except the presence,
PrN denotes the Presence of user number N,
P: new conditional probability
Po: old conditional probability

+ Where the new user presence has value YES, the conditional probability is recalculated.
Normally the calculation is based on the priority mechanism of the system. If the system
is first-equal-priority, i.e. all at the beginning all the users have same priority, the
calculation will be:

New state:

N N
1P(BN |X,Y,Pr =YES) =
N

Old state: the old priority order among the old users is maintained by:

i N i
N-1P(BN |X,Y,Pr =YES) = P(BN |X)*
N

8.5.7.3 Bayesian RN-Metanetwork Reasoner Implementation

The Bayesian RN-Metanetwork is implemented as a reasoner inside CAMUS.

The programming language is Java. The library of Hugin [39] is utilized as a core for
Bayesian network computations.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

232

Figure 22: Class diagram of Bayesian RN-Metanetwork

By wrapping the Bayesian RN-Metanetwork in an interface which inherits the
BNReasoner interface, the Bayesian RN-Metanetwork reasoners as well as the traditional
Bayesian reasoner can be accessed in a unified manner. Because a Bayesian RN-
Metanetwork includes the BNReasoners as its metanetwork and prediction-level
networks, each of the sub-network can be a Bayesian RN-Metanetwork itself, or in other
words, the Bayesian RN-Metanetwork can be multiplied into many layers.

8.5.7.4 User Preference learning implementation in CAMUS

We have a ReasonerManager service to take care of creating the reasoners as well as
managing those reasoners. A ContextDataManager manages the context repository,
receives the queries and registrations for context data. Inside the ContextDataManager,
the rule-based reasoning is implemented to infer the high-level context data from low-
level context data. When new context data comes from sensors, the ContextDataManager
service does the inference for high-level context data, then matches the registrations and
notifies the handler services if the registrations are matched.

A PreferenceContextAggregator service works as the preference learning module for the
middleware. It reads the model files, calls the ReasonerManager service to create the
Bayesian RN-Metanetwork reasoner, and registers to the ContextDataManager service
for the needed context data. When it is notified about the new context data, it will give
the new evidence for the Bayesian RN-Metanetwork reasoner by setEvidence method,
then asks the reasoner to do inference and finally gets back the marginal for the nodes
related to the preferences.

Any application can send request to PreferenceContextAggregator service to get the
preference of user. After making the decision and receive the feed back from user, the

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

233

application will tell the PreferenceContextAggregator service the result of feedback.
Based on user feedback (approval or denial), PreferenceContextAggregator service will
set the evidence and call the Bayesian RN-Metanetwork reasoner to do adaptation.

Fig. 23 shows the sequence diagram of all process.

Figure 23: The sequence diagram of user preference learning process in CAMUS

8.5.8 Conclusion
Context-aware computing poses interesting issues for information system researches.
Among those issues, learning user preference in order to adapt the system automatically
to the need of user is a crucial task. Many challenges have risen in this are due to the
uncertain, heterogeneous, distributing characteristic of a context-aware system.
Especially when there are many users involve in an intelligent environment, the system
has to cope with conflict resolution and distinguishing among the user preferences. A
solution for learning user preference in a multi-user context-aware environment which
can efficiently resolve the above mentioned problems is the main contribution of our
work.

We have first presented the Bayesian RN-Metanetwork which can be used to model the
user preference as well as user priority for many users, while still maintain separate
preference model for each user. The propagation algorithm showed how to calculate the
composite preference of all the users in the system and make decision of service to
provide. To actively and continuously adapt the models to the newest preferences and
priorities of the users, the adaptation algorithm for Bayesian RN-Metanetwork was

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

234

described. To illustrate the use of Bayesian RN-Metanetwork, some common models for
various kinds of user preference in a smart home system were presented.

However, this is just the first step to make the system intelligent. There are still a lot of
challenges such as user behavior routine learning, in which the prediction of the future
actions of user is the most important task.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

235

8.6 Location Estimation

8.6.1 Location Estimation in CAMUS
Emerging mobile computing application and ubiquitous computing environments are
required to provide location sensitive behavior to end users. Consequently location
systems are on the verge of becoming a part of daily lives of users by enabling a variety
of smart environments like shopping malls, campuses and airports. Advances in sensing
technologies have resulted in several novel positioning techniques to support many
potential location based applications. Location aware computing space is defined mainly
by these three complementary technologies as shown in Figure 1.

Figure 1: Location Aware Computing Space

This technical report illustrates on Location Estimation research and development in the
framework of CAMUS. Main focus of this research is localization in wireless sensor
networks particularly indoor location estimation using WiFi networks. Major
contributions are providing an integrated middleware infrastructure for developing
location systems, specialized machine learning methods, software tools, algorithms and
real life implementations of wifi location systems in large indoor environments.

In building localization has been subject to costly infrastructure and special hardware
devices mounted on the objects of interest. However, signal strength based location
estimation is an attractive choice because of its economic viability and pervasive
availability of IEEE 802.11 wireless networks, also called WiFi networks. Received
Signal Strength (RSS) based location awareness applications include, but are not limited
to, a wide range of services to the end user like automatic call forwarding to user’s
location, robotic global localization, exploration and navigation tasks, Finder, Guiding
and Escorting systems, first hop communication partners, liaison applications, location
based advertisement and positioning of entities in large warehouses.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

236

8.6.2 WiFi Location Systems Overview
Location systems form a fundamental component of envisioned ubiquitous computing
applications. Several location based services are poised to enrich the way people interact
with computers such as activity recognition, personnel management, asset tracking.
Global coverage of GPS is considered as most potent example of a ubiquitous location
system but it faces no availability of satellite signals in densely populated urban areas in
general and especially in the indoor environments. Recently Wireless LAN (WLAN)
based location systems have gained a significant attention from research community as
well industry; mainly because pervasive availability of WLAN in urban areas and
proliferation of wireless network enabled commodity handheld devices.

These WLAN based location systems can be coarsely characterized based upon two
aspects as summarized in Table 1; i) The resolution of location estimate and ii) The prior
knowledge which the system requires as prerequisite.

 Prior Information Required for Learning

Position of Tx +
Environmental Model

Position of Rx

Coarse Grained 25~50 m Outdoor Place Lab Intel 2002
LaMarca 2004

Fine Grained ~3 m Indoor
Rutgers univ. 2006

RADAR Microsoft
2002

Table 1: Taxonomy of WiFi Location Systems

Location Resolution Based Division

Coarse grained location systems, such as Intel’s Place Lab, provide 20 to 50 meter
accuracy and are more suitable for outdoor scenarios, whereas fine grained location
systems, such as Ekahau, are befitting for indoor environments and achieve up to 3 meter
accuracy.

Prior Knowledge Based Division

On the other hand, the division based on prior knowledge is present in both coarse
grained and fine grained systems. Some systems require a detailed radio map of target
area which provides the basis for developing a mapping function between physical space
and signal space. Since creation of radio map is human intensive task, another class of
systems avoids manual creation of radio map by using sophisticated radio wave
propagation models. Nevertheless these models require detailed information about the
position of WLAN access points, building structure, materials and obstacles; which,
needless to mention, is often not easily accessible.

Middleware Infrastructure for WiFi Location Systems

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

237

Although ad-hoc location aware applications can be developed without middleware
support but this approach results in non reusable effort and monolithic systems.
Developing reusable abstractions and services as middleware masks a broad range of
issues from location aware system developers. Most of previous research is concentrated
on seamless integration of multiple location technologies through a unified
programmable interface and provide support for several applications that require tracking,
location base publish subscribe and location sensitive customization of end user
applications to name a few. In this paper we present a middleware infrastructure for
developing both signal strength based location systems using neural networks and
support for location aware applications through reflective component framework.
Locationware provides interfacing with other location technologies which separates
development of location aware application from underlying location sensing mechanisms.

This section presents a conceptual overview of Locationware Middleware and its
infrastructural components for end to end support of location aware computing with
respect to a coherent development model. This model consists of a well defined stairway
development life cycle which guides the phase-wise development of location systems in
two logically successive and complementary stages. In the first stage a location system is
developed and made available to the subsystems of second stage. The second stage
concerns with design, development and execution of end user location-aware applications.
Figure 2 shows the schematic of Locationware development life cycle. Each stage of
development lifecycle is further divided into a continuum of phases such that the outputs
of each phase become inputs to the next phase. During each phase our middleware
provides software artifacts, services and tools to design and implement location systems
and, subsequently, location-aware applications.

Figure 2: Conceptual Schematic of Development Life Cycle

Figure 3 shows Locationware middleware infrastructure that allows developers to
manage and realize development process of location aware system phase by phase. Each
phase shown in the conceptual schematic of location system development life cycle,
Figure 2, has corresponding subsystem implementation in the Locationware infrastructure
shown in Figure 3. We employed principles and practices of component based software

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

238

engineering in order to facilitate reusability and upgradeability. For the sake of clarity
and coherence with stairway lifecycle, we shall divide the discussion of middleware
features into two categories.

i.) Location system development subsystems are briefly described here while detailed
discussion is presented in section 4. The rapid site calibration framework realizes site
calibration phase by providing a distributed sampling system for parallel and rapid site
calibration by multiple devices. Site calibration phase delivers the ‘Radio Map’ database
that is employed to train pattern recognition machines in the next phase. Training phase
constructs classifier model, called positioning engine, of target site which learns the
mapping of signal strength patterns with corresponding locations. Once the positioning
engine is trained, we deploy it into the middleware as software component for runtime
location estimation. In order to ship the positioning engine from offline and lab
development to online and real life execution; we offer a runtime environment and server
side APIs hosting location estimation engine.
ii.) Location-aware applications development concerns with distributed location aware
system which provides server side mobile client proxy hosting services, seamless location
provisioning to LBS (location based services) and variety of communication schemes to
collaborate with the end user location aware applications. Locationware provides a
reflective component framework and middleware services to realize location aware
application development and on the fly adaptation. This paper focuses on only Location
System Development stage, however the details of location-aware application
development can be found in [17] and [18].

Figure 3: Locationware Middleware Infrastructure

8.6.3 Radio Map Knowledge Engineering Toolkit
In the course of location aware computing research, we developed a complexity analysis
toolkit for preprocessing the Radio Map. This toolkit provides rich set of statistical
analysis functions such as Linear Discriminant Analysis, Most Effective Feature
Selection, Scatter Analysis, Identification of Overlapping classes and there graphical
representation using parallel coordinates and Feature Space Transformation functions for

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

239

different classification techniques such as Learning Vector Quantization and Multilayer
Perceptron. Figure 4 shows a snapshot of the GUI of Radio Map Knowledge Engineering
Toolkit.

Figure 4: Radio Map Knowledge Engineering Toolkit

8.6.4 Parallel and Distributed Site Calibration System

The relationship between site calibration effort, system complexity and target granularity
of localization system is very straightforward. Since radio map plays the role of reference
map for localization techniques, the accuracy of location estimation is directly linked
with the correctness of radio map. As the measurements of RSS become less reliable, the
complexity and error of the position algorithm increases. Therefore rapid and accurate
calibration of target site is established as major issue in adoption and deployment of
Location Aware systems. We present a distributed and parallel computing approach to
expedite development of comprehensive radio maps for Location Awareness. A novel
method of RSS data collection is presented. Results show noticeable improvement in
calibration speed and reduction in radio map database size. Location-ware essentially
provides an API and framework for implementing distributed system in a highly dynamic
mobile computing environment. Moreover same API can be used for testing and
evaluation of a positioning system. Since Wireless LAN based positioning techniques are
strongly relative to a particular site and no general system can be developed for all
wireless sites. Testing and evaluation task faces with the same problems as site
calibration. So the same distributed and parallel computing approach can be employed for
gauging the performance (accuracy and precision) of a positioning system. In section 4,
we elaborate the API and reference implementation of Location-ware. Besides, our
system allows real time visualization of RSS of all available wireless base stations, giving

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

240

more insight into the nature of wave propagation at different locations. Thus, providing
an efficient way to analyze the properties of WLAN and achieve optimal WLAN
coverage, enhancing the positioning system performance. Besides, we developed a novel
method for capturing and storage of RSS data. Since the radio map size and complexity
increases exponentially as the area of interest becomes larger. We integrate histogram
based data collection method in calibration system that reduces radio map size without
compromising on the quality of radio map.

8.6.5 System Architecture
Location-ware architecture follows distributed component approach to realize the concept
of distributed and simultaneous site calibration. Whole system is divided in three sub
systems. I) Calibration Agent: deployed on handheld devices, ii) Calibration Server:
deployed on stationary workstation iii) Radio map: provides target database wrapper API,
and radio map manipulation components.

