
Mining Minds Platform ver. 4.0 (MM4) 
Requirements Specification &  
Design Document 

1



Principal Investigator 
Prof. Sungyoung Lee 

Document Editor 
Dr. Muhammad Bilal Amin 

Project Lead 
Dr. Muhammad Bilal Amin 

Contributors 
DCL Team 
Dr. Muhammad Bilal Amin  
Bilal Ali, Usman Akhtar, Taqdir Ali, 

ICL Team 
Tae Ho Hur, Jaehun Bang,   
Dr. Thien Huynh The, Muhammad Asif Razzaq 

KCL Team 
Muhammad Sadiq, 
Taqdir Ali, Maqbool Ali, 

SCL Team 
Syed Imran Ali,  
Muhammad Sadiq 

SL Team 
Shujaat Hussain, Ubaid ur Rehman, 
Anees Ul Hassan, Asim Abbas 

Facilitators 
Professor Byeong Ho Kang, 
University of Tasmania,  
Australia 

2



Index 
Introduction   -(4) 
Abstract Architecture -(5) 

1. Data Curation Layer
1.1 Functional Requirements -(6) 
1.2 Non-functional Requirements -(6) 
1.3 Terms and Definitions -(7) 
1.4 Use Cases

1.4.1 List   -(8) 
1.4.2 Diagram  -(9) 
1.4.3 Description -(10) 

2. Information Curation Layer
2.1 Functional Requirements -(34) 
2.2 Non-functional Requirements -(34) 
2.3 Terms and Definitions -(34) 
2.4 Use Cases

2.4.1 List   -(35) 
2.4.2 Diagram -(36) 
2.4.3 Description -(37) 

3. Knowledge Curation Layer
3.1 Functional Requirements -(64) 
3.2 Non-functional Requirements -(64) 
3.3 Terms and Definitions -(64) 
3.4 Use Cases

3.4.1 List  -(64) 
3.4.2 Diagram -(66) 
3.4.3 Description -(66) 

4. Service Curation Layer
4.1 Functional Requirements -(113) 
4.2 Non-functional Requirements -(113) 
4.3 Terms and Definitions -(113) 
4.4 Use Cases

4.4.1 List  -(114) 
4.4.2 Diagram -(116) 
4.4.3 Description -(117) 

5. Supporting Layer
5.1 Functional Requirements -(155) 
5.2 Non-functional Requirements -(155) 
5.3 Terms and Definitions -(155) 
5.4 Use Cases

5.4.1 List  -(156) 
5.4.2 Diagram -(157) 
5.4.3 Description -(158) 

6. Collaboration Diagram -(185) 

3



Introduction 

MMV4 is the 7th major integration for Mining Minds Platform, constituting upon the 
duration of 6 months, i.e., (Jan 2018 – Jun 2018). MMV4 utilizes the analysis, design and 
implementation efforts of previous versions, for its benefit and builds on the top of already 
identified layered abstractions and primary components. The overall architecture of 
MMV4 is similar to previous iterations; however, components have been added to 
incorporate newer requirements. 

At Data level, Data Curation Layer of MMV4 (DCL), is incorporating not only activity data 
from smartphone and smart watch, but also acquiring video stream from a camera, 
making the data input more heterogeneous per user. This data acquisition is purely in 
real-time with asynchronous, non-blocking communication from data source to the DCL. 
Furthermore, DCL is also providing the read access to sensory data persisted in big data 
storage for descriptive analytics and visualization. With the integration of Just-in-time 
monitoring, DCL is able to provide timely interrupts based on situations. 

At Information level, Information Curation Layer of MMV4 (ICL), is incorporating new low-
level context awareness mechanisms for the identification of the user location, emotion 
apart from their physical activities. Moreover, this version also includes high-level context 
awareness for a reliable and comprehensive determination of the user’s context. The 
communication between DCL and ICL has also been updated in MMV4 as a buffer is 
introduced between DCL and ICL for incoming sensory data, such that ICL is not stressed 
by strong influx of data from DCL. Furthermore, ICL only communicates with DCL in 
response when the context of the user changes, reducing the communication overhead. 
Knowledge curation, introduced in MMV1.5 is updated in MMV2 as Knowledge Curation 
Layer (KCL). For data driven knowledge acquisition, this layer now incorporates training 
of classification models directly from the data persisted as life-log in the intermediate 
database and big data storage. For expert driven knowledge acquisition, KCL provides 
production rules for service curation components and derive situations to be hosted at 
DCL and serviced at high-level service curation. 

At service level, Service Curation Layer (SCL) is dealing with service request handling, 
recommendation generation, recommendation interpretations, and service response 
delivering. It receives service requests from service requester directly or through a trigger 
based on the events identified in life-log of a user, SCL builds the recommendations 
based on user profile, lifelog data, and production rules. Based on the context, user 
characteristics, and environment variables, the recommendation are interpreted, 
explained, and are delivered to the Supporting Layer i.e. SL in order to serve the service 
requester. 

Supporting layer (SL) deals with providing services to every other layer of MMV4. It is 
responsible to provide personalized recommendations, trend analytics through adaptive 
user interface with added services of privacy and security. SL provides security services 
for securing the communication among different layers in MMV4. It handles the 

4



recommendations from SCL and stores the feedback of the user in DCL. Also, for analysis 
of the data stored as big data, SL provides services of analytics by communicating with 
DCL. 

This document provides requirement specifications for MMV4 with high-level use cases, 
sequence, and collaboration diagrams for the implemented platform. 

Abstract architecture 

Knowledge Curation Layer

Data-Driven

Supporting Layer

Multimodal Data Source

Descriptive Analytics

UI / UX

Service API

Service Curation Layer

Feedback 
Analysis

Information Curation Layer

Low Level Context-Awareness

High Level Context-Awareness

Data Curation Layer
Sensory Data Processing and Life-log Persistence

Personal Big Data Storage

Recommendation Manager

Security 
and 

Privacy

Expert-Driven Knowledgebase

Service OrchastratorRecommendation Interpreter

5



1. Data Curation Layer (DCL)

1.1 Functional Requirements

FR ID# Description 
DCL-FR-01 The platform shall read the raw sensory data of the user from his/her data 

source 
DCL-FR-02 The platform shall provide permanent persistence to the user generated 

raw sensory data 
DCL-FR-03 The platform shall provide raw sensory data for context determination of 

the user 
DCL-FR-04 The platform shall maintain user profile data 
DCL-FR-05 The platform shall maintain user timeline as a lifelog of daily behaviors 
DCL-FR-06 The platform shall provide read, write, delete, and update access to the 

subscribers of lifelog data 
DCL-FR-07 The platform shall provide read access to the subscribers of raw sensory 

data 
DCL-FR-08 The platform shall monitor the lifelog of a user for notify-able situations  
DCL-FR-09 The platform shall persist user feedback regarding generated 

recommendations and identified context 
DCL-FR-10 The platform shall manipulate the value of the factors from lifelog and 

questionnaires related to nutrition, physical activity and diseases. 

DCL-FR-11 
The platform shall use the questionnaire responses for the factors 
manipulation when the registration age is less than seven days. 

DCL-FR-12 The platform shall use the lifelog for the factors manipulation when the 
registration age is greater than seven days. 

DCL-FR-13 The platform shall identify the risk status associated with the manipulated 
factors. 

DCL-FR-14 The platform shall provide the risk factor’s vector for the 
recommendation generation and adaptive questionnaires. 

DCL-FR-15 The platform shall use factor’s value to manipulate the index for the 
healthy behavior identification. 

DCL-FR-16 The platform shall provide the details of the healthy behavior index on 
the basis of the every factors’ status on the basis of the week. 

1.2 Non-Functional Requirements 

FR ID# Description 
DCL-NFR-01 The platform shall read the raw sensory data of the user from his/her 

personal device in real-time with delay no later than 3 seconds 
DCL-NFR-02 The platform shall provide raw sensory data for low level activities 

determination in real-time with delay no later than 3 seconds 
DCL-NFR-03 The platform shall only read the raw sensory data from verified personal 

device 

6



DCL-NFR-04 The platform shall maintain the consistency, integrity, and reliability of 
raw sensory data in non-volatile storage 

1.3 Terms and Definitions 

Term Definition 
DCL Data Curation Layer 
ICL Information Curation Layer 
KCL Knowledge Curation Layer 
SCL Service Curation Layer 
SL Supporting Layer 

Lifelog Information associated to the user’s life-events over time 
Lifelog schema Lifelog schema represents the structure and associated 

semantics of user profile and lifelog data. 
User profile Information describing the user characteristics (i.e., age, 

gender, etc.) 
Data source User devices sending the required data, i.e., smartphone, video 

camera 
Raw sensory data Numerical values describing a physical phenomenon such as 

human body motion (e.g., acceleration) 
Sensory metadata Information that describes, at least, the source of data (e.g., 

video), the user to which the raw sensory data belongs (e.g., 
user ID) and the time in which the raw sensory data was 
registered (e.g., timestamp) 

Sensory data Raw sensory data plus sensory metadata 
SNS data Data from social networks (i.e., twitter, Facebook) 
Context General concept to refer either to low-level context and/or 

high-level context 
Situation An abnormal status of a subject caused by unhealthy behaviors 

Rule verification and 
validation 

Verification ensures that rule created is consistent with 
requirements and validation ensures that the rule created is 
correctly working on real data 

Unresolved case A new case for which the existing knowledge is insufficient to 
solve 

Recommendation An actionable statement provided to the subject for healthy 
habit induction 

Fact An informative statement provided to the subject for 
education 

7



1.4 Use-cases 

1.4.1 List 

Use case ID# Name 
DCL-UC-01 Receive sensory and environmental data from data source 
DCL-UC-02 Receive video data stream from data source 
DCL-UC-03 Synchronize heterogeneous user data 
DCL-UC-04 Send data for context determination 
DCL-UC-05 Receive context data 
DCL-UC-06 Retrieve Lifelog Information 
DCL-UC-07 Persist Lifelog Information 
DCL-UC-08 Map Instances 
DCL-UC-09 Validate Instances 
DCL-UC-10 Situation configuration 
DCL-UC-11 LLM configuration for target variables 
DCL-UC-12 LLM for situation detection 
DCL-UC-13 Retrieve sensory data from non-volatile storage for intermediate data 

generation (offline) 
DCL-UC-14 Retrieve sensory data from non-volatile storage (online) 
DCL-UC-15 Persist sensory data in non-volatile storage 
DCL-UC-16 Manipulate Behavior factors 
DCL-UC-17 Identify Risky factors 
DCL-UC-18 Identify Healthy Behavior Index (HBI) 
DCL-UC-19 Generate detail of HBI week wise 

8



1.4.2 Diagram 

 uc Primary Use Cases

DCL

Receiv e v ideo data 
stream

Data Source

Receiv e Sensory, 
Env . Data

Receiv e Context data

Retriev e Life-log 
Information

Situation 
configurationLLM ConfigurationIntermediate data 

generation

Synchronize 
heterogenous data

Send data for context 
determination

Persist Life-log 
Information

Persist sensory data 
in non-v olatile 

storage

Retriev e sensory data 
from non-v olatile 

storage LLM for situation 
detection

Map Instance

Validate Instance

Manipulate Behav ior 
Factors Identify Healthy 

Behav ior Index

Identify Risky 
Factors

Generate 
weekwise 

Detailed HBI

ICL

KCL

SCL

SL

«include»
«include»

«include»

«extend»

«extend»

«include»

«include»

«extend»

«include»

«include»

«include»

9



1.4.3 Description 

Use Case ID: DCL-UC-01 
Use Case Name: Receive sensory and environmental data from data source 

Created By: Bilal Amin Last Updated By: Bilal Amin 
Date Created: 15 July 2015 Last Revision Date: 20 Dec 2016 

Actors: Data source 
Description: User sensory data and environmental is received and buffered from 

data source in real time 
Trigger: User activity of at least 3 seconds 

Pre-conditions: User is a registered client of MM platform 
Post-conditions: Sensory and environmental data is persisted in the buffer 

Normal Flow: 1. Sensory and environmental data is received by a data
acquisition component

2. Data source is authenticated, and contents of the data
are verified

3. Data is temporary buffered for context determination
Alternative 

Flows: 
N/A 

Exceptions: 2a.  In step 2 of the normal flow, if the user is detected to be un-
authorized or contents are un-verifiable 
Data acquisition component destroys the data 

Includes: N/A 
Frequency of 

Use: 
Very frequent: every 3 second 

NFR ID: DCL-NFR-01, DCL-NFR-03 
Assumptions: Communication contract is defined between data source and data 

acquisition component 
Notes and 

Issues: 
NA 

Sequence Diagram: 

10



Use Case ID: DCL-UC-02 
Use Case Name: Receive video data stream from data source 

Created By: Bilal Amin Last Updated By: Bilal Amin 
Date Created: 15 July 2015 Last Revision Date: 20 Dec 2016 

Actors: Data source 
Description: User video data stream is received and buffered from data source 

in real time 
Trigger: Video camera is streaming user feed 

Pre-conditions: User is a registered client of MM platform 
Post-conditions: User video data stream is persisted in the video stream buffer 

Normal Flow: 1. Video data stream is received by a data acquisition
component

2. Data source is authenticated, and contents of the data
stream are verified

3. Video data stream is temporary buffered for context
determination

Alternative 
Flows: 

N/A 

Exceptions: 2a.  In step 2 of the normal flow, if the user is detected to be un-
authorized or contents are un-verifiable 

1. Data acquisition component destroys the data
Includes: N/A 

Frequency of 
Use: 