Fig. 5. System Architecture Building Blocks

Calibration Agents

We refer to the subsystem that resides on hand held device as Calibration Agent.
Although these components can be deployed on other small handheld devices, for actual
calibration task we used TOSHIBA M-30 notebook with built in Intel PRO/Wireless
2200 BG Network card and HP iPAQ Pocket PC h4150. Calibration Agent sub system
API are shown in Figure 6. Calibration Agent allows users to perform different tasks
related to calibration. Fig. 7 shows use cases that specify the user – system interaction
scenarios. As we discussed in section 2, taking few samples at location is not sufficient
enough for building a reliable location estimation technique for real world scenario.
Insufficiently calibrated point might lead to misleading conclusions about the location at
the time of positioning.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

241

LoadWiFiAdapter

(from PPC Use Cases)

ChangeFrequency

(from PPC Use Cases)

ScanNetwork

(from PPC Use Cases)

Exit

(from PPC Use Cases)

SendData

(from PPC Use Cases)

Connect To Server

(from PPC Use Cases)

Set Current Location

(from PPC Use Cases)

Mobile User

(f rom Actors)

<<communicate>>

Fig. 6. Calibration Agent UML class diagram Fig. 7. Calibration Agent Use Cases

 ‘Scan Network’ use case allows user mode applications to start the process of scanning
network properties. It sends a probe packet to nearby APs and captures required
information from the response packets. Essential capability of a site calibration system is
to capture properties of wireless network e.g bssid (Basic Service Set Identifier), rssi
(Received Signal Strength Indicator). Commercially available and open source like
netstumbler[13] meet this requirement but these systems are more focused on network
traffic analysis, intrusion detection, layout management and are not meant for collecting
data for location awareness. While site calibration system requires a subset of there
capabilities, still these systems fall short of providing capture, storage and analysis of
received signal strength data for location awareness. This capability can be implemented
as software driver at the top of Wireless Network Interface Card (NIC). This layer hides
vendor specific implementation of hardware and allows user mode applications to query
NIC in a standard way with uniform accessibility and representation of required
information. IEEE 802.11 (a, b, g) specifies that signal strength measurement must be
reported by the network interface card (NIC) as part of standard compliance. [4]. The
RSSI is measured in dBm, normal values for the RSSI value are between -10 and -100.
[18] Capturing wireless signal from available Access Points remains the fundamental task
in building site calibration systems. A standard library for signal capture should be
employed that can hide different hardware vendor specific details of signal capture. MAC
driver then interprets the response frame and takes note of the corresponding signal
strengths. Figure 8 shows the list of Wireless Access Points in range of handheld device
after a probe. For laptop Calibration Agent Subsystem, we used rawehter API [23] for
Windows XP for capturing the wireless packets.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

242

Fig. 8. List of Wireless Access Points

Another unique feature of Calibration Agent network scanning operation is aggregation
of all observations into a histogram. Listing 1 shows the histogram algorithm which
constructs an rssi data aggregation in Calibration Agent memory.

Listing 1: Histogram making Algorithm

1 Create a two dimensional array ‘Histogram[m,n]’
2 Create a flag ‘newEntry’
3 Create a node ‘HistogramSize’

INPUT: rssi value as integer
OUTPUT: histogram of rssi values

4

For Each count In ‘Histogram’ Do
 If rssi is same as ‘Histogram[Count,0]’ Then
 Set ‘newEntry’ = false
 Increment Histogram[Count,1] ++
 Return Histogram
 Else
 Set ‘newEntry’ = true

5
If newEntry is true Then
 Set Histogram[HistogramSize,0] = rssi
 Increment Histogram[HistogramSize,0] ++

Algorithm 1: Histogram Algorithm

‘Change Scan Frequency’ use case allows user to change scanning frequency through
GUI. This provision allows signal capture at dynamically configurable intervals. By
increasing the sampling interval, one can avoid temporal spikes in signal strength due to
environmental factors. Fig 9 shows time series graph of signal strengths at one location
from Kite 3 access point. Red circles show the temporary drop in signal strength that can
be filtered out using lazy sampling.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

243

Fig. 9. Temporal spikes in signal strengths Fig. 10. Controlling WiFi signal scanning rate

Fig. 10 shows GUI for controlling sampling frequency dynamically. Our scanner
component exposes this capability through standard programming interface. Client mode
applications can choose their preferred rate of network scanning. This capability is
implemented in our system as GUI control.

The Location Map provides a reference map of target area that needs to be calibrated.
User specifies his location and Calibration Agent binds the respective location with
received signal properties. Calibration Agent provides active location map of the site in
order to allow the user to pinpoint the current location of observation.

After calibrating one location, “Connect to Server” use case establishes connection
between Calibration Agent and Calibration Server. TCP/IP sockets are used for
communication. Network communication component on handheld device registers itself
with the Calibration Server and get and MU-ID response from server. Later this MU-ID
is used to report WiFi signal information, acquired from all Access Points in range, back
to the Calibration Server. At the SU side, network communication component registers
every MU roaming in site and manages all the incoming information using client
management system using multiple independent threads of communication. Once
connection is established, “Send Data” use case allows user to send calibration data of
that location to server and let user know about the received acknowledgement from
server. Calibration Agent uses Wireless LAN to establish connection and send/receive
data to/from Calibration Server. On the other hand Calibration Server is connecter with
local Ethernet network. Above this layer both subsystems use TCP/IP protocol to address
each other. Sockets layer implements asynchronous mechanism for communication.
Asynchronous communication allows distributed collaborations of multiple mobile
devices with Calibration Server run smoothly. Figure 11 shows layered view of
infrastructure that allows communication between Calibration Agent and Calibration
Server.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

244

Fig. 11. Layered Model for Communication between Mobile Units and Calibration Server

Calibration Server

On the other hand, stationary unit performs the important task of managing simultaneous
incoming information of every MU. Calibration Server has three main components: i)
Communication Component ii) Clientele Manager iii) Real Time Charting Component.
Communication component is responsible for receiving rss data from multiple roaming
devices and send acknowledgement packets to individual device. Calibration server
classes and their interrelationships are shown in figure 12 class diagram. CommServer
class encapsulates wireless communication details, storage mechanisms, calibration data
parsing, parallel client processes and exposes standard functions to the developers for
making web browser or other GUI calibration server applications. XL class provides
interfacing with excel sheets to store calibration data while Calibration Data class
represents a histogram structure for in memory storage of rss data of each access point.

The Clientele Manager component is responsible for registering remote calibration
devices in clientele registry and managing communication with individual devices in
separate processes. Calibration Server sends an acknowledgement to individual devices
containing the receipt of total number of records saved in database on behalf of that
particular device. Clientele Manager Component manages this operation and sends
respective information to each mobile device. Besides, clientele manager allows
broadcasting some message to all mobile devices on behalf of Calibration Server.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

245

AsynchCallBack

AsynchCallBack()

(f rom Sy stem.net)

Socket

connect()
bind()
listen()
beginAccept()
endAccept()
beginRecieve()
endRecieve()
Socket()
wtiteToStream()
Close()
send()

(f rom Sy stem.net)

CalibrationData

setAccessPoints()
getAccessPoints()
setLocation()
getLocation()
storeData()

(f rom comm)

XL

rowCount : Integer
excel

initialize()
getRecordCount()
saveXL()
insertRecord()
beginToWrite()

(f rom DataStorage)

CalibPacket

payload : Byte
socket : Socket

CalibPacket()

(f rom comm)

CommServer

workerCallBack : AsynchCallBack
MAX_CLIENTS : Integer
mainSocket : Socket
workerSockets : Socket
CLIENT_COUNT : Integer
xlHandle : XL
cd : CalibrationData

openSockets()
onClientConnect()
waitForData()
onDataRecieved()
getIP()
closeSockets()
saveData()
saveDataCallBack()

(f rom CalibrationServ er)
Location

xCoord
yCoord
locID

getXCoord()
getYCoord()
getLocID()
setXCoord()
setYCoord()
setLocID()

(f rom comm)

System.net

comm

DataStorage

Permutation

expandData()

(f rom DataStorage)

RTGraph

series
pointSize

drawPoint()
setLegends()
size()
show()

(f rom DataStorage)

Fig 12. Calibration Server Class diagram

Radio Map Based Location System

We conducted experiments in 1240 square meter area of Engineering Building shown in
Fig 13 with target locations. This area is covered by 8 wireless lan access points. For
sensor data collection, we employed Hp iPAQ pocket PC devices equipped with
integrated Intel wireless network interface card. IEEE 802.11 (a, b, g) standard specifies
that signal strength measurement must be reported by the network interface card (NIC) as
part of standard compliance. The RSS is measured in dBm and normal values for the
RSSI value are between -10 and -100. We collected 150 samples of RSS from all
available Access Points at each location in calibration phase for training the classifier.
Same size of testing data was collected for testing the location estimation performance. In
order to effectively capture noisy characteristics of radio channel due to several
environmental factors, both sets of data were collected in 5 days at different times of each
day.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

246

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

11 12 13 14 15 16 18 19 20 21 22 23 31 32 33

Target Location IDs

Re
ci

ev
ed

 S
ig

na
l S

re
ng

th

AP-1
AP-2
AP-3

Fig 13: Location Map, Target Locations Fig 14: Partial Radio Map

showing RSS patterns of three access points

Noisy characteristics of RSS values can be seen in Figure 14 which shows signal strength
of three access points recorded at subset of target locations. Location IDs are listed on x-
axis and RSS values on y-axis. Moreover, Device at two different locations can
sometimes report same RSS readings, and can report very different readings while at the
same location. Target classifier takes received signal strengths of visible access points as
input and generate location as output. This mapping is learned through training phase
using training Radio Map. Training phase is responsible for data preprocessing, classifier
training, post processing and error analysis and tuning classifier for optimal results.
Figure 15 shows system components that are involved in training phase.

Fig 15: Model Training Phase

During preprocessing step, we apply a clustering technique that extracts prior
probabilities of visibility of access points on set of locations from Radio Map. Resulting
visibility clusters are used to de-sparse feature space. RSS vectors are then normalized in
order to make all values fall in -1 to 1 range. Results show that range normalization
improves estimation accuracy of SVM and MLP classifiers. We also applied smoothing
filters to remove outliers from RSS patterns. Real RSS values exhibit temporal spikes due
to environmental factors. After training phase live data from the environment need to be
tested with trained classifiers. In estimation phase RSS captured on mobile device is
presented to the input layer of neural network. After the number of accessible AP is
determined, different preprocessing components are implemented to filter, scale and
normalize data. Figure 16 shows all the components involved in execution phase.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

247

Figure 16: Location Estimation Phase

Offline Learning Methods

Support Vector Machines

Seminal work on support vector machines (SVM) has been rigorously characterized by
Vapnik. SVM belongs to kernel based machine learning techniques. SVM have shown
superior results in various applications of face detection, object recognition, handwritten
character recognition, speck recognition, time series prediction and biometric
identification system [21]. The basic idea in support vector machines is to construct a
special hyperplane between classes that separates them with largest or optimal margin. In
simplest two class problem having input vectors ()nixi ,...,1= in a N-dimensional input
space nR with corresponding class labels { }1,1−∈iy , a SVM classifier is based on class of
hyperplanes, defined in (1), where w is the weight vector, x is the training vector and
b is bias.

() 0=+⋅ bxw)1(
The decision function takes form as described in (2).

))sgn(()(bxwxf +⋅=)2(
The geometric measure of optimal margin becomes ()wwT21 . The optimal hyperplane
can be found by minimizing ()wwT21 subject to iii bxwy ∀≥+⋅ 1)(. Lagrange multipliers
are used to solve this optimization problem. That formulates optimal hyper plane finding
problem as maximizing following.

∑∑
==

⋅−=
l

ji
jijiji

l

i
i xxyyW

1,1

)(
2
1)(αααα)3(

Subject to liwherey i

l

i
ii ,...,1,0,0

1

=≥=∑
=

αα . Generalized form of SVM solves multi

class problems with non-linear separating hyperplanes. It is realized by mapping the input
space ix into a higher dimensional space also referred to as augmented space. Different
kernel functions, shown in table 2, are used to achieve this
mapping:)()(),(jiji xxxxK φφ ⋅= .

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

248

Table 2: Different Kernel Functions

Kernel Formulation
Linear uv
Polynomial () reecuv deg⊕γ
Radial Basis
Function

()2uve γ

Sigmoid ()cuv⊕γtanh

Depending on kernel choice the input space can be transformed into a feature space with
linearly separable classes which were non-separable in original space. Even if classes are
not completely separable in new feature space, SVM still can construct optimal margin
separating hyperplanes by allowing error penalty variables which relaxes the hard margin
condition. Tradeoff among different training errors is regularized by ∑ =

n

i iC
1
ξ where C is

regularization constant. By substituting constant C and respective kernel function,
problem equation (3) becomes as maximization of following.

∑∑
==

⋅−=
l

ji
jijiji

l

i
i xxKyyW

1,1

)(
2
1)(αααα (4)

Subject to
liC

y

i

l

i
ii

,...,1,0

0
1

=≤≤

=∑
=

α

α

We employed support vector machines LIBSVM allows programmatic customization of
two support vector classification techniques (i. C-SVC ii. nu-SVC) as well as
configuration of four kernel functions. It also supports multi class problems by
employing “one-against-one” algorithm. In this method 2/)1(−kk classifiers are
actually generated for k classes, where each training vector is compared against two
different classes and the error (between the separating hyper plane margins) is minimized.
The classification of the testing data is accomplished by a voting strategy, where the
winner of each binary comparison increments a counter. The class with the highest
counter value after all classes have been compared is selected. RSS based Location
system development life cycle can be defined in three distinct phases;

Online Learning Methods

In this direction we developed a novel location system based on self-scalable Fuzzy
ArtMap. Fuzzy ArtMap is more general ArtMap (also called Predictive Art) network
which can handle analog input patterns and performs online incremental supervised
learning of pattern-class pairs presented in arbitrary order. Compared to previous work
our location system offers several desirable features which cannot be realized using
previous methods. Rapid Development of RSS based location systems is major issue that
keeps this technology from becoming widely deployed. Unlike previous systems, this
approach requires no online training (or lab time) to train classifier.