Less frequent: If video streaming-based data source is available 

NFR ID: DCL-NFR-03 

11



Assumptions: Video data streaming communication contract is defined between data 
source and data acquisition component 

Notes and 
Issues: 

NA 

Sequence Diagram: 

Use Case ID: DCL-UC-03 
Use Case Name: Synchronize heterogeneous user data 

Created By: Bilal Amin Last Updated By: Bilal Amin 
Date Created: 15 July 2015 Last Revision Date: 20 Dec 2016 

Actors: DCL 
Description: User video data stream is synchronized with the corresponding sensory 

data 
Trigger: Video camera is streaming user feed 

Pre-conditions: Video data stream is persisted in the video stream buffer 
Post-conditions: Video data stream is synchronized with its corresponding sensory data 

Normal Flow: 1. Time stamp and user id of video data stream is read from
the video stream buffer

2. Sensory data is searched and retrieved from buffer based on
the time stamp and user id

3. Retrieved sensory data is concatenated with the video
stream data and stored back in the sensory data buffer for
context determination

Alternative 
Flows: 

2a.  In step 2 of the normal flow, if the sensory data is not found 
1. Data acquisition component deletes the video data stream from

the video data stream buffer
Exceptions: NA 

Includes: NA 

12



Frequency of 
Use: 

Less frequent: If video streaming-based data source is available 

NFR ID: DCL-NFR-02 
Assumptions: 4. Video data streaming communication contract is defined

between data source and data acquisition component
Notes and 

Issues: 
NA 

Sequence Diagram: 

Use Case ID: DCL-UC-04 
Use Case Name: Send data for context determination 

Created By: Bilal Amin Last Updated By: Bilal Amin 
Date Created: 15 July 2015 Last Revision Date: 20 Dec 2016 

Actors: Context sender 
Description: Sensory data buffer is sent to ICL for context determination 

Trigger: Sensory data is available for context determination 
Pre-conditions: Sensory data is persisted in the buffer 

Post-conditions: Sensory data is sent for context determination 
Normal Flow: 1. Context sender reads sensory data from the sensory data buffer

2. Context sender creates communication object by serialization
3. Communication object is sent to the ICL server

Alternative 
Flows: 

NA 

Exceptions: NA 
Includes: NA 

13



Frequency of 
Use: 

Frequent: whenever context need to be determined 

NFR ID: NA 
Assumptions: NA 

Notes and 
Issues: 

NA 

Sequence 
Diagram: 

Use Case ID: DCL-UC-05 
Use Case Name: Receive context data 

Created By: Bilal Amin Last Updated By: Bilal Amin 
Date Created: 15 July 2015 Last Revision Date: 20 Dec 2016 

Actors: ICL server 
Description: After the determination by ICL, context is received by context receiver 

component and forwarded for non-volatile storage 
Trigger: New context or change in previous context is determined by ICL 

Pre-conditions: Context data is available  
Post-conditions: Context data is sent for non-volatile storage 

Normal Flow: 1. Context receiver receives context object
2. Context receiver de-serializes context object
3. Context object is sent for non-volatile persistence (async)
4. Context object is sent for lifelog mapping

Alternative 
Flows: 

NA 

Exceptions: NA 
Includes: NA 

Frequency of 
Use: 

Frequent: whenever context is determined 

NFR ID: DCL-NFR-02 
Assumptions: NA 

Notes and 
Issues: 

NA 

14



Sequence 
Diagram: 

Use Case ID: DCL-UC-06 
Use Case Name: Retrieve Lifelog Information 

Created By: Taqdir Ali Last Updated By: Taqdir Ali 
Date Created: 15 July 2015 Last Revision Date: 20 Dec 2016 

Actors: SCL, KCL, SL 
Description: Each actor needs information from life log for further processing. All 

actors shall request their related and desired Lifelog information from 
physical storage. 

Trigger: On request of an actor to access required information 
Pre-conditions: The actor shall be authorized with full access on the Lifelog data. 

Post-conditions: Provide the required data to layer 
Normal Flow: 1. Actor sends request for desired Lifelog information.

2. The desired request shall be checked for information
existence. If request is valid

a. Prepare the query for desired information based on request
b. Load the requested information from physical storage
c. Send back the loaded information to the actor

Alternative 
Flows: 

2b. The desired data is not existing in the schema, invalid request 
1. Acknowledge the actor with exception of invalid request.

Exceptions: NA 
Includes: NA 

Frequency of 
Use: 

Whenever Lifelog information is required. 

NFR ID: NA 
Assumptions: NA 

Notes and 
Issues: 

NA 

Sequence 
Diagram: 

15



Use Case ID: DCL-UC-07 
Use Case 

Name: 
Persist Lifelog Information 

Created By: Taqdir Ali Last Updated By: Taqdir Ali 
Date Created: 15 July 2015 Last Revision Date: 20 Dec 2016 

Actors: ICL 
Description: Each actor performed some specific operations on incoming data from 

external resources or on already existing information in Lifelog repository. 
In both cases the information shall be updated and stored in Lifelog 
repository. 

Trigger: On request of a actor to persist required information 
Pre-

conditions: 
The actor shall be authorized with full access on the Lifelog data. 

Post-
conditions: 

Successfully stored the created Lifelog information 

Normal Flow: 1. Actor sends request to persist new generated Lifelog
information.

2. Passes the new created information to check the appropriate
hierarchical structure.

3. The appropriate selected hierarchical structure with input
information passes to find the information instances.

4. Check the consistency among the records and their
relationship.

5. Store the validated and structured information into physical
storage

Alternative 
Flows: 

NA 

sd Interaction

Actor

Retrieval Handler Life-Log physical
storage

Query Manager

alt 

[If request is valid then generate query]

[else alert with exception]

sendRequest(parameters) :dataset

checkSchemaForExistance(parameters) :bool

resultExistanceCheck(parameters) :boolean

generateQuery(parameters)

retrieveInformation(query) :dataset

retrieveData() :dataset

sendInformation() :dataset

alertOfInvalidRequest()

16



Exceptions: NA 
Includes: Map Instances, Validate Instances, save information to physical storage. 

Frequency of 
Use: 

Whenever new information is generated. 

NFR ID: NA 
Assumptions: NA 

Notes and 
Issues: 

Capability to process multiple actor’s requests for storage. 

Sequence Diagram: 

Use Case ID: DCL-UC-08 
Use Case 

Name: 
Map Instances 

Created By: Taqdir Ali Last Updated By: Taqdir Ali 
Date Created: 15 July 2015 Last Revision Date: 20 Dec 2016 

Actors: DCL, ICL, SCL, SL, and Lifelog physical storage 
Description: The information produced by each actor shall be mapped against the 

hierarchical structure of storage. 
Trigger: On request of an actor to persist required information 

Pre-
conditions: 

The actor shall be authorized with full access on the Lifelog data. 

Post-
conditions: 

Successfully mapped the instances with correct Lifelog information schema 

Normal Flow: 1. Actor sends request to persist new generated information.
2. System searches each information records against hierarchical

structure.
3. System finds appropriate classes of the instances
4. System extracts attributes in the instances.
5. Find the relationship among the information records.
6. Pass the annotated information for validation.

Alternative 
Flows: 

 NA 

Exceptions: NA 
Includes: NA 

sd Interaction

Actor

Persistance
Handler

Model Selector Instance Mapper Information
Validator

Life-Log Physical
Storage

sendPersistRequest(information)

selectAppropriateModel(information)
:Model

mapInstances(information,
model) :mappedData

validateInformation(information)
:validatedModel

saveInformation(information)

acknowledgement()

acknowledgement()

17



Frequency of 
Use: 

Whenever new information is persisted. 

NFR ID: NA 
Assumptions: NA 

Notes and 
Issues: 

Capability to process multiple actors’ requests for storage. 

Sequence Diagram: 

Use Case ID: DCL-UC-09 
Use Case 

Name: 
Validate Instances 

Created By: Taqdir Ali Last Updated By: Taqdir Ali 
Date Created: 15 July 2015 Last Revision Date: 20 Dec 2016 

Actors: DCL, ICL, SCL, SL, and Lifelog physical storage 
Description: The mapped information in previous use case shall be checked for 

consistency among the existing information. 
Trigger: On request of an actor to persist required information 

Pre-
conditions: 

The actor shall be authorized with full access on the Lifelog data. 

Post-
conditions: 

Successfully validate the instances with correct Lifelog information schema 

Normal Flow: 1. Actor send request to persist new generated information.
2. DCL passes the mapped information for validation of

information and their relationships.
3. The system checks the information according to the specific

location in the hierarchy.
4. The system checks and builds the relationship among concepts.
5. The verified information shall be passed for persistence.

Alternative 
Flows: 

NA 

Exceptions: NA 

sd Interaction

Actor

Persistance
Handler

Instance Mapper

saveInformation(information)

mapInstances(information, model) :mappedData

mapClasses()

mapAttributes()

mapRelationships()

returnMappedData()

18



Includes: NA 
Frequency of 

Use: 
Whenever new information is persisted. 

NFR ID: NA 
Assumptions: NA 

Notes and 
Issues: 

Capability to process multiple actors’ requests for storage. 

Sequence Diagram: 

Use Case ID: DCL-UC-10 
Use Case Name: Situation Configuration 

Created By: Bilal Ali Last Updated By: Bilal Ali 
Date Created: 15 July 2015 Last Revision Date: 20 Dec 2016 

Actors: KCL 
Description: Situation is determined by experts and is communicated to DCL for 

monitoring the Lifelog. 
Trigger: Creation of new rule to capture a situation. 

Pre-conditions: KCL and DCL should agree on common representation of sharing 
information of Situation configuration 

Post-conditions: 1. Situation is stored against a specific category.
2. Situation is available for monitoring the Lifelog.

Normal Flow: 1. KCL connects to DCL and send the newly created situation in
common configuration format.

2. DCL evaluates the format of received situation configuration.
3. DCL responds with acknowledgement message.
4. Situation will be parsed into components.
5. Parsed components are updated in persistent storage as per

categories.
Alternative 

Flows: 
NA 

Exceptions: Format of situation is not according the agreement. 

sd Interaction

Actor

Persistance
Handler

Information
Validator

Life-Log Physical
Storage

saveInformation(information)

validateInformation(information) :validatedModel

validateLocation()

validateRelationships()

saveToPhysicalStorage()

acknowledgement()

acknowledgement()

19



Includes: NA 
Frequency of 

Use: 
Invoked per situation creation by the expert. 

NFR ID: NA 
Assumptions: Well defined schema is available to store situation persistently 

Notes and 
Issues: 

Standardize situation format is a challenging task 

Sequence Diagram: 

Use Case ID: DCL-UC-11 
Use Case Name: LLM Configuration for target Variables 

Created By: Bilal Ali Last Updated By: Bilal Ali 
Date Created: 15 July 2015 Last Revision Date: 20 Dec 2016 

Actors: KCL, Experts 
Description: Configure the Lifelog monitor for the screening of the target variable from 

Lifelog data. 
Trigger: On start of user’s monitored activity 

Pre-conditions: 1. Expert defines target variable in common configuration
format.

2. Access to Lifelog.
Post-conditions: Targeted log is retrieved from Lifelog data as per target variable 

requirements. 
Normal Flow: 1. KCL will share the target variables in common configured

format created by expert.
2. Lifelog monitor is configured based on the shared target

variable.
3. Lifelog monitor retrieve log data from Lifelog against the

target variables.
Alternative 

Flows: 
NA 

sd situation configuration

KCL 2 Situation
Configurator

Format Evaluator Situation Storage

loop sendSituation(id, description)

checkFormat(situation)

evaluateFormat()

:Acknowledge

:Ack
save(id, description)

processUpdate(situation)

:Acknowledgement

20



Exceptions: NA 
Includes: NA 

Frequency of 
Use: 

On update of common configuration format. 

NFR ID: NA 
Assumptions: NA 

Notes and 
Issues: 

Real time accommodation of update in common configuration format is 
challenging task. 

Sequence Diagram: 

Use Case ID: DCL-UC-12 
Use Case Name: LLM for Situation Detection 

Created By: Bilal Ali Last Updated By: Bilal Ali 
Date Created: 15 July 2015 Last Revision Date: 20 Dec 2016 

Actors: Lifelog Data, SCL, ICL 
Description: Identification of the existence of a condition in user activities to highlight 

the alarming situation as per experts’ understanding. 
Trigger: On start of user’s monitored activity 

Pre-conditions: 1. Activity is identified.
2. Situation is configured.
3. Access to Lifelog.

sd LLM Situation detector

KCL 2 Life-log Monitor
Configurator

Life-log Data

loop 

sendConfigurate(targetVariables)

updateTargetVariable()

searchLog(targetVariable)

processSearch()

:log

21



Post-conditions: Alarming situation is detected and triggered the SCL with situation and 
user. 

Normal Flow: 1. ICL recognizes activity and sends to Lifelog.
2. Lifelog monitor identify the target activity.
3. Retrieve associated situation with the activity.
4. Continuous access that activity log.
5. Aggregate the interval/duration of activity.
6. Remove the irregularity in activity as per situation.
7. Evaluate the duration of activity against the situation.
a. If situation condition meets then send message to SCL to

inform about the occurrence of a situation along with user
information.

b. If situation condition does not occur, don’t send message to
SCL.

Alternative 
Flows: 

NA 

Exceptions: NA 
Includes: NA 

Frequency of 
Use: 

For every activity with configured situation. 

NFR ID: NA 
Assumptions: NA 

Notes and 
Issues: 

Management of irregularity in activity is a challenging task. 