Fuzzy Art and Fuzzy ArtMap

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

249

We adapt a simplified version of Fuzzy ArtMap, presented in, which employs only one
Fuzzy Art network instead of two with same learning and recall performance as original
Fuzzy ArtMap. Simplified architecture is optimized for hardware implementation of
Fuzzy ArtMap network. Original Fuzzy ArtMap specification requires that capacity of
network, in terms of number of categories (locations in our case) that network can learn,
need to be fixed prior to learning. Prior fixation, of number of categories that network can
learn, means that once RSS patterns of a fixed number of locations(with respect to the
capacity of network) are learned by network, then more locations cannot be learned (or
incorporated) into that network. This limits the application of original Fuzzy ArtMap in
terms of dynamically expanding the location system. We adapt original Fuzzy ArtMap in
our implementation such that it do not require capacity of network to be fixed prior to
learning and allows network to self-scale itself as new categories (locations) are
presented to it. Our implementation of our self-scalable fuzzy ArtMap network is
available as open source [20]. Learning dynamics of self-scalable Fuzzy ArtMap are
shown in Fig. 6.

Figure 17: Fuzzy Art Topology

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

250

Figure 18: Fuzzy ArtMap Topology

Self Scalable Fuzzy ArtMap

Figure19: Self-scaling Fuzzy Art Learning Algorithm

Fuzzy ArtMap can learn pattern-class pairs online in real time. Online learning of RSS
patterns and corresponding locations enables rapid location system development. Fig. 2
(left) shows schematic of development life cycle in o® line training based systems. By
virtue of online learning capability of Fuzzy ArtMap this approach removes site
calibration phase and o® line training phase from development life cycle, as shown in Fig.
2 (right), and realize rapid location system development. Flexible and Dynamic
expansion of location system is easy and straight forward in our approach. By expanding
location system flexibly and dynamically we mean incrementally learning new location
in real time thus increasing area by including more target locations. In order to achieve
this purpose, using previous approaches, Radio Map feature space is required to be
extended to include training RSS pattern-location mapping and then retraining of
classifier with extended radio map. In case of retraining with new feature space, most of
'online training' based classifiers face with the 'Stability plasticity dilemma'. That means
learning new pattern-class mappings causes erosion of previous knowledge acquired by
classifier during early training. Other techniques overcome this problem by retraining
classifier with whole Radio Map (that includes both old and new training data). Fuzzy
ArtMap is capable of incremental learning and ensures stable learning of categories while
exposed to new set of pattern-class pairs [4]. This capability allows flexible learning of
new locations without requiring retraining with whole new feature space. Learning Rare

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

251

Events is very common issue that RSS based location classifiers face. The very nature of
radio wave propagation in indoor environments causes imbalanced classes. It means that
there may be some locations where size of RSS training patterns is far less than other
locations. Fuzzy ArtMap is capable of learning based on a single exposure to an event,
and does not show the catastrophic forgetting of rare events that other classification
methods do. Moreover inside the building radio wave propagation follows a complex
model and produce non stationary feature values in RSS vectors. Fuzzy ArtMap exhibits
remarkable ability to classify non stationary data sequences.

Context-Aware Self scalable Fuzzy ArtMap (ConSelFAM)

Due to small scale coverage, there model assumes that all input signals are available at
every location all the time. Practically this approach has limited applicability because in
real life scenario some signals may not be available at estimation time due to Visibility
Problem, as explained in next section. We refer to signal availability of a particular
access point at a given location as its 'visibility'. Large scale application of RSS based
location estimation faces visibility phenomena. From location estimation stand point, one
important aspect of indoor radio wave propagation is that not all access points are visible
at all target locations all the time especially in case of large scale location system. We
present empirical RSS visibility data in Fig. 1 which shows eight radar graphs of
visibility probability of individual Access Points covering experimental site. We identify
each access point using last four digits of its MAC (Media Access Code) address. These
Access Points are deployed in Department of Computer Engineering building, third Floor,
which is shown in Fig. 2 map. As it is obvious from these graphs, every Access Point is
visible on a subset of 35 locations. This is because radio signal of certain access point
faces attenuation and fading effects and can be accessed within a specific area which is,
normally, 150 square meters in indoor environments. Since a particular Access Point
constitutes a distinguishing feature for pattern recognition machine, this implies that non-
availability of a particular Access Point signal at given location can have adverse affect
on location estimation.

By Context-awareness we mean to enable a classifier such that it can differentiate among
different input spaces. This is achieved by embedding context knowledge, visibility
cluster in our application, into Fuzzy ArtMap classifier. This is achieved by introducing
Context Field subsystem into original Fuzzy ArtMap neural network as can be seen in Fig.
20. Learning dynamics, shown in Fig. 21, of Context-aware Fuzzy ArtMap are similar to
original one except that it maintains contextual knowledge as a special hash table where
context code, visibility cluster in this case, represents key and respective F2 nodes
become its values.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

252

Figure 20: Context-aware, Self-scalable Fuzzy ArtMAP (ConSelFAM)

Figure 21: ConSelFAM Learning Algorithm

Radio Map Based Location System

Real Time Learning Machine

We developed a novel approach to develop WLAN based location systems which do not
require either a radio map or site specific propagation model while achieving medium
scale accuracy. Salient features of this approach are i) Real time learning of the
relationship between signal space and physical space which results in lowering the entry
barrier for the end users ii) Privacy protection: A mobile device can compute its location
in a completely passive manner which enables self-governed privacy protection iii)
Unlike enterprise location systems, our approach delivers self-contained location
estimation and does not even require network connectivity which is basic assumption in
most of previous location systems.

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

253

Figure 21: Beacon Based Location Estimation, Example Scenario

This capability achieves Personal Location System concept which functions independent
of classical request-response interaction between clients and server. iv) A collaborative
development model is realized which enriches the system by a growing community of
users. Unlike promised the ease of development by empowering non-professional
developers to build, extend and customize complex systems using high level abstractions
without learning the underlying technology.

2
3

4

1

5
6

7

Signal source (AP)

(1,2,7)
(3,4,5,6)

(1,6)

Mobile user with handheld device

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

254

Figure 21: Realtime Learning Algorithm for Dynamic Input Spaces

References

[1] Uzair Ahmad, A. Gavrilov, Sungyoung Lee, Young-Koo Lee,” Context-aware Fuzzy
ArtMap for Location systems”, International Joint Conference on Neural Networks,
Florida, USA, August 2007

[2] Uzair Ahmad, A. Gavrilov, Young-Koo Lee, Sungyoung Lee, “Distributed and
Parallel Sampling System for Efficient Development of Radio Map”, International
Conference on Information and Knowledge Engineering, Las Vegas, US, 2007

[3] Uzair Ahmad, A. Gavrilov, Sungyoung Lee, Young-Koo Lee, “Employing Support
Vector Machines for Location Estimation”, International Conference on Machine
Learning: Tools, Methods and Applications, Las Vegas, US, 2007

[4] Uzair Ahmad, A. Gavrilov, Young-Koo Lee, Sungyoung Lee, "Location-ware: A
Distributed Wireless Site Calibration System for Location Awareness", International
Conference on Information and Knowledge Engineering, Las Vegas, US, 2007

Scan Network

Update\Establish Visibility Layer

Monitor Visibility Layer

Select ‘Most Likely’ nodes for
Context layer

Refine the Context Layer
nodes selection

Refine the Context Layer
nodes selection

Memorize the visibility context
for later reference

Visibility Context
Formation state

Bidding State

Compressed
Information
Encoding
State

Technical Report On Concepts and Architecture of Context-Aware Collaborative Smart Objects For Ubiquitous Application
Version 0.4

255

[5] Uzair Ahmad, A. Gavrilov, Sungyoung Lee, Young-Koo Lee, “A Rapid Development
Approach for Signal Strength Based Location Estimation", IEEE International
Conference on Intelligent Pervasive Computing October 2007, Jeju, Korea.

[6] Uzair Ahmad et al, "Modular Multilayer Perceptron for WLAN Based Localization",
IEEE International Joint Conference on Neural Networks, July 2006

[7] Uzair Ahmad, A. Gavrilov, Young-Koo Lee, Sungyoung Lee, "In-building
Localization using Neural Networks", IEEE International Conference on Engineering of
Intelligent Systems, March 2006

[8] Uzair Ahmad, A. Gavrilov, Sungyoung Lee, Young-Koo Lee, “On Building a
Reflective Middleware Service for Location-Awareness”. RTCSA 2005: 439-442

[9] Uzair Ahmad, A. Gavrilov, Young-Koo Lee, Sungyoung Lee, “Reflective
Middleware for Location-Aware Application Adaptation”. ICCSA (2) 2005: 1045-1054

 256

8.7 Semi-supervised Learning for User-activity Recognition
Semi-supervised learning is a special form of classification. Traditional classifiers use
only labeled data (feature / label pairs) to train. Labeled instances however are often
difficult, expensive, or time consuming to obtain, as they require the efforts of
experienced human annotators. Meanwhile unlabeled data may be relatively easy to
collect, but there has been few ways to use them. Semi-supervised learning addresses this
problem by using large amount of unlabeled data, together with the labeled data, to build
better classifiers. Because
semi-supervised learning requires less human effort and gives higher accuracy, it is of
great interest both in theory and in practice.

The popular semi-supervised learning methods include: EM with generative mixture
models [1], self-training [2], co-training [3].

Generative mixture models are perhaps the oldest semi-supervised learning method. It
assumes a model (,) () (|)p x y p y p x y= where (|)p x y is an identifiable mixture
distribution, for example Gaussian mixture models. With large amount of unlabeled data,
the mixture components can be identified; then ideally we only need one labeled example
per component to fully determine the mixture distribution. A few of things should be paid
more attend: 1) Identifiability. The mixture model ideally should be identifiable. In
general, let { }pθ be a family of distributions indexed by a parameter vector θ . θ is
identifiable if

1 21 2 p pθ θθ θ≠ ⇒ ≠ up to a permutation of mixture components. If the
model family is identifiable, in theory with infinite U one can learn θ up to a permutation
of component indices. 2) Model correctness. If the mixture model assumption is correct,
unlabeled data is guaranteed to improve accuracy. However if the model is wrong,
unlabeled data may actually hurt accuracy. It is thus important to carefully construct the
mixture model to reflect reality. 3) EM local maxima. Even if the mixture model
assumption is correct, in practice mixture components are identified by the Expectation-
Maximization (EM) algorithm. EM is prone to local maxima. If a local maximum is far
from the global maximum, unlabeled data may again hurt learning. Remedies include
smart choice of starting point by active learning. 4) Cluster-and-Label. Instead of using
an probabilistic generative mixture model, some approaches employ various clustering
algorithms to cluster the whole dataset, then label each cluster with labeled data.
Although they can perform well if the particular clustering algorithms match the true data
distribution, these approaches are hard to analyze due to their algorithmic nature.

Self-training is a commonly used technique for semi-supervised learning. In self-training
a classifier is first trained with the small amount of labeled data. The classifier is then
used to classify the unlabeled data. Typically the most confident unlabeled points,
together with their predicted labels, are added to the training set. The classifier is re-
trained and the procedure repeated. Note the classifier uses its own predictions to teach
itself. The procedure is also called self-teaching or bootstrapping (not to be confused with
the statistical procedure with the same name). The generative model and EM approach
introduced above can be viewed as a special case of ‘soft’ self-training. One can imagine

 257

that a classification mistake can reinforce itself. Some algorithms try to avoid this by
‘unlearn’ unlabeled points if the prediction confidence drops below a threshold.

Co-training assumes that features can be split into two sets; Each sub-feature set is
sufficient to train a good classifier; The two sets are conditionally independent given the
class. Initially two separate classifiers are trained with the labeled data, on the two sub-
feature sets respectively. Each classifier then classifies the unlabeled data, and ‘teaches’
the other classifier with the few unlabeled examples (and the predicted labels) they feel
most confident. Each classifier is retrained with the additional training examples given by
the other classifier, and the process repeats. In co-training, unlabeled data helps by
reducing the version space size. In other words, the two classifiers (or hypotheses) must
agree on the much larger unlabeled data as well as the labeled data. We need the
assumption that sub-features are sufficiently good, so that we can trust the labels by each
learner on U . We need the sub-features to be conditionally independent so that one
classifier’s high confident data points are iid samples for the other classifier.

II. Activity Recognition
The purpose of activity recognition is to infer people’s behaviors from low-level data

acquired through sensors in a given setting, based on which other critical decisions are
made. For example, in smart home environments for aged care monitoring [4][5], based
on the information provided by cameras and other pervasive sensors, the system needs to
automatically monitor the occupant and determine when they need assistance, raising an
alarm if required.

Machine learning is a key aspect in activity recognition. For a system to automatically
infer what activity is being performed, it must have a detailed model of the activity.
Specially, the system must have the following information: activity data samples got
from sensors and labels for the activity samples.

A typical workflow for activity recognition is given in the following graph.