Sequence Diagram: 

22



Use Case ID: DCL-UC-13 
Use Case Name: Retrieve sensory data from non-volatile storage for intermediate data 

generation (offline) 
Created By:  Usman Last Updated By: Bilal Amin 

Date Created: 15 July 2015 Last Revision Date: 20 Dec 2016 
Actors: KCL 

Description: Raw data in HDFS is retrieved based on the request from KCL and 
converted to relational format and stored in IDB. 

Trigger: KCL requests the data 
Pre-conditions: 1. Relational IDB schema has already been described and

shared
2. The data exists in HDFS

Post-conditions: 1. The data has been transformed and exported to IDB
2. The KCL is informed

Normal Flow: 1. SCL receives requests from KCL and creates a NoSQL query
2. NoSQL query is executed using Apache Hive on HDFS to

retrieve the data
3. Retrieved data is processed and transformed to relational

format based on IDB schema
4. Transformed data is exported to IDB

sd Use Case Model

ICL 2 Life-Log Monitor Situation Storage Life-log Data Remove
Irregularity

Evaluation of Log SCL 2Aggregate Log

alt 

loop 

sendActivity(activityId)

serachSituation(ActivityID)

processRequest()

:situation

reteriveLifeLogData(activity ID)

readLog()

:LogData

aggregateLog(LogData)

:cumulativeValue

removeAnamoly(cumulative, SituationID)

processRequest()

:activity interval

compareLog(logValue, SituationLimit)

:True/False

responseTrue()
sendSituation(SituationID, PersonId, ActivityID)

responseFalse()

23



Alternative 
Flows: 

NA 

Exceptions: NA 
Includes: NA 

Frequency of 
Use: 

Less frequent, offline process, may be executed once or on change in the 
IDB schema 

NFR ID: NA 
Assumptions: NoSQL query results are easy to transform to relational format 

Notes and 
Issues: 

NA 

Sequence Diagram: 

Use Case ID: DCL-UC-14 
Use Case Name: Retrieve sensory data from non-volatile storage (online) 

Created By:   Usman Last Updated By: Bilal Amin 
Date Created: 15 July 2015 Last Revision Date: 20 Dec 2016 

Actors: SL 
Description: Raw sensory data in HDFS is retrieved and provided to analytics 

component of SL in an online process 
Trigger: Request for data from descriptive analytics is received 

Pre-conditions: Raw sensory exists and persisted in HDFS (non-volatile storage) 
Post-conditions: 1. Required data is retrieved from HDFS

2. Data is cached locally in SCL
3. Required data is communicated to descriptive analytics in SL

directly (online)
Normal Flow: 1. Descriptive analytics in SL requests data from SCL

2. SCL receives the request and maintains its log.
3. SCL transforms request to a MapReduce Job.
4. MapReduce job is executed on HDFS and results are

retrieved.

 sd SC-UseCase

Query Manager Query Generator Non-Volatile
Storage

IDBKCL

alt Offline Process: Less frequent

Data retrieve request()
GenerateNoSQLQuery()

ExecuteQueryonHDFS()

Receive Results()

ExportDataToIDB()

NotifyKCL()

24



5. Retrieved results are cached locally in volatile storage
6. Results are forwarded directly to descriptive analytics

Alternative 
Flows: 

1. Descriptive analytics requests data from SCL
2. SCL receives the request and examines it for duplicity(a

request coming more than one time)
3. Duplicate request results are directly forwarded from the

cached results to descriptive analytics
4. First time requests follow the normal flow.

Exceptions: NA 
Includes: NA 

Frequency of 
Use: 

Frequent requests from descriptive analytics in SL 

NFR ID: NA 
Assumptions: Request format contract already defined between SL(descriptive 

analytics) and DCL (SCL) 
Notes and 

Issues: 
NA 

Sequence Diagram: 

Use Case ID: DCL-UC-15 
Use Case Name: Persist sensory data in non-volatile storage 

FR ID: 
Created By:   Usman Last Updated By: Bilal Amin 

Date Created: 15 July 2015 Last Revision Date: 20 Dec 2016 
Actors: DCL 

Description: Receive and persist raw sensory data from DCL in to HDFS 

 sd SC-UseCase2

SL Query Manager StreamLoader CacheStorage Non-volatileStorage

alt 

alt 

DataRetrieveRequest()
GenerateMRJob()

ExecuteQueryOnHDFS()

ReturnResults()

ReturnResultstoSL()

CacheTheResults()

GenerateQuery()

CheckQueryDuplicity()

retrieveCachedResults()

ReturnResults()

ReturnResultstoSL()

25



Trigger: DCL request to upload data, every 3 seconds 
Pre-conditions: 1. Data storage structure, directory structure in HDFS defined

2. File formats and data formats in HDFS known
3. Raw sensory data is received from DCL
4. Big Data server is already running

Post-conditions: 1. Raw sensory data is persisted in HDFS non-volatile storage
2. Data is available for processing and access by SL and KCL

Normal Flow: 1. Big Data server listening for data requests from DCL
2. DCL connects and sends data to SCL
3. SCL uploads received data to HDFS

Alternative 
Flows: 

NA 

Exceptions: NA 
Includes: NA 

Frequency of 
Use: 

Very frequent, every 3 seconds 

NFR ID: NA 
Assumptions: Data format and specifications already defined between DCL and SCL 

Notes and 
Issues: 

NA 

Sequence Diagram: 
 sd SC-UseCase

DC SC Non-VolatileStorage

ConnectToSC()

Acknowledgement()

SendData()

UploadDatatoHDFS()

26



Use Case ID: DCL-UC-16 
Use Case Name: Manipulate Behavior Factor 

Created By: Bilal Ali Last Updated By: Bilal Amin 
Date Created: 2 July 2018 Last Revision Date: 2 July 2018 

Actors: SCL 
Description: User lifelog and questionnaires responses are used to manipulate the 

factors which are related to dietary behavior, physical activities and 
diseases. 

Trigger: SCL triggers it when it need to give recommendations and generate 
adaptive questionnaires. 

Pre-conditions: User has filled the questionnaire and life-log is maintained 
Post-conditions: All factors are manipulated and healthy behavior index 

Normal Flow: 1. Receive request from SCL.
2. Calculate the registration age of the user.
3. For qualitative factors assess the latest responses of the

questionnaires.
4. For qualitative factors accumulate the lifelog values week

wise.
5. Map each factor with assigned range defined by expert.
6. Build factor vector and accumulate the factors with assigned

proportion.
Alternative 

Flows: 
N/A 

Exceptions: 2a.  In step 2 of the normal flow, if the user age is zero or data is 
unavailable the system not recognized exception must occur. 

Includes: N/A 
Frequency of 

Use: 
Depending on report generation for each user. 