The first step in this figure is to collect activity samples. Samples collection could be
characterized by the different usages of sensors. These usages include, (1) remotely

Activity Samples Collection

Samples Labeling

Classifier Training Activity Models

Activity Prediction

 258

observe the scene using audio, visual, electromagnetic field, or other sensors and interpret
the signal readings [6][7][8], (2) attach sensors to the body and interpret the signal
readings [9][10][11], (3) attach sensors to objects and devices in the environment and
interpret the sensor readings [12][13].

After data collection, some samples are randomly selected and labeled by human. These
samples will be used by the classifiers for training purpose. Currently a variety of
classifiers have been proposed for activity recognition, such as neural networks [14],
dynamic Bayesian networks [15], naïve Bayesian networks [16], hierarchical hidden
semi-Markov models [17], nearest neighbors [11], decision tree [11] and so on.

Activity models are generated after classifier training. While the activity is being carried
out, data is gathered from sensors. Then the activity data is compared to a set of activity
models and inferred which model is the best match.

III. Activity Recognition Based on Semi-supervised learnign
The quality of activity models determines the performance of activity recognition. To
achieve good activity models, a large amount of labeled training samples are needed
when we use the existing classifiers mentioned above. The reason is that all of them are
supervised learning method which could only use labeled data for training.

To reduce human’s labeling effort, we propose a semi-supervised learning method for
activity recognition. As shown in the following figure, our proposed method can be
trained by using both labeled samples and unlabeled samples, hence less labeled samples
are needed. Here (a) is for existing methods. (b) is for our proposed method.

Reference:
1) Nigam, K., McCallum, A. K. Thrun. Text Classification from labeled and unlabeled

documents using EM. Machine Learning, 2000 (103-134)
2) Rosenberg, C. Hebert, M. Semi-supervised self-training of object detection models.

Seventh IEEE Workshop on Applications of Computer Vision, 2005.
3) Blum, A. and Mitchell, T. Combining labeled and unlabeled data with co-training.

COLT: Proceeding of the Workshop on Computational Learning Theory, 1998.

Activity Samples Collection
(without labels)

Labeling Some Samples

Supervised Learning

Activity Samples Collection
(without labels)

Labeling Some Samples

Semi-supervised Learning

(a) (b)

 259

4) V. Stanford: Using pervasive computing to deliver elder care. In IEEE Pervasive
Computing, (2002) 10-13

5) C. D. Kidd, R. Orr, G. D. Abowd, C. G. Atkeson, I. A. Essa: The aware home: A
living laboratory for ubiquitous computing research. In Proceedings of the Second
International Workshop on Cooperative Buildings, (1999) 191-198

6) S.S. Intille, J. Davis, and A. Bobick: Real-time closed-world tracking. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition, (1997) 697-703

7) S. Stillman, R. Tanawongsuwan, and I. Essa: A system for tracking and recognizing
multiple people with multiple cameras. In Proceedings of the Second International
Conference on Audio-Vision-based Person Authentication, 1999.

8) I. Haritaoglu, D. Harwood, and L. Davis: W4: Who, When, Where, What: A real time
system for detecting and tracking people. In Proceedings of the Third International
Conference on Automatic Face and Gesture, Nara, 1998.

9) M. Makikawa and H. Iizumi: Development of an ambulatory physical activity
monitoring device and its application for categorization of actions in daily life.
MEDINFO, (1995) 747–750

10) K. Aminian, P. Robert, E. Jequier, and Y. Schutz: Estimation of speed and incline of
walking using neural network. In IEEE Transactions on Instrumentation and
Measurement, (1995) 743–746

11) L. Bao: Physical activity recognition from acceleration data under seminaturalistic
conditions. M.Eng thesis, EECS, Massachusetts Institute of Technology, 2003

12) G.D. Abowd: Director of the AwareHome initiative. Georgia Insitute of Technology,
2002

13) T. Barger, M. Alwan, S. Kell, B. Turner, S. Wood, and A. Naidu: Objective remote
assessment of activities of daily living: Analysis of meal preparation patterns. Poster
presentation, Medical Automation Research Center, University of Virginia Health
System, 2002

14) M. Mozer: The neural network house: an environment that adapts to its inhabitants. In
Proceedings of the AAAI Spring Symposium on Intelligent Environments, Technical
Report SS-98-02, AAAI Press, Menlo Park, CA, 1998 (110–114)

15) K. P. Murphy: Dynamic Bayesian Networks: Representation, Inference and Learning.
PhD thesis, University of California, Berkeley, 2002

16) S.S. Intille and A.F. Bobick: Recognizing planned, multi-person action. Computer
Vision and Image Understanding, 2001 (414–445)

17) H. Kautz, O. Etziono, D. Fox, and D. Weld: Foundations of assisted cognition
systems. Technical report cse-02-ac-01, University of Washington, Department of
Computer Science and Engineering, 2003

 260

9. Security and Privacy Aspects in SCOs

9.1 Introduction
Smart Cooperative Objects (SCOs) have the capability of sensing, computing and
communicating with the environment and interacting with other SCOs. They have the
functionality of perceiving the environment and making smart decisions based on the
context. In short, they are the next generation sensors with the ability to make decisions
themselves or by the collaboration of other smart objects in the surroundings. These
objects will become ubiquitous in the foreseeable future. As they become more and more
pervasive and disappear into the environment, the issue of security and privacy becomes
the most important concern.

As a portion in ubiquitous computing (ubicomp) network, SCOs pose no novel security
issues except what have been introduced in ubicomp. However, providing particular
security services for SCOs faces more severe challenges than that of general ubicomp
systems. These challenges are collectively inherited from wireless sensor networks,
context-awareness systems, mobile computing, and autonomous computing.

Our main focus of this report is on security issues and challenges in SCO environments.
We also propose a sketchy security model for smart object. Organization of the report
will be as following. In next Section, we first outline the motivation behind our effort of
investigation into SCO’s security and privacy. Section 9.3 points out the main threats in
SCOs. This is the first and indispensable step before we build up security services for a
system. In Section 9.4, we investigate thoroughly security issues and challenges in SCO
systems. Regarding such issues and challenges, we briefly introduce several related work
and dig out what requirements they have and haven’t been fulfilled. To our best
knowledge, though there have been lots of work done in areas of computer and ubicomp
security, there is still no work particularly for SCOs. Within scope of this report, we will
take a look at existing approaches and find out whether they are suitable for SCOs.
Improvement on those work to apply in SCOs are left for our future work. Section 9.5
provides some future direction and plan. We briefly introduce our current project, Trust-
based Security for Ubiquitous Computing (TBSI), and propose a revised version of TBSI,
Lightweight TBSI (µTBSI), aiming to support resource constrains smart object. Finally,
Section 9.6 concludes this report.

9.2 Motivation
While SCOs promise to bring comfort to our lives, it might also help the malicious users
by giving them new ways to attack the security of the system. There are a number of
security, privacy and trust issues that come to our mind when we think of such smart
objects becoming ubiquitous. The matter of authenticating and controlling access on such
objects when collaborating with personal smart objects, the issue of whether we should
trust a certain smart object and the question of privacy preservation are amongst the
foremost important concerns. As we try to build a ubiquitous system in which such
pervasive smart objects are everywhere scattered in the environment, it is important to
tackle the security issues with caution and beforehand. The very features that allow smart

 261

environments to be personalized and dynamic are the features that contribute to the
privacy problem. A smart environment will collect data from sensors and from users. The
manner of collection will not necessarily be obvious or active. The potential for
collection and misuse of information is massive. As pointed out by Campbell [9.1] – this
information could be used by the malicious or simply curious, for instance, to track and
stalk unsuspecting users. A sentiment echoed in [9.2] when we are reminded of the
Orwellian Big Brother Nightmare. Because of this, the demand for privacy is obvious –
perhaps even more so than for security or trust. Without notions of individual privacy
users will simply not engage with the technology. Research in this area is very important
for smart environments where even previous solutions for security and privacy in online
systems are inadequate.

9.3 Security Threats in SCOs
Before building necessary security services for a system, it is worth taking a look at the
system’s threats and how such threats could exploit or damage the system. In SCO
environments, there are a number of noticed security threats. Though these threats have
been introduced by ubicomp security, they require more concerns in SCOs.

• Exposure of User Privacy: SCOs sense its surrounding context, process and

exchange context with other objects. This brings more user privacy concerns such as
user location, user activities, etc. For example, a thief can perceive current location
and action of the host through a smart object so that he can avoid encountering the
host.

• Misinterpretation of Context: The misinterpretation of contextual information also

raises problems in SCOs. For example, misinterpretation of temperature of a smart
cup can trigger its heater too high so that it could make the holder’s hand burned.

• Unavailability of Services: huge services are offered to users through network of

SCOs. However, due to erroneous or malicious devices and software, it is likely to
make services disrupted. For example, damage of temperature sensors could lead to
standstill of the whole heating system.

• Compromise of Smart Objects: SCOs are every day objects such as cups, books, cell

phones, etc. This brings more chances for attackers to compromise smart objects and
thus no can take over the whole system. For example, an attacker can compromise a
smart cup and inject some malicious code into it. This code then automatically
executes on the compromised smart object and copies itself to other surrounding
smart objects. As a result, those objects are compromised too. The attacker then can
easily control the whole system and command the system does whatever he wants
through these compromised objects.

• Malfunctioning of Autonomous Agent: autonomous agents facilitate execution on

each smart object and collaboration among them. However, the execution of
unwanted transactions through autonomous computing agents could bring significant
threats to SCO. For example, location exchanging agents on smart objects collaborate

 262

to exchange location information with each other to trigger a certain service (e.g.
smart walls automatically display the movie to a user wherever he moves, to kitchen,
to dinning room, or to sleeping room). Imagine what could happen if this location
context is disclosed to a malicious agent.

9.4 Security Issues and Challenges
Conventional computer systems have introduced three security fundamentals:
Confidentiality, Integrity, and Availability (known as CIA). Confidentiality means that
sensitive or private information is not disclosed to unauthorized users. In some aspects, it
can be considered as privacy matter. Integrity means that information is not modified by
unauthorized users. Availability means that resources or services are kept accessible to
authorized users.

In order to provide these CIA, ubicomp requires a number of indispensable security
services including authentication, access control, security policy, data
encryption/decryption and trust collaboration. In this section, we are digging out in more
details issues and challenges in each of these subjects.

9.4.1 Authentication
Definition: Authentication is the first process in a secure transaction between two entities.
Basically, it is the process of attempting to verify the digital identity of the sender of a
communication such as a request to log in. The sender being authenticated may be a
person using a computer, a computer itself or a computer program.

As the person moves around, other SCOs might try to identify the personal SCO in order
to provide services to the user. If these SCOs are not authenticated, it will result in
disclosure of personal information, user tracking and above all malicious smart objects
might install malicious code in the personal SCO. The issue of authentication becomes
ever more important since we have to take the resource constraints of these objects into
consideration. The authentication protocol should also have the additional feature of
hiding the user’s true identity in some cases.

Related Work

Standard cryptographic symmetric and asymmetric techniques can be used to build
authentication protocols for low cost pervasive devices like RFIDs. We have certificate
based authentication schemes as in SSL, zero knowledge based identification schemes
[9.3][9.4][9.5][9.6], using symmetric key techniques like [9.7][9.8][9.9]. There has been
much effort in designing protocols which do not rely on standard cryptographic
primitives. These protocols are constructed by using lightweight cryptographic methods
[9.10][9.11][9.12]. Of note are the protocols HB [9.13] and HB+ [9.14]. HB was
designed initially as a candidate identification protocol for human authentication but can
be used readily as a light weight protocol for pervasive devices in the form of HB+.

 263

It is also important to maintain privacy at the time of authentication. Pseudonym systems
play an important role in this respect [9.15]. There have been efforts to use such systems
in the RFID [9.16] setting which preserve privacy while providing authentication.

9.4.2 Access Control
Definition: Access control constrains what a user can do directly, as well as what
programs executing on behalf of the users are allowed to do. Access control assumes that
authentication of the user has been successfully verified prior to enforcement of access
control via a reference monitor. The effectiveness of the access control rests on proper
user identification and on the correctness of the authorization governing the reference
monitor. Principal of authentication and access control is described in Fig 1.

Authentication and Access Control 2

It means that, before a user accesses to a certain computer resource or service (so-called
object), he must be authenticated first. If his identification is verified, then reference
monitor will match his ID into authorization database (in another word, called security
policy). If some authorization rule does exist for his identification, then the user can be
allowed to perform a certain action (e.g. read, write, etc) on the object, otherwise denied.
Conventionally, authorization rules are simple and defined before hand by the system
administrator. Emerging of ubicomp raises issues and challenges which are more severe
than that.

• Flexibility: ubicomp systems take context-awareness as foundation to provide

services to users. Conventional approaches are not flexible as such rules (policies) are
defined before hand and required manual operation by the administrator to change it.
Thus a new model of access control is on call. It must be more flexible, autonomous
in the senses that user’s access is dynamically controlled based upon the context, the
user’s need to know principal, etc. In SCOs, this is a big challenge because the more
flexible the more capacity of operation, memory, and communication are required.

2 The figure is adapted from “Sandhu R.S et al. Access control: principle and practice. IEEE
Communications Magazine, 1994”

Reference
monitor

Authorization
database

Administrator

Authentication Access Control

Objects

User

 264

• Scalability: ubicomp environments consist of thousands to millions smart objects in
our daily life. Access control mechanism on each SCO device must be scalable with
such a large amount of peer-entities. Traditional approaches are not suitable as they
maintain authorization rules based upon individual, not group of individuals.

• Uncertainty of entities: this means that in a certain area (so called environment
domain), entities (i.e. users, smart objects, etc) enter and leave over time. It is not
proper that an entity in that domain maintains all types of authorization rules about
every other entity at all the time. This is not possible to store such huge memory on
each entity.

Relate Work

In areas of access control technology, we classify into two main generations according to
our best knowledge. The first generation, start from 1970s till 1990, involves different
types of access control mechanisms which are mainly based on individual identification.
The second generation started from early 1990s when the emergence of role-based access
control model (RBAC) began. From that on, many access control models have been
proposed which applied RBAC as a foundation. A general taxonomy is given in Fig 2
based on our experience.

 Access Control

DAC-MAC
[9.19]

Context-based
(CBAC)

[9.22][9.23][9.24]

Trust-base
(TBAC)

[9.25][9.26][9.27]

Matrix
[9.17]

Rule-based
[9.18]

Others

Role-base (RBAC)
[9.20][9.21]

First
Generation

Second
Generation

A General Taxonomy of Access Control

a) First Generation

The earliest work in defining a formal, mathematical description of access control was
introduced by Lampson [9.17]. In this model, subject, object, and an access matrix that
mediated the access of subjects to objects. An access matrix is a simple conceptual
representation in which the (i,j) entry in the matrix specifies the rights that subject i has to
object j. In 1973, Bell and Lapadula [9.18] introduced a first rule-based access control
model in his paper. Access control rules are formalized into a mathematical model
suitable for defining and evaluating computer security systems. As formulated in this
model, multilevel secure systems implement the familiar government document

 265

classification rule: users are only allowed to access information that is classified at or
below their own clearance level. Conceptually, this is a very simple policy, readily
understood and followed by humans. The Bell-LaPadula model was significant because it
provided a formal model of the multilevel security policy, making it possible to analyze
properties of the model in detail.

In 1983, access control models took a significant step forward when the U.S. Department
of Defense (DoD) published its Trusted Computer System Evaluation Criteria (TCSEC)
[9.19]. In the standard, two important access control modes were defined: discretionary
access control (DAC) and mandatory access control (MAC). DAC is a mode in which the
creators or owners of files assign access rights, and a subject with discretionary access to
information can pass that information on to another subject.

b) Second Generation

Role-based Access Control: One of the main drawbacks of first generation access
control models is that they control access privileges on individual users. In large-scale
systems, this will cause high complexity and significant cost to manage. Therefore, a new
access control model based on role of users (RBAC) was introduced by D. Ferraiolo
[9.20] to tackle the problem. RBAC is conceptually simple: access to computer system
objects is based on a user’s role in an organization. The authorizations are not assigned
directly to particular users, but to roles. A role denotes a job function describing the
authority and responsibility conferred on a user assigned to that role.

In 2000, Convington et al [9.21] proposes a Generalized Role-Based Access Control
model (GRBAC). GRBAC is an extension of the traditional RBAC model for securing
application in the highly connected home as well as in other environments. The major
benefit of this model is its combination of usability and expressiveness. It solves the
problems in RBAC approach by introducing three different kinds of roles: subject roles
(e.g. ‘adult’, ‘child’), object roles (e.g. ‘image’, ‘source code’, ‘streaming video’), and
environment roles (e.g. ‘daytime’, ‘nighttime’).

Context-based Access Control (CBAC): Several CBAC models have been proposed
aiming to support ubiquitous computing systems [9.22][9.23][9.24]. The underlying
technology of ubiquitous computing systems is context-awareness. These approaches
take advantages of contextual information such as user location, accessing time, device
properties, local resource visibility, etc into controlling access of users. CBAC has
become well suitable for such ubiquitous computing environments since this approach
adopts context as a design principle to rule access to resources. It dynamically grants and
adapts permissions to users according to current context. For instance, if the user is in the
presentation room and using the projector, then he will be allowed to use the computer as
well without any credential provision because the system recognizes him as a presenter.

Trust-based Access Control (TBAC): Another approach of access control for
ubiquitous computing systems is TBAC [9.25][9.26][9.27]. TBAC is the idea of using the
human notion of trust and community as a principal concern for assigning privileges.

 266

This means that the user can be granted some access permissions without any prior
registration to the system if the user is trusted at some level. TBAC is a promising
approach to deal with uncertainty of roaming entities.

Though many types of access control models have been proposed, most of them focus on
supporting general ubicomp systems. It brings more challenges to apply those approaches
into such resource-constrain devices like smart objects. Therefore, a new, lightweight
model is still needed and a trade-off between security level and performance must be
thoroughly considered.

9.4.3 Privacy Preservation

Motivation

As already discussed in the introduction to this chapter the very features that allow SCOs
to be personalized and dynamic are the features that contribute to the privacy problem. A
SCO will collect data from different SCOs and from end-users. The manner of collection
will not necessarily be obvious or active. The potential for collection and misuse of
information is massive. As pointed out by Campbell [9.28] – this information could be
used by the malicious or simply curious, for instance, to track and stalk unsuspecting
users. A sentiment echoed in [9.29] when we are reminded of the Orwellian Big Brother
Nightmare. Because of this the demand for privacy is obvious – perhaps even more so
than for security or trust. Without notions of individual privacy users will simply not
engage with the technology. Research in this area is very important for smart
environments where even previous solutions for privacy in online systems are inadequate.

The proliferation of action traces (digital data originating from real-world transactions,
stored in undesired places), the execution of unwanted transactions through autonomous
computing agents, the misinterpretation of contextual information, and service failure due
to erroneous or malicious devices and software are amongst the security threats
introduced by ubiquitous computing. These threats arise in the interaction of humans with
smart objects, within smart environments, where large numbers of smart devices interact,
and in conjunction with novel system architectures such as wireless sensor networks,
where devices with low resources are employed to monitor mission-critical
environmental features.

Definition

According to Alan Westin [9. 30] “privacy is the claim of individuals, groups, or
institutions to determine for themselves when, how and to what extent information is
communicated to others”. Privacy on its own is about protecting users’ personal
information. Considering the advances technology in ubiquitous computing, the concern
over privacy is greatly increased. The challenging question, which researchers have
begun to tackle recently is how to control and manage users’ privacy. Privacy control, as
the term states, encompasses the notion of privacy and the notion of control or
management. It not only relates to the process of setting rules and enforcing them, but

 267

also to the way privacy is managed/controlled adaptively regarding changes in the degree
of disclosure of personal information or user mobility from one SCO to another. The
main emphasis is that any good privacy solution should combine these two notions as
control is about justification of privacy and plays a role in the management of privacy.

Fig. 3. Security vs Privacy

Our Methodology

In this section, we propose a privacy protection scheme based on the concept of trust with
peer recommendation and past interaction history, and the trust-based privacy policy to
guarantee that users’ privacy sensitive data will not be delivered in a wrong way to a
wrongdoer. There are two different stages in our solution: i) we estimate the trust value
for each request coming from an entity; ii) we exploit the trust-based privacy policy to
make decision how much private data should release to the guest. All these two phases
can be performed automatically. We aimed to develop a system that required minimal
ongoing user involvement. In particular, we did not want users to have to repeatedly
evaluate the acceptability of a request for private information. Instead, we wanted to push
a query’s acceptance or rejection to the system itself and only bring a query to user’s
attention if they had not established a policy to handle it. Moreover, we believe user
privacy should be protected by default; as a consequence, the system architecture lets a
user elect to share certain information rather than protect specific information.

Trust Evaluation

In ubiquitous community, the production of trust is relied on several cues. For example,
we tend to trust or distrust potential partners based on their past interactions. We also ask
our already trusted principals (e.g. buddy, spouse, supervisor, colleague, secretary, etc, in
reality) about their prior experiences with the new prospect uncommon before. The
process of the user’s system P to evaluate the trust value of any principal Q is shown in
Fig. 1.

 268

Time-Based Past Interaction History

Past Interaction History is an entity’s previous transaction knowledge to certain principal.
As a matter of fact, past interaction history is usually recorded in log files on the subjects’
systems that keep track of all actions relational participants took with the system. Since
the log file is configured to keep monitoring events for a specified amount of time, it is
reasonable for us to apply trust evaluation based on the temporal factor.

Fig. 1. Flowchart of Trust Evaluation

We can generally define successful and unsuccessful interactions between a principal Q
and an application P established on the past behaviors in which an unsuccessful
interaction means that the principal did not get the outcome as it expected. Nevertheless,
the nature of an interaction might reflect more than just successful and unsuccessful
status. For instance, a principal might obtain the result completely contrary to the
expectations whereas another one might gain a better effect. Moreover, the outcome of an
interaction might be different in the view of the two principals. Due to the complexity of
modeling this transition, we restrict our proposed scheme to the two statuses: successful
and unsuccessful.

Let us define SIt as the number of successful past interactions and UIt as the number of
unsuccessful interactions of the system at time t. Now, the trust value of Q as calculated
by a system P is defined as follows:

TP,Q = 100 ⎥
⎦

⎤
⎢
⎣

⎡
+ tt

t

UISI
SI

⎥
⎦

⎤
⎢
⎣

⎡ −
−)(

11
tt UISIAe βα

Where α, β, and A are adjustable positive constants in the system and can be tuned if
necessary.

 269

The expression ⎥
⎦

⎤
⎢
⎣

⎡
−

−)(
11

tt UISIAe βα approaches ‘1’ quickly with an increase in the number of

Successful Interactions and/or a decrease in the number of Unsuccessful Interactions
within certain period of time. Notice that our choice of the above expression is for the
smooth property of the exponential function and ease of calculation. It turns out that TP,Q
= 0 if (αSIt – βUIt) < 0. In other words, the trust value of principal Q is equal to 0 if its
number of Unsuccessful Interactions is greater than the number of Successful Interactions

with the system P. The factor ⎥
⎦

⎤
⎢
⎣

⎡
+ tt

t

UISI
SI indicates the percentage of successful

interactions in the whole communication session. We actually exploit the time-based
sliding window mechanism [8] to estimate the percentage of successful communications.

Peer Recommendation

Fig. 3. A Peer Recommendation Scenario

Peer Recommendation factor is required when the system has no or not enough
information about a principal. Obviously, if there exists certain peer having more
interactions with this principal, his suggestion should be likely logical and important for
assessing the trust value. Following the flow chart indicated in Fig. 1, suppose that the
system was not familiar with this kind of request before so our system P has to ask other
peers in the environment for their suggestions. In this situation, the system will send
multicast a request for comments about the new principal Q to its confident community.
We denote the time stamp between a principal Q and the system P as τP,Q and τ is the
time at which Q decides to interact with P. Suppose n is the number of principals
currently active in the environment. Let P1, P2,K , Pn represent the principals in the space.
We also say that principals with high trust values will not send false recommendations.
Moreover, let Δτ denote the threshold time interval. Under those assumptions, and Fig. 3,
the trust value for the requesting principal Q is defined as follows:

n
TTTTTTTT

T QPPPnQPPPQPPPQPPP
QP

nn

⋅

++++
=

100
,,,,3,,2,,1

,
332211

ηηηη K (n ≠ 0)

⇔
n

TT
T

n

i
QPPPi

QP

ii

⋅
=
∑
=

100
1

,,

,

η

 (n ≠ 0)

Where (]1,0
,

∈= Δ

Δ

τ

τ
θ

η
QiP

Bei , with τττ −=Δ QPQP ii ,, . B and θ are adaptable positive constants
which can be chosen apart to guarantee that 1≤iη . For example, we select θ = 1. To

 270

establish 1≤iη , B must be picked out such that B ∈ (0,
τ

τ

Δ

Δ QiP

e
,

1]. Since ττ Δ≤Δ QPi , , we have

Bmax ≈ 0.46. Obviously, TP,Q = 0 if n = 0. In other words, peer recommendation will not be
involved in trust evaluation process if there is no peer in the space. Besides, notice that iη

swiftly approaches ‘1’ with increase in the argument QPi ,τΔ . This means that very old and
short experiences of peers with the principal in a period of time Δτ should have less
weight in trust estimation over the new and long ones. After finishing the trust evaluation
phase, we move towards the second phase in order to decide how much personal data will
deliver to the principal (Fig. 1).

Trust-Based Privacy Policy Management

We design a Privacy Policy module to describe the constraints such that the user’s data is
treated in the manner that she would expect, in the sense of being in accordance with her
privacy policy. Once a principal’s trust level was quantized by our system, it will be
considered as one of three pre-defined states: Trusted, Public or Distrusted with the
support of a trust-privacy mapping function MP(x) as follows:

 Trusted , 100 - c2 ≤ x ≤ 100
MP(x) = Public , 50 - c1 ≤ x < 100 – c2
 Distrusted , 0 ≤ x < 50 - c1

Where c1 and c2 are adjustable positive constants and can be tuned separately. Respecting
this component, we propose 2 different parts, Zone Customization and Privacy Policy
Establishment, that help users manage their personal data at the user interface level
properly and effectively.

Zone Customization

Inside this sub-module, we develop 3 special zones correlative to 3 distinctive states of a
principal Q. Then, we also recommend 3 different privacy control levels for each Trusted
& Public Zone. Concerning that point, Public Zone’s and Trusted Zone’s sliders are used
to adjust c1 and c2 value in the trust-privacy mapping function respectively.