NFR ID: NA 
Assumptions: User provides the responses of all the allocated questions and lifelog is 

maintained over time. 
Notes and 

Issues: 
NA 

Sequence Diagram: 

27



Use Case ID: DCL-UC-17 
Use Case Name: Identify Risk Factors 

Created By: Bilal Ali Last Updated By: Bilal Amin 
Date Created: 2 July 2018 Last Revision Date: 2 July 2018 

Actors: SCL 
Description: User lifelog and questionnaires responses are used to manipulate the 

factors which are linked to find out the risky values on the basis of the 
rules defined by expert 

Trigger: SCL triggers it when it need to give recommendations for dinning time 
and generate monthly questionnaires. 

Pre-conditions: User has filled the questionnaire and life-log is maintained 
Post-conditions: Personalized Risky factors vector is available to generate 

recommendations 
Normal Flow: 1. Receive request from SCL.

2. Calculate the registration age of the user.
3. Identify the registration status of the user.
4. For qualitative factors assess the latest responses of the

questionnaires.
5. Map the responses into ranges for identification of the

categories for risky factors.

sd Mani Beh Factor

SCL/SL

Risk Factor
Interface

Risk Factor
Calculator

Intermediate Data
Repository

Assessment Rule
Fetcher

reqBehFact(userid)

reqRegAge(userid) :int

searchRegDate(usid)

sendRegAge() :int

reqBehFact(usid, regAge)

reqAssessmentRule() :vector

searchRule(usid)

reqLifelog(usid, daterange)

processLog(usid, stDate, endDate) :vector

sendFactValue() :vector

mapAssessRange(factorVector) :vector

sendFactor() :vector

sendJSON() :vector

28



6. For qualitative factors accumulate the lifelog values on the
basis of the portion of the day passes.

7. Map each factor with assigned range defined by expert to
identify the risky factor values.

8. Build risk factors vector and convert it into JSON to
communicate with SCL in common communication format.

Alternative 
Flows: 

N/A 

Exceptions: 2a.  In step 2 of the normal flow, if the user age is zero or data is 
unavailable the system should generate user not recognized exception. 

Includes: N/A 
Frequency of 

Use: 
At-least 3 times a day depending on report generation for each user. 

NFR ID: NA 
Assumptions: User provides the responses of all the allocated questions and lifelog is 

maintained over time. 
Notes and 

Issues: 
NA 

Sequence Diagram: 
 sd IdentifyRiskFactor

SCL/SL

Risk Factor
Interface

Risk Factor
Calculator

Intermediate Data
Repository

Assessment Rule
Fetcher

reqRiskFact(usid)

sendUsiD(usid, stdate,enddate)

reqLifelog(usid) :vector

serachlog(usid, stDate,endDate)

sendLog() :vector

getrule() :string

searchRule()

sendRule() :vector

mapFactors(vector)

riskFactor(usid) :vector

sendJSON() :
vector

29



Use Case ID: DCL-UC-18 
Use Case Name: Identify Healthy Behavior Index (HBI) 

Created By: Bilal Ali Last Updated By: Bilal Amin 
Date Created: 2 July 2018 Last Revision Date: 2 July 2018 

Actors: SCL, SL 
Description: User lifelog and questionnaires responses are used to recognize the 

behavior status of the user in-term of the healthy dieting, physical 
activity, smoking and alcohol consumption. 

Trigger: SCL, SL can trigger it when they need to generate the progress report for 
the evaluation of user behavior. 

Pre-conditions: User has filled the questionnaire and life-log is maintained 
Post-conditions: Healthy behavior index week wise is available to represent the behavior 

status. 
Normal Flow: 1. Receive request from SCL.

2. Identify the total number of weeks from lifelog.
3. For qualitative factors assess the latest responses of the

questionnaires week-wise.
4. Quantify the qualitative factor and map to a single value

from the ranges defined by the expert.
5. Accumulate the qualitative factors from the lifelog values

week wise and map it to single value from the ranges
defined by the expert.

6. Accumulate the values of the contributing factors on the
basis of the weightage and convert it into a single value.

7. Build helathy behavior index vector and convert it into JSON
to communicate with SL and SCL in common communication
format.

Alternative 
Flows: 

N/A 

Exceptions: 2a.  In step 2 of the normal flow, if the user age is zero or data is 
unavailable the system should generate user not recognized exception. 

Includes: N/A 
Frequency of 

Use: 
Any time when user and expert generate request to evaluate the change 
in behavior. 

NFR ID: NA 
Assumptions: User provides the responses of all the allocated questions and lifelog is 

maintained over time. 
Notes and 

Issues: 
NA 

Sequence Diagram: 

30



Use Case ID: DCL-UC-19 
Use Case Name: Generate detail of HBI week-wise 

Created By: Bilal Ali Last Updated By: Bilal Amin 
Date Created: 2 July 2018 Last Revision Date: 2 July 2018 

Actors: SCL, SL 
Description: User lifelog and questionnaires responses are used to recognize the 

behavior status of the user in-term of the dietary factors, physical 
activity, smoking and alcohol consumption in a specified week. 

Trigger: SCL, SL can trigger it when they need to generate the detail progress 
report for factors related to behavior which can affect the health of a 
person.  

Pre-conditions: User has filled the questionnaire and life-log is maintained 
Post-conditions: Contributing factors status in a week is available to represent the status. 

Normal Flow: 1. Receive request from SCL and SL.
2. Receive the week number.
3. For qualitative factors assess the latest responses of the

questionnaires in the week number.

sd identifyHBI

SCL/SL

HBI Interface HBI Calculator Intermediate Data
Repository

Assessment Rule
Fetcher

reqHBI(userid)

sendUserInfor(userid)

reqAssessmentRul() :vector

matchingRule() :vector

sendRule() :vector

reqLifelog(userid)

searchLog()

sendLog() :vector

calHBI(logVector, Rule)

sendHBI() :Vector

sendJSON() :String

31



4. Quantify the qualitative factor and map to a single value
from the ranges defined by the expert in that week.

5. Accumulate the qualitative factors from the lifelog values in
that week and map it to single value from the ranges
defined by the expert.

6. Build healthy behavior factor vector and convert it into JSON
to communicate with SL and SCL in common communication
format.

Alternative 
Flows: 

N/A 

Exceptions: 2a.  In step 2 of the normal flow, if the required week has no information 
in lifelog then the system should generate week not registered exception. 

Includes: N/A 
Frequency of 

Use: 
Any time when user and expert generate request to visualize the factors 
value to identify the change in behavior. 