Privacy Policy Establishment

Whenever the system P receives a request from certain principal Q desiring to query your
personal information, it will have to decide whether to place that entity in the Trusted
Zone, Public Zone, or Blocked Zone. Placing certain principal in the Trusted Zone
enables you to share your privacy-sensitive information and other resources to that
principal. Principals you know and get high trust values based on our trust evaluation
model should go in the Trusted Zone. Also, placing certain principal in sensitive
information to that requester and protects you from the security risks associated with
resource sharing. Principals with medium trust values should go in the Public Zone. In
the meanwhile, Blocked or Distrusted Zone contains requesters that you do not want to

 271

contact with.

9.4.4 Trust Collaboration

Trust is a complex subject relating to the truster’s belief in honest, truthfulness,
competence, reliability etc of the trustee. Though trust has been considered extraordinary
important in many researches, there is no consensus on what trust is. We use one of the
common definitions of trust mentioned in SCO environment:

Definition 1: Trust is the subjective probability by which an individual, A, expects that
another individual, B, performs a given action on which its welfare depends

The difference between traditional security mechanism (e.g. authentication) and trust was
first described in [9.11] as hard security and soft security separately (as shown in Fig.1).
Soft security is based on so called social control mechanisms since it is accomplished
through the interactions of participants themselves rather than through some central
authority when trying to know something about the participants. Hard security on the
other hand provides a safe environment and secure communications for SCO. As one of
the soft security mechanism, trust system helps build not only service requester’
confidence but also a stable environment for service requesters and service providers to
carry out transactions with a reduction of risk in SCO environment.

Fig. 4. The Relationship between Security and Trust

When evaluating trustworthiness, trustor’s personal observations on the trustee’s
behaviors are essential. In case personal experience is absent, trust often has to base on
recommendations from others. Reputation is a collective measure of trustworthiness
based on the recommendations given by other members in a certain community.

Definition 2: Reputation is what is generally said or believed about a person’s or thing’s
character or standing.

The reputations of certain healthcare service providers are based on the ratings given by
those who had past interaction history with these service providers in SCO environment.

As smart objects communicate with each other to provide service to end-users,
collaboration becomes more and more important. As smart objects are highly dynamic,

 272

enter in and out a domain, they are usually mutual strangers to each other at first. How
these smart devices can trust each other so that they can exchange information is
nontrivial task(.)

A trust transaction between two entities consists of two parts: trust negotiation and trust
management. Trust negotiation established trust between two strangers while trust
management maintains all type of information for trust negotiation such as peer-
recommendation, history of interaction, etc.

Research in trust area has a long story. Notion of trust at first was applied in economy,
then Internet as we have seen nowadays such as PGP (Pretty Good Privacy), SPKI
(Simple Public Key Infrastructure). Trust collaboration brings lots of advantage to
ubicomp environments, especially SCOs, as most entities are mutual strangers at first.
However, several new issues and challenges must be taken into account:

• Distinguish between a new object and a known object: The trust model should be

capable of distinguishing between a new object of unknown quality and an object
with poor long-term performance.

• Awareness of misbehavior: The trust model should realize and reflect recent trends in

the object’s performance. For example, a smart object that has acted well for a long
time but suddenly goes downhill should be quickly recognized as untrustworthy.

• Unfair Ratings: In the large-scale, open, dynamic and SCO environments, it is

possible that numerous self-interested objects who give unfair ratings to maximize
their own gains (perhaps at the cost of others). Therefore, finding ways to avoid or
reduce the influence of unfair positive or negative ratings is a fundamental problem.

• Free Riders: It is essential for the trust model to overcome the free riding behavior.

Users who attempt to benefit from the resources of others without offering their own
resources in exchange are termed “free-riders".

• Changing Identity: It is requested that the identity or pseudonym of the objects

should be impossible or difficult to change. In case an object has suffered significant
loss of reputation it might be in his great interest to change identity or pseudonym in
order to cut with the past and start from fresh. However, even though SCO
environments enable the objects join dynamically, changing identity is not in the
general interests of the community and should be prevented or discouraged.

Related Work

There are some researches that gave helpful attempts on how to get reliable
recommendations, e.g. in [9.31], the authors used basic polling as well as enhanced
polling. The enhanced polling differs from the basic polling by requesting voters to
provide their servent_id to prevent a single, possible malicious user to create multiple
recommendations at a time. Another very popular method is to give weighted value to

 273

each recommender to choose reliable recommendations. The reputation-based method
had been used in a number of works, e.g. weighted majority algorithm is used in [9.32],
and a Rating Reputation Feedback mechanism is used to train the weighted values. In
[9.33] [9.34] [9.35] [9.36], the authors measure the reputation for each recommender and
filter out unfair recommendations based on the usage of the reputation. Using the
combination of different filters is also a reasonable method to filter out the unfair
recommendations, as mentioned in [9.37][9.38][9.39][9.40]. Their simulation results
suggest that cluster filtering is suitable to reduce the effect of unfairly high
recommendations and positive discriminations and frequency filtering can guarantee the
calculation of trust not be influenced by the unfair raters flooding.

9.4.5 Security Policy
Definition: A security policy is a definition of what it means to be secure for a system,
organization or other entity. For systems, the security policy addresses constraints on
functions and flow among them, constraints on access by external systems and
adversaries including programs and access to data by people

In computer security, policy defines the goals and elements of an organization's computer
systems. The definition can be highly formal or informal. Security policies are enforced
by organizational policies or security mechanisms.

In network security, policy is a generic document that outlines rules for computer
network access, determines how policies are enforced and lays out some of the basic
architecture of the company security/ network security environment

Though research in security policy specification is not a new subject, but it is more
challenging and issued in ubicomp system, especially for smart objects.

• A lightweight policy specification: Each device and smart object within a pervasive

environment should be equipped with its own policy database and enforcement
mechanism for protecting its own resources. However, SCOs have limited computing
power, memory, interfaces, and battery lifetime. Therefore, a lightweight policy
model is needed for managing and enforcing security policies.

• Semantic and extensible model: the above limitations and the need for the semantic

language to express comprehensive policy, we need a semantic and extensible policy
language. The policy engine should be able to dynamically decide what rights,
prohibitions, obligations, dispensations an actor has on the domain actions.

• Effective policy for diverse interaction: In ubicomp, real-world actions are

seamlessly reflected by transactions in the virtual space. In such environments,
security policies are important both in the physical and the logical world. In smart
environment, interactions between users and smart objects, and especially, mobility
of users and smart objects tie logical and physical security together. We need to
design an effective policy model and policy specification to afford this requirement

 274

Related Work

The Resurrecting Duckling security policy model [9.41] describes a lightweight way of
establishing a secure transient association between two devices - master device and slave
device. The extended version of this policy model even encompasses a great variety of
relationships between devices. We deal with peer-to-pear interactions, or have some
levels of being master.

Lalana Kagal et al. [9.42] describe Rei - A Policy Language for Pervasive Computing
Environment. It is a lightweight policy language, including constructs for rights,
prohibitions, obligations and dispensations (deferred obligations). The language consists
of a few simple constructions that are extremely flexible and allows different kinds of
policies (security, privacy, management, conversation etc.) to be specified. The policy
language is not tied to any specific application and permits domain specific information
to be added without modification. Rei models speech acts like delegation, revocation,
request and cancel that allow policies to be less exhaustive and allow for decentralized
security control.

Anand et al. [9.43] presents an architecture and a proof of concept implementation of a
security infrastructure for mobile devices in an infrastructure based pervasive
environment. It consists of two parts, the policy engine and the policy enforcement
mechanism. Each mobile device within a pervasive environment is equipped with its own
policy enforcement mechanism and is responsible for protecting its resources. The system
wide policy is described in a semantic language “Rei”, a lightweight and extensible
language which is able to express comprehensive policies using domain specific
information. It is considerable to apply for this architecture to SCOs in ubiquitous
environment.

Security Policy Model and Policy Types

Security policy model bases on access control model. We treat policies as objects in
security policy model, which has common elements as in policy management framework:
enforcement module, policy management tool (UI interface), policy repository, policy
manager, policy domain.

Note that some access control models use risk, trust, and context as important
components. Access control is concerned with limiting the activity of legitimate users. In
this work, security policy is mostly access control policy. Our scope is about
nondiscretionary access control where administrators have the authority to specify
security policies that are enforced by the access control system. Delegation and
propagation of authority are permitted only within the scope defined by the security
policy. We focus on authorization, delegation, and information policies.

Authorization Policies

 275

Authorization policies define what activities a member of the subject domain can perform
on the set of objects in the target domain in terms of interface method calls. A positive
authorization policy defines the actions that subjects are permitted to perform on target
objects. A negative authorization policy specifies the actions that subjects are forbidden
to perform on target objects. Authorization policies are implemented on the target host by
an access control enforcement component (an access controller), traditionally called a
reference monitor. Constraints are optional in all types of policies and can be specified to
limit the applicability of policies based on time or values of the attributes of the objects to
which the policy refers. Note that the subject and target elements can optionally include
the interface specification reference within the specified domain-scope-expression on
which the policy applies. This can be used to check that the objects do support the
specified operations or to locate the interface specification. It can be argued that the
specification of negative authorization policies complicates the enforcement of
authorization in a system. However, there are reasons to support the provision for
negative authorization policies. Administrators often express high-level access control in
terms of both positive and negative policies; retaining the natural way people express
policies is important and provides greater flexibility. Negative authorization policies can
also be used to temporarily remove access rights from subjects if the need arises. In
addition, many systems support negative access rights (e.g., Windows NT/2000). The
existence of both positive and negative authorization policies in a system may result in
conflicts. Although this adds the need to analyze policies for conflict detection, this kind
of conflict may indicate potentially unforeseen problems with the specification.

Delegation Policies

Delegation is often used in access control systems to cater for the temporary transfer of
access rights. However the ability of a user to delegate access rights to another must be
tightly controlled by security policies. This requirement is critical in systems allowing
cascaded delegation of access rights. A delegation policy permits subjects to grant
privileges, which they possess (due to an existing authorization policy), to other subjects
called grantees to perform an action on their behalf e.g., passing read rights to a printer
spooler in order to print a file. A delegation policy is always associated with an
authorization policy, which specifies the access rights that can be delegated. Negative
delegation policies forbid delegation of certain actions. Note that delegation policies are
not meant to be used for assignment of rights by security administrators.

Information Filtering

Filtering policies are needed to transform the values of the input parameters in an action
and the information returned from the action. For example, a location service might only
permit access to detailed location information, such as a person is in a specific room, to
users within the department. External users can only determine whether a person is at
work or not. Some databases support similar concepts of ‘views’ onto selective
information within records – for example a payroll clerk is only permitted to read
personnel records of employees below a particular grade. Positive authorization policies
may include filters to transform input parameters associated with their actions, based on

 276

attributes of the subject or target or on system parameters (e.g., time). In many cases it is
not practical to provide different operations as a means of selecting the information.
Although these are a form of authorization policy they differ from the normal ones in that
it is not possible for an external authorization agent to make an access control decision
based on whether or not an operation, specified at the interface to the target object, is
permitted. Essentially the operation has to be performed and then a decision made on
whether to allow results to be returned to the subject or whether the results need to be
transformed. Filters can only be applied to positive authorization actions. Every action
can be associated with a number of filter expressions. Each filter contains an optional
condition under which the filter is applied. If the condition evaluates to true, then the
transformations (the assignment statements in the body of the filter) are executed.

9.4.6 Intrusion Detection System

Introduction

Intrusion detection (ID) is defined as “the problem of identifying individuals who are using a
computer system without authorization and those who have legitimate access to the system but
are abusing their privileges”. The intrusion detection field has grown considerably in the last few
years, and a large number of intrusion detection systems have been developed to address different
needs. Intrusion detection is clearly more necessary in ubiquitous networks where other secure
systems such as firewall are not applicable. In this Smart Spaces scenario, we focus on designing
an IDS architecture for the network of smart objects.

Networks of smart objects constitute a new paradigm of ambient monitoring with many potential
applications. Typically formed by thousand of nodes of small dimension, they use ad-hoc
communication and have scarce resources regarding energy, bandwidth, processing capacity and
storage.

Smart objects are typically designed to gather data in inhospitable places and might be involved
in critical applications. Wealth environment mapping and enemy’s movement monitoring in a
battlefield are some examples of critical applications they are used for. In these applications,
Smart objects are of interest to adversaries. Smart objects are susceptible to some types of attacks
since they are deployed in open and unprotected environments and are constituted of cheap small
devices. Preventive mechanisms can be applied to protect Smart objects against some types of
attacks. However, there are some attacks for which there is no known prevention method, such as
wormhole. Moreover, there are no guarantees that the preventive methods will be able to hold the
intruders. For these cases, it is necessary to use some mechanism of intrusion detection. Besides
preventing the intruder from causing damages to the network, the intrusion detection system
(IDS) can acquire information related to the attack techniques, helping in the development of
prevention systems.

Intrusion detection poses many challenges to Smart objects, mainly due to the lack of resources.
Besides, methods developed to be used in traditional networks cannot be applied directly to Smart
objects, since they demand resources not available in networks of smart objects. Smart objects are
typically application-oriented, which means they are designed to have very specific
characteristics according to the target application. The intrusion detection assumes that the
normal system behavior is different from the behavior of a system under attack. The several
possible WSN configurations make difficult the definition of the “usual” or “expected” system

 277

behavior. Since common nodes are designed to be cheap and small, they do not have enough
hardware resources. Thus, the available memory may not be sufficient to create a detection log
file. Moreover, a smart object is designed to be disposed after being used by the application and it
makes difficult to recover a log file due to the possible dangerous environment in which the
network was deployed. The software stored in the node must be designed to save as much energy
as possible in order to extend the network lifetime. Finally, another challenge to the design of an
IDS is the frequent failures of smart objects when compared to processing entities found in wired
networks. Given all these characteristics, it is important to detect the intrusions in real time. In
this way, we could hold the intruder and minimize the application damages.

Architecture

The architecture takes full advantage of the secure & powerful server in Smart Space scenario. It
includes two parts: ID server and ID agents. Most of the intrusion detection processing is done in
the server side to reduce processing amount in the client side. ID agents are installed in every
smart objects to collect data and detect anomaly behaviors.

Fig 9.1 Intrusion Detection Architecture

ID Agents

Because networks of smart objects lack of central point to collect data so there is no doubt that
every intrusion detection architecture must install detection agents on many nodes in order to
cover the entire network. The important thing is how agents should do to save energy & other
resources of the host nodes, however, still guarantee the security for the host nodes & all network.

ID agent is responsible for monitoring the host node & its neighbors for anomaly behaviors.
Because of limited resources of smart objects, ID agent must be as lightweight as possible. In our
architecture, agents use some simple rules to detect intrusion.

Server

IDS
agent

IDS Central
Processing

IDS
agent

Smart objects

IDS
agent

IDS
agent

IDS
agent

IDS
agent

 278

Fig 9.2 IDS agent architecture

Data Acquisition

In this phase, messages are listened to in promiscuous mode by the monitor mode and the
important information is filtered and stored for subsequent analysis. Important
information includes message fields that might be useful to the rule application phase.
Thus, we use less memory and less processing time, saving energy. Messages to which
no rules can be applied are not stored.

Data extracted from the messages are stored in an array data structure and discarded after
a given period of time or when there is no space left in memory.

Anomaly Detection:

This module detects anomaly behavior in neighboring nodes based on statistical data of
packets received by promiscuous listening. This module supplements Rule Application
module.

Data Collector Module:

This module is in charge of collecting & sending necessary data to the IDS server for
father processing. However, in the sake of saving resource, this module is active only
when the IDS agent detects something abnormal in the network. IDS agents rarely go to
the final decision of intrusion detection. This is in charge of IDS server.

IDS Server

IDS server is the central processing in this architecture. IDS server will collect all data
from necessary smart objects, aggregating & making the final intrusion decision. IDS
server can use both signature based and anomaly detection technique.

Application Routing

Data
Acquisition

Anomaly
Detection

Data collector

Normal
listenning

Sent to IDS
server

Promiscious
listenning

 279

9.4.7 Smart Networking Sensors

As we are aware of the fact the wireless sensor networks usually consist of tiny sized
sensor nodes that are densely deployed in a monitoring environment. The basic purpose
of sensor nodes is to sense, gather and propagate information about events that occurs
within monitoring environment. But when we associate a ‘smart’ terminology with sensor
networks, it means that sensor nodes have now some additional capabilities of intelligent
processing and/or context awareness capability [9.44]. It also means that a smart sensor
network offers “powerful capability to locally and collaboratively sense both personal
and environmental data, reason and interpret collected data, and react to various
situations” [9.45].

All the security threats of sensor networks are equally but with more intensity applicable
to smart sensor networks. In general, there are number of different threats to the sensor
networks like DoS, eavesdropping, message injection, message replay, message
modification, malicious code and side channel analysis etc. The security primitives
against these attacks are message confidentiality, authentication, service availability,
message freshness, message integrity, non-repudiation, intrusion detection, and audit
trials etc. In a smart wireless sensor network, it is much easier to monitor transmission
between nodes as compared to wired networks because of the broadcasting nature of
transmission. Encrypting communication between sensor nodes can partly solve this
problem but it requires robust key exchange and distribution scheme, compelling the
wireless sensor networks to maintain secrecy in the rest of the network when an
adversary compromises few sensor nodes and exposes their secret keys.

9.4.8 Key management

Definition: Key management is the fundamental issue for securing sensor networks. Its
purporse is guarantee the shared secret key between entities, which is the basis for
security solutions against threats in sensor network such as passive eavedropping, active
message modification, denial of service, object fabrication…

Smart objects are devices with sensing, computation, and communication capabilities and
are able to perceive and interact with their environment and with other smart objects.
Because of the co-operating to sharing information over wireless communication in the
network and the resource constraint, designing a flexible and efficient key management
scheme for smart objects network is not a trivial task.

Key management schemes on SCO network have issues and challenges as follow:

• Scalability: is the ability to support different size of network and flexible in the
changing size of network even after deployment.

• Efficiency in using resource (storage, processing, and communication): because
SCOs is the limited-resource devices, so the key management solutions must be
lightweight schemes.

 280

• Key connectivity: is the capability of two entities in the network could have the
same key or keying material. Enough key connectivity provides intended services
of system.

• Resilience against objects captured: due to the facts that SCOs are everyday
objects, so they’re easy to be compromised by attackers. Key management
schemes have challenges with this issue in order to guarantee secure
communication in system even though some objects are stolen.

Related works

In sensor network, there are several approaches on key distribution and management. The
first group is using public key cryptography and elliptic key cryptography to adapt low-
powers devices, such approaches is considered as costly due to high processing
requirement [9.45][9.46]. SCOs also have limited computation, energy… like sensor
node. So that the symmetric key cryptography are the feasible approaches.

Solutions to key distribution using symmetric cryptography in distributed sensor network
can use one of the three approaches: (i) probabilistic, (ii) deterministic, (iii) hybrid.
Probabilistic key distribution solutions base on the idea that key rings are built from a
key-pool and distribute to sensor nodes. The random graph show that any two nodes
could establish a secure connection based on sharing key with specific probability. The
deterministic solutions using deterministic processes to design the key-pool and key-
chain to provide better connectivity. And the hybrid solutions use probabilistic
approaches on deterministic mechanisms to improve the performance and security.

The first scheme in probabilistic key distribution solutions is proposed by Eschenaueur
and Gligor [9.47]. In this scheme, a large key pool is generated off-line and every sensor
picks a random subset of keys from this key pool. Any two nodes in the communication
range can talk with each other only if the share a common key. Depending on the size of
the key pool and the number of sensor nodes in the network, the scheme could archives
different connectivity and resilience. Chan, Perrig and Song [9.48] latter proposed to use
the same idea, but increase the intersection sharing keys between key-rings from one key
to some q>1 keys. It is shown that, by increasing the value of q, network resilience
against node capture is improved. Further, Du et al. proposed key predistribution by using
deployment knowledge [9.49], that each group sharing α keys with horizontal groups and
β keys with diagonal groups. Because the number of object in SCOs network is quite less
than the number of nodes in wireless sensor network, the requirement that any object
must be connected, whereas probability key distribution solutions only support
connectivity with percentage less than 100%. Therefore, probabilistic key distribution is
not suitable for SCOs network.

To guarantee better connectivity, deterministic mechanisms such as polynomial-based
schemes and key matrix-based schemes are proposed. Polynomial scheme of Blundo et al.
[9.50] using polynomial evaluations to obtain a pairwise key. Each node i gets
polynomial share f(i,x) of symmetric polynomials of degree t. In order to calculate the
common key with node j, node i needs to evaluate its polynomial with x=j: f(i, x=j). Node

 281

j would evaluate f(j, x=i) and because of symmetric polynomials, they have f(i,j)=f(j,i).
So two nodes calculate the common value, then use as sharing key. This scheme is
resistant against node capture with property t-secure: compromise of less than t+1 node
doesn’t reveal any information about keys of other nodes. Applied to sensor network,
there are schemes using sensor’s predeployment knowledge such as grid-based key
predistribution of Liu and Ning [9.51,9.52], hexagon-based key predistribution of Zhou et
al.[9.53], and t-neighborhood scheme of Das et al.[9.54]. The hybrid approach, which
was combined from Blundo’s scheme and the random key pre-distribution of
Eschenauer-Gligor, is random-subset assigment key predistribution of Liu and Ning
[9.55]. Instead generating large key-pools and create key-rings, this scheme generated a
large polynomials and assigned each node a subset of polynomials from the pool. Then
two nodes can only communicate when they sharing at least one polynomials. It’s shown
that this scheme increased the resilience when comparing with Eschenauer-Gligor’s
scheme.

The key matrix mechanism was firstly introduced in [9.56]. Blom proposed a key
predistribution scheme that guarantees any pair of members in a group could calculate the
common sharing key. He introduced symmetric key matrix K, where element Ki,j=Kj,i is
a pairwise key between node i and node j. The key matrix K is obtained by multiplication
of public matrix G which is known by all nodes and private matrix D. Each node i stores
a corresponding row of private matrix D and is able to compute a pairwise key with any
node j by multiplying the row it stores with j-th column in public matrix G. This is the
basic for further schemes applied to sensor network. Du et al. combined the Blom method
with random predistribution scheme [9.57]. Calling the set of keys that each tuple <D,G>
can generate is a key space, scheme in [9.57] selected randomly τ spaces to each node
from ω pre-generated spaces. Based on probabilistic, any two nodes could share a
common space, computing a common secret key. Latter, Du et al. also applied
predeployment knowledge to DDHV-D scheme in [9.58]. It’s the hybrid solution
combined from key space and random sharing key scheme in [9.49].

In hierarchical network topology, unicast communications are between base station and
cluster heads, between cluster heads and smart objects. Solution for such situations is
straightforward; base station can share a distinct pair-wise key with each object. Very
similar solutions are proposed in Perimeter protection scenario[9.59], Base station
authentication protocols [9.60][9.61], Localized encryption and authentication protocol
(LEAP)[9.62]. LEAP also supports multicast communication using group-wise key. In
broadcast which require network-wise key, such solutions are Time Efficient Stream
Loss-tolerant Authentication (TESLA)[9.63], µ-TESLA [9.64] and extended versions of
µ-TESLA [9.65][9.66].

Dynamic key management models with rekeying mechanism are offered in [9.67][9.68].
The exclusion-based systems (EBSs), a combinatorial formulation of the group key
management, firsly used in [9.67] to takle the problem of dynamic rekeying. In EBS-
based schemes, each node is assigned k keys out of a pool of size P = k+m keys.
Rekeying takes place either periodically or once one or more nodes are captured (or
suspected of being captured). Replacement keys are generated, then encrypted with all

 282

the m keys unknown to the captured nodes, and finally distributed to other nodes that
collectively know the m keys. Rekeying takes place either periodically or once one or
more nodes are captured (or suspected of being captured). Replacement keys are
generated, then encrypted with all the m keys unknown to the captured nodes, and finally
distributed to other nodes that collectively know the m keys. A drawback of the basic
EBS-based solution is that a small number of nodes may collude and collectively reveal
all the network keys. This is particularly true when the value of m is selected to be
relatively small (to make rekeying feasible in terms of number of messages). In order to
address the collusion problem in EBS, Younis et al proposed SHELL [9.68], an EBS-
based scheme that performs locationbased key assignment to minimize the number of
keys revealed by capturing collocated nodes. SHELL uses the EBS framework to perform
rekeying within each cluster. Cluster gateways keep track of the key assignment but not
the actual keys. These keys (k keys assigned to each node) are stored by gateways of
other clusters (called key generation gateways). Keys are distributed to nodes by the key
generation gateways through their own cluster gateway using an extra cycle of
encryption/ decryption. SHELL is collusion-resistant. This model relies considerably on
a centralized key server to perform rekeying.

9.5 Future Direction and Plan

9.5.1 Current Research: Trust-based Security Infrastructure (TBSI) Project

Currently, we are working on Trust-based Security Infrastructure for Ubicomp Systems
(TBSI) project. This project aims to support basic yet important security services for
ubiquitous computing environments, such as smart house, smart office, pervasive
healthcare etc. TBSI architecture is described in Fig 4. Fig 4 shows its diagram.

Fig. 7. Trust-based Security Infrastructure (TBSI) Architecture

TBSI includes six components: Cryptography Library, Security Policy (including Privacy
Control), Trust Management, Authentication, Access Control, and Intrusion Detection.

 283

Fig. 8. TBSI diagram

Entity Recognition is a new authentication technology for ubiquitous computing
paradigm. In TBSI architecture, entity recognition supports various flexible devices such
as Smart Badges, iButtons, Smart Watchs, PDAs. This component integrates different
type of authentications, ranging from conventional authentication approaches
(Username/Password, PKI, Kerberos, etc) to emerging identity recognition technologies.

Trust Management provides trust value to the Access Control Manager. It supports trust
collaborations and interactions which usually occur among roaming entities. By modeling
trust relationships in smart spaces environments, unknown entities from different
domains can interact, request services and resources from a given domain in secure and
privacy manner.

Access Control is the core part of TBSI infrastructure. Our Access Control model utilizes
trust and context to solve different shortcomings of existing role-based access control
(RBAC), context-based access control (CBAC), and trust-based access control (TBAC).
It is critical to preserve confidentiality and integrity. Conventionally, the condition of
confidentiality requires that only authorized users can read information, and the condition
of integrity requires that only authorized users can alter information in authorized ways.
Access control extends scopes of users by using Trust Management. By doing this, it
supports not only predefined entities but also un-predefined entities.