NFR ID: NA 
Assumptions: User provides the responses of all the allocated questions and lifelog is 

maintained over time. 
Notes and 

Issues: 
NA 

Sequence Diagram: 

32



sd Use Case Model

SCL/SL

HBI Interface Detail HBI
Calculator

Intermediate Data
Repository

Assessment Rule
Fetcher

reqHBiDetail(Usid, weekid)

send(usid,wId)

reqLog(usid,wid)

searchlog()

sendLog() :vector

getAssessmentRule(vector) :string

searchRule()

sendRule() :vector

mapLogtoRule(vector,rule)

sendDetailHBI() :vector

sendJSON() :string

33



2. Information Curation Layer

2.1 Function Requirements

Requirements #ID Description 
ICL-FR-01 The platform shall provide each low-level context recognizer with 

the appropriate raw sensory data for recognition 

ICL-FR-02 The platform shall identify the user’s low-level context 

ICL-FR-03 The platform shall identify the user’s high-level context 

ICL-FR-04 The platform shall provide low-level context information for the 
generation of the life-log 

ICL-FR-05 The platform shall provide high-level context information for the 
generation of the life-log 

2.2 Non-Function Requirements 

Requirements #ID Description 
ICL-NFR-01 Overall low-level context recognition accuracy of the platform 

shall be be greater than or equal to 85% 

ICL-NFR-02 Overall high-level context inference accuracy of the platform shall 
be greater than or equal to 80% 

2.3 Terms and Definitions 

Terms Description 
DCL Data Curation Layer 
KCL Knowledge Curation Layer  

Reasoning The process of producing recommendations 
Low-level context Information describing the user activities (e.g., sitting), user 

locations (e.g., restaurant) and user emotions (e.g., happy) 

High-level context Information describing the situation of the user (e.g., 
lunch) 

Context General concept to refer either to low-level context and/or 
high-level context 

34



2.4 Use Case 

2.4.1 List 

Use Case #ID Description 
ICL-UC-01 Derive optimal low-level context recognizer 
ICL-UC-02 Create low-level context recognizers 
ICL-UC-03 Route sensory data for the low-level context identification 
ICL-UC-04 Recognize user low-level context 
ICL-UC-05 Recognize user activity based on inertial raw sensory data 
ICL-UC-06 Recognize user activity based on video raw sensory data 
ICL-UC-07 Recognize user location based on geo-positioning raw sensory data 
ICL-UC-08 Recognize user emotion based on audio raw sensory data 
ICL-UC-09 Recognize user emotion based on video raw sensory data 
ICL-UC-10 Recognize food based on tag data 
ICL-UC-11 Unify low-level contexts 
ICL-UC-12 Notify new low-level context 
ICL-UC-13 Create unclassified high-level context instance 
ICL-UC-14 Classify high-level context instance 
ICL-UC-15 Notify new high-level context 
ICL-UC-16 Load context ontology model 
ICL-UC-17 Store context instance 
ICL-UC-18 Retrieve context instance 
ICL-UC-19 Evolve Ontology 
ICL-UC-20 High Level Physical Activity Context 
ICL-UC-21 High Level Nutrition Context 
ICL-UC-22 High Level Clinical Context 

35



2.4.2 Diagram 

 uc UseCase Diagram HLCA 4.0

Route sensory data for 
low-level context

LLCA

«actor»
DCL4.0

Recognize activity 
based on inertial data

Recognize activity 
based on video data

Recognize low-level 
context

Unify low-level 
context

Notify new low-level 
context

Recognize emotion 
based on audio data

Recognize location 
based on 

geopositioning data

Recognize food 
nutrition based on 

Tag

HLCA

Create unclassified 
high-level context Create ontology

Evolve Ontology
Classify unclassified 

high-level context

Notify new high-level 
context

High level physical 
activity context

High lev el nutrition 
context

Ontology engineer

ICL4.0

Recognize emotion 
based on v ideo data

High lev el clinical 
context

Create low-lev el 
context recognizer

Deriv e optimal 
low-lev el context 

recognizer

ML Engineer

precede

invokes

extendusesinvokes

uses

invokes

invokes

invokes

invokes

36



2.4.3 Description 

Use Case ID: ICL-UC-01 
Use Case Name: Derive optimal low-level context recognizer 
Created By: Oresti Banos Last Updated By: Jaehun Bang 
Date Created: 22 July 2015 Last Revision Date: 02 July 2018 
Actors: Engineer 
Description: Create an optimal recognition model through the evaluation of 

multiple recognition model candidates (offline process). 
Trigger: Engineer initiates the process for creating an optimal recognition 

model 
Pre-conditions: • A human expert or engineer sets up the experimental setup

for the evaluation process
Post-conditions: • The optimal recognition model among considered is delivered

to the expert
• A recognizer descriptor containing the characteristics of the

optimal model is stored
Normal Flow: 1. Load dataset

2. For each combination of preprocessing methods,
segmentation methods, feature sets, feature selection
methods, and classification methods, the dataset is
preprocessed (e.g., filtered)

3. The preprocessed dataset is segmented (e.g., partitioned into
windows)

4. Features (e.g., mean, variance) are extracted from each
segment of the dataset

5. The best features are selected
6. Cross validation is applied to the selected features

a. The feature set is split into training and testing
b. The classifier is trained using the training features
c. The classifier is tested in order to determine the

model performance
7. The model performance is stored
8. Once the model performance has been calculated for all the

possible combinations, the optimal model is selected
9. A recognizer descriptor is generated according to the

characteristics of the model (e.g., median filtering, 3 sec
window size, etc.)

10. The generated recognizer descriptor is stored
Alternative Flows: NA 
Exceptions: NA 
Includes: NA 
Frequency of Use: Infrequent 
NFR ID: MM-NFR-05 
Assumptions: NA 

37



Notes and Issues: Matlab and Weka tools will be used for this task. A multimodal dataset 
must be collected for the training and evaluation of the candidate’s 
models. 

Sequence Diagram: 

Use Case ID: ICL-UC-02 
Use Case Name: Create low-level context recognizers 
Created By: Oresti Banos Last Updated By: Jaehun Bang 
Date Created: 22 July 2015 Last Revision Date: 02 July 2018 
Actors: DCL 3 
Description: Sensory data is received from DCL 3 and it is distributed to the 

corresponding low-level context recognizer based on the data type(s). 
Trigger: Receive userID and part of the user profile information send by DCL 3 

to ICL4  
Pre-conditions: • DCL 3 sends the userID and part of the user profile

information to ICL 4 whenever a new user is registered in the
platform

Post-conditions: • Low-level context recognizers are generated for the new user
for all context types

sd Interaction

Data Mining Tool Offline Signal
Preprocessor

Offline Signal
Segmenter

Offline Feature
Extractor

Offline Classifier

Engineer

Collected Sensory
Dataset

Cross ValidatorOffline Feature
Selector

Recognizer
Description

Storage

loop 

[For preprocessingMethods x segmentationMethods x featureSets x featureSelectionMethods x ClassificationMethods]

createRecognitionModel()

loadDataset()

:dataset

preprocess(dataset, preprocessingMethod)

:preprocessedData

segment(preprocessedData, segmentationMethod)

:segmentedData

extractFeatures(segmentedData, featureSet)

:extractedFeatures

selectFeatures(extractedFeatures, featureSelectionMethod)

:selectedFeatures

crossValidate(selectedFeatures)

splitFeatureSet(selectedFeatures) :trainingFeatures,
testingFeatures

trainClassifier(trainingFeatures, classifierMethod)

:model

testClassifer(testingFeatures, model)

:modelPerformance

:model, modelPerformance

addToModelPerformanceList(model, modelPerformance) :performanceList

selectOptimalModel(performanceList) :optimalModel

:optimalModel

createRecognizerDescription(optimalModel) :recognizerDescription

storeRecognizerDescription(recognizerDescription)

38



Normal Flow: 1. Receive UserID and (part of the) user profile information
2. Load the recognizer descriptions containing the low-level

context model types (e.g., emotion recognizer) and
characteristics (e.g., median filtering, 3 sec window size, etc.)