Privacy Control is an integral part in this convenient but obtrusive environment. It
provides location privacy, anonymous connections and confidentiality of information to
users. In TBSI, Intrusion Detection System is deployed in order to defend against
unauthorized access and who has legitimate access to the system but abuse privileges. In
ubiquitous environments, this usually occurs due to ubiquity and wireless communication
of the systems. In the sensor network layer, TBSI provides a lightweight cryptography

 284

mechanism in order to maintain secure communication among sensors and between
sensors and context-aware systems. Trust Management, Intrusion Detection System,
Home Firewall, and Sensor Network Security together support Entity Recognition.

9.5.2 Lightweight TBSI (µTBSI) for SCOs
Due to aforementioned issues and challenges, we aim to provide a lightweight security
services for SCOs. Based on our TBSI project, we propose a µTBSI (Lightweight Trust-
based Security Architecture) targeting to support low resource smart objects. µTBSI is
integrated with basic yet crucial security services: cryptography library, security policy
(including privacy control), entity recognition, trust management, and access control. The
simplified architecture is depicted in Fig 5.

Fig. 9. Lightweight Trust-based Security Infrastructure (µTBSI) for Smart Cooperative
Objects

In order to provide efficient security services for SCOs, µTBSI must be satisfied with the
following requirements:

a. Lightweight: with low energy, computation and communication capacity, each
source code must be small enough to make it possible and efficient to run on each
object.

b. Distributed: it’s not possible to maintain all above security services in a smart
object at once. Distribution of services in secure manner must be taken into
consideration.

c. Autonomous: due to various and numerous small devices, management of each
SCO is high cost and complex. Providing an autonomous mechanism for each
security services is therefore necessary.

Lightweight

Distributed

Autonomous

SCO Network

 285

 9.5.3 Outline of 5-Years Plan

 1st year: Survey on
o Smart Cooperative Objects scenarios and applications
o Aspects of security for networking sensors (including encryption/decryption

algorithms, key management schemes, authentication, trust management,
privacy control, access control, etc)

 2nd year: Modeling and Design

o Focus on µTBSI architecture modeling and design. Provide detailed
architecture of each security services and API between them.

 3rd year: Implementation
o Implement µTBSI by Java and C.

 4th year: Test-bed

o Running µTBSI code by either simulation or test-bed.
o Making performance and evaluation
o Revise and utilize the source code

 5th year: Deploy on Real Application
o Customize and deploy µTBSI on real applications. Possible applications could

be smart office, ubiquitous healthcare.
o Wrap the product
o Making manual and related documentations

9.6 Conclusion

In this report, our most effort is to investigate security issues and challenges in smart
cooperative object (SCO) environment. After reviewing traditional approaches in
computer security as well as existing approaches applied to ubicomp systems, we come to
know that there is no new security issue in SCOs except what have been introduced into
ubicomp systems. Nevertheless, in order to tackle those issues, it is much more
challenging. Those challenges are collectively inherited from context-awareness security,
wireless sensor network security, mobile computing security, and autonomous computing
security. We then focus on the most important issues that must be thoroughly considered
for SCOs. We also take a look at what research community has been doing so far and
whether existing security approaches can be applied in SCO environments. We then
propose a sketch µTBSI (a Lightweight Trust-based Security Infrastructure) for SCOs.
µTBSI is the revised version of our current project TBSI (Trust-based Security
Infrastructure for Ubiquitous Computing).

References

 1

[9.1] Roy Campbell, Jalal Al-Muhtadi, Prasad Naldurg, Geetanjali Sampemane, M.
Dennis Mickunas, “Towards Security and Privacy for Pervasive Computing.” in Theories
and Systems, Mext-NSF-JSPS International Sympsoium, ISSS 2002, Tokyo, Japan,
November 2002. pp. 1-15,

[9.2] Marc Langeheinrich, “Privacy by Design : Principles of Privacy Aware Ubiquitous
Systems,” Proceedings of the Third International Conference on Ubiquitous Computing
(UbiComp 2001). LNCS No. 2201, Springer-Verlag, pp. 273--291, Atlanta, USA, 2001.

[9. 3] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In Advances in Cryptology - CRYPTO’86, Lecture
Notes in Computer Science 263, p.p. 186–194. Springer-Verlag, Berlin, 1987

[9.4] Uriel Feige, Amos Fiat, and Adi Shamir. Zero knowledge proofs of identity. In Proc.
the 9th annual ACM conference on Theory of computing (STOC’87), pages 210–217.
ACM Press New York, 1987.

[9.5] Louis C. Guillou and Jean-Jacques Quisquater. A practical zero-knowledge protocol
fitted to security microprocessor minimizing both transmission and memory. In Advances
in Cryptology - EUROCRYPT’88, LNCS No. 330, p.p. 123–128.1988.

[9.6] C.P. Schnorr. Efficient identification and signatures for smart cards. In Advances in
Cryptology - CRYPTO’89, LNCS No. 435, p.p. 239–252. 1990

[9.7] Henrici, D., and M¨uller, P. Hash-based Enhancement of Location Privacy for
Radio-Frequency Identification Devices using Varying Identifiers. In Pervasive
Computing and Communications (PerCom) (2004), IEEE Computer Society, pp. 149–
153.

[9.8] Molnar, D., and Wagner, D. Privacy and Security in Library RFID : Issues,
Practices, and Architectures. In Computer and Communications Security (2004), B.
Pfitzmann and P. McDaniel, Eds., ACM, pp. 210 – 219.

[9.9] Ohkubo, M., Suzuki, K., and Kinoshita, S. Efficient Hash-Chain Based RFID
Privacy Protection Scheme. In Ubicomp (UBICOMP) (September 2004).

[9.10] Ari Juels. Minimalist cryptography for low-cost RFID tags. In Carlo Blundo and
Stelvio Cimato, editors, The Fourth International Conference on Security in
Communication Networks - SCN 2004, volume 3352 of Lecture Notes in Computer
Science, pages 149--164, Amal, Italia, September 2004. Springer-Verlag

[9. 11] Floerkemeier, C., and Lampe, M. Issues with RFID Usage in Ubicomp
Applications. In Pervasive Computing (PERVASIVE) (2004), vol. 3001 of Lecture Notes
in Computer Science, pp. 188–193

[9.12] Juels, A., and Pappu, R. Squealing Euros: Privacy Protection in RFID-Enabled
Banknotes. In Financial Cryptography (2003), vol. 2742 of Lecture Notes in Computer
Science, pp. 103–121

DB Self-Recovery

 2

[9.13] Hopper, N. J., and Blum, M. Secure Human Identification Protocols. In Advances
in Cryptology - ASIACRYPT (2001), vol. 2248 of Lecture Notes in Computer Science,
pp. 52–66.

[9.14] A. Juels and S. Weis. Authenticating Pervasive Devices with Human Protocols.
Crypto ’05

[9.15] A. Lysyanskaya, R. L. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In H.M.
Heys and C.M. Adams, editors, Selected Areas in Cryptography, pages 184–199.
Springer-Verlag, 1999. LNCS no. 1758

[9.16] Ari Juels. Minimalist cryptography for low-cost RFID tags. In Carlo Blundo and
Stelvio Cimato, editors, The Fourth International Conference on Security in
Communication Networks - SCN 2004, volume 3352 of Lecture Notes in Computer
Science, pages 149--164, Amal, Italia, September 2004. Springer-Verlag.

[9. 17] Lampson, B. W., “Dynamic Protection Structures,” AFIPS Conference
Proceedings, 35, 1969, pp. 27–38

[9. 18] Bell, D. E., and L. J. LaPadula, Secure Computer Systems: Mathematical
Foundations and Model, Bedford, MA: The Mitre Corporation, 1973

[9.19] DoD, Trusted Computer System Evaluation Criteria (TCSEC), DoD 5200.28-STD.

[9.20] D. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn, R. Chandramouli, Proposed NIST
Standard for Role-Based Access Control, ACM Transaction on Information and System
Security, Vol. 4, No. 3, August 2001, pages 224-274

[9.21] M. J. Covington, M. J. Moyer, and M. Ahamad, "Generalized Role-Based Access
Control for Securing Future Applications," 23rd National Information Systems Security
Conference, 2000

[9. 22] A. Corradi, R. Montanari, and D. Tibaldi, “Context-based access control
management in ubiquitous environments,” Proc. Third IEEE International Symposium on
Network Computing and Applications, (NCA’04), pp.253–260, Aug. 2004.

[9.23] G. Zhang and M. Parashar. Context-aware dynamic access control for pervasive
computing. In 2004 Communication Networks and Distributed Systems Modeling and
Simulation Conference (CNDS'04). January 2004.

[9.24] Anand Tripathi, Tanvir Ahmed, Devdatta Kulkarni, Richa Kumar, and Komal
Kashiramka. Context-Based Secure Resource Access in Pervasive Computing
Environments. In Second IEEE Annual Conference on Pervasive Computing and
Communications Workshops (PERCOMW) 2004.

[9.25] Dimmock, N.: How much is `enough'? Risk in trust-based access control. In: IEEE
International Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises - Enterprise Security. (2003) 281-282

[9.26] Cahill, V., et al.: Using trust for secure collaboration in uncertain environments.
IEEE Pervasive Computing 2 (2003) 52-61.

 3

[9.27] Adams, W.J.; Davis, N.J., IV. Toward a decentralized trust-based access control
system for dynamic collaboration. The IEEE Workshop on Information Assurance and
Security, NY, 2005.

[9.28] Roy Campbell, Jalal Al-Muhtadi, Prasad Naldurg, Geetanjali Sampemane, M.
Dennis Mickunas, “Towards Security and Privacy for Pervasive Computing.” in Theories
and Systems, Mext-NSF-JSPS International Sympsoium, ISSS 2002, Tokyo, Japan,
November 2002. pp. 1-15, G. Goos, J. Hartmanis, and J. vanLeeuwen (editors) in Lecture
Notes in Computer Science.

[9.29] Marc Langeheinrich, Privacy by Design – Principles of Privacy Aware Ubiquitous
Systems, in UBICOMP 2001, LNCS 2201, pp 273 291.

[9.30] Alan F. Westin. Privacy and Freedom. Publisher: Bodley Head.

[9. 31] Damiani, Vimercati, Paraboschi, Samarati, and Violante, “A reputation-based
approach for choosing reliable resources in peer-to-peer networks”, 9th ACM CCS 2002

[9.32] Bin Yu, Munindar P. Singh, and Katia Sycara, “Developing trust large-scale peer-
to-peer systems”, First IEEE Symposium on Multiagent Security and Survivability, 2004

[9.33] Whitby, A., Josang, A. and Indulska, J. “Filtering out unfair ratings in Bayesian
reputation systems”, AAMAS 2004, New York, USA

[9.34] Weihua Song, Vir V. P hoha, and Xin Xu, “An adaptive recommendation trust
model in multiagent system”, IEEE/WIC/ACM IAT’04

[9. 35] Weihua Song, Vir V. Phoha, “Neural network-based reputation model in a
distributed system”, pp. 321-324, 2004 IEEE International Conference on E-Commerce
Technology (CEC'04), 2004

[9.36] Huang Baohua; Hu Heping; Lu Zhengding, “Identifying local trust value with
neural network in p2p environment”, The First IEEE and IFIP International Conference
in Central Asia on Internet, 2005

[9.37] C. Dellarocas, “The design of reliable trust management systems for electronic
trading communities”, MIT Working Paper

[9.38] Dellarocas , “Building trust online: the design of robust reputation reporting
mechanisms for online trading communities” A combined perspective on the digital era,
Doukidis, G., Mylonopoulos, N. and Pouloudi, N. (Eds.), Idea Book Publishing (2004)

[9.39] Dellarocas. “Immunizing online Reputation Reporting systems against unfair
ratings and discriminatory behavior”, In Proceedings of the ACM Conference on
Electronic Commerce, pages 150--157, Minneapolis, Minnesota, USA, 2000

[9. 40] Chrysanthos Dellarocas , “Mechanisms for coping with unfair ratings and
discriminatory behavior in online reputation reporting systems”, In ICIS, pages 520--525,
2000

 4

[9.41] Shigeki YAMADA, Eiji KAMIOKA, “Access Control for Security and Privacy in
Ubiquitous Computing Environments”, IEICE TRANS. COMMUN., VOL.E88–B, NO.3
MARCH 2005

[9.42] Lalana Kagal et al, “A Policy Language for a Pervasive Computing Environment”

[9.43] Anand et al., “Enforcing policies in Pervasive Environments”

[9.44] Michael Hecker, Alankar Karol, Christopher Stanton, and Mary-Anne Williams,
“Smart Sensor Networks: Communication, Collaboration and Business Decision Making
in Distributed Complex Environment ”, proc of International Conference on Mobile
Business, 2005, pp. 242-248

[9.45] Mihai Marin-Perianu, Nirvana Meratnia, Maria Lijding and Paul Havinga. “Being
Aware in Wireless Sensor Networks”, In 15th IST Mobile & Wireless Communication
Summit (IST SUMMIT 2006), June 2006, Myconos, Greece 2006