3. Create a new recognizer for each recognizer description
4. Create a recognizer identifier for the generated recognizer
5. Save the recognizer identifier in a persistent storage

Alternative Flows: NA 
Exceptions: NA 
Includes: NA 
Frequency of Use: Less frequent 
NFR ID: NA 
Assumptions: • DCL 3 will send the required user profile information together

with the userID only the first time a user is registered
• No user profile updates are considered in this version

Notes and Issues: NA 
Sequence Diagram: 

Use Case ID: ICL-UC-03 
Use Case Name: Route sensory data for the low-level context identification 
Created By: Tae Ho Hur Last Updated By: Taeho Hur 
Date Created: 06 Dec 2015 Last Revision Date: 04 July 2018 
Actors: Sensor Devices 
Description: Sensory data is received, and it is distributed to the 

corresponding low-level context recognizer based on the data 
type(s). 

Trigger: Receive sensory data send by each sensor device 

39



Pre-conditions: • Device sends sensory data, i.e., raw sensory data plus
sensory metadata (e.g., data type, time stamp, device ID,
device type, and user ID)

Post-conditions: • The adequate raw sensory data is sent to each low-level
context recognizer in order to perform the recognition
process

Normal Flow: 1. Receive sensory data
2. Get the user identifier to which the sensory data belongs
3. Load the low-level context recognizers identifiers for the

given user
4. For each low-level context recognizer identifier, get the

sensory data type(s) it requires
5. Match the received sensory data with the sensory data

type(s) required by the low-level context recognizer
6. Create a copy with the compatible data required by the

low-level context recognizer
7. Distribute the data to the corresponding low-level

context recognizer
Alternative Flows: NA 
Exceptions: 5a. If no compatible data types are identified for the given 

low-level context recognizer 
1. Go to step 3

Includes: NA 
Frequency of Use: Very frequent 
Assumptions: • There is an established communication between Sensor

Devices and the Sensory Data Router module
• Incoming sensory data is already preprocessed (i.e.,

without missing samples and with synchronized streams)
Notes and Issues: NA 
Sequence Diagram: 

40



Use Case ID: ICL-UC-04 
Use Case Name: Recognize user low-level context 
Created By: Oresti Banos Last Updated By: Oresti Banos 
Date Created: 14 July 2015 Last Revision Date: 02 July 2018 
Actors: Sensory Data Router, Low-Level Context Unifier 
Description: The low-level context associated to a given user is identified 

based on the received compatible sensory data. The low-level 
context recognition may be of diverse nature depending upon 
the data types, thus this use case defines an abstract 
representation of the process to be followed. 

Trigger: Receive compatible sensory data 
Pre-conditions: • Compatible sensory data is sent to a given low-level

context recognizer
Post-conditions: • The recognized low-level context instance is provided to

the Low-Level Context Unifier
Normal Flow: 1. Compatible sensory data is received by a given low-level

context recognizer
2. The raw sensory data is extracted from the sensory data
3. The low-level context label is recognized
4. The sensory metadata is extracted from the sensory data
5. A low-level context instance is generated by combining

the low-level context label and the sensory metadata
6. The generated low-level context instance is provided to

the Low-Level Context Unifier
Alternative Flows: NA 
Exceptions: NA 
Includes: NA 

41



Frequency of Use: Frequent: at every reception of sensory data 
NFR ID: MM-NFR-05 
Assumptions: • Only compatible sensory data is received by each

corresponding low-level context recognizer
Notes and Issues: NA 
Sequence Diagram: 

Use Case ID: ICL-UC-05 
Use Case Name: Recognize user activity based on inertial raw sensory data 
Created By: Taeho Hur Last Updated By: Taeho Hur 
Date Created: 09 March 2017 Last Revision Date: 02 July 2018 
Actors: ICL-UC-04 
Description: Identification of the user physical activity (e.g., “sitting”) based 

on the processing of the body-motion raw sensory data collected 
from an inertial sensor. The body-motion raw sensory data 
consists of triaxial acceleration, triaxial rate of turn and triaxial 
magnetic field data. 

Trigger: Request for the recognition of the user activity based on a given 
inertial raw sensory data 

Pre-conditions: • Raw sensory data is extracted from compatible sensory
data (inertial sensory data)

Post-conditions: • A label corresponding to the recognized activity is
generated

 sd 

Low-Level Context Recognizer Low-Level Context
Unifier

Sensory Data
Router

receive(compatibleSensoryData)

extractRawSensoryData(compatibleSensoryData) :rawSensoryData

recognizeLowLevelContext(rawSensoryData) :lowLevelContextLabel

extractSensoryMetadata(compatibleSensoryData) :sensoryMetadata

createLowLevelContextInstance(lowLevelContextLabel, sensoryMetadata) :
lowLevelContextInstance

receive(lowLevelContextInstance)

42



Normal Flow: 1. Inertial raw sensory data is received for analysis
2. The raw sensory data is preprocessed (e.g., filtered)
3. The preprocessed raw sensory data is segmented (e.g.,

partitioned into windows)
4. Features (e.g., mean, variance) are extracted from each

segment of raw sensory data
5. The extracted features are classified
6. A label identifying the corresponding user activity is

generated
7. Decision fusion of activities is made based on majority

voting
8. Final activity is chosen

Alternative Flows: NA 
Exceptions: NA 
Includes: NA 
Frequency of Use: Frequent: at every reception of inertial raw sensory data 
NFR ID: MM-NFR-05 
Assumptions: The raw sensory data is of the nature required by the inertial 

activity recognizer 
Notes and Issues: NA 
Sequence Diagram: 

 sd Interaction

Inertial Activity
Recognizer

Preprocessor Segmenter Feature Extractor Classifier Decision Fusioner

recognizeLowLevelContext(rawSensoryData)

preprocess(rawSensoryData)

preprocessedSensoryData()

segment(preprocessedSensoryData)

segmentedSensoryData()

extractFeature(segmentedSensoryData)

extractedFeatures()

classify(extractedFeatures)

activityLabel()

decisionFusion(activityLabel)

finalActivityLabel()

43



Use Case ID: ICL-UC-06 
Use Case Name: Recognize user activity based on video raw sensory data 
Created By: Oresti Banos Last Updated By: Oresti Banos 
Date Created: 17 July 2015 Last Revision Date: 02 July 2018 
Actors: ICL-UC-04 
Description: Identification of the user physical activity (e.g., “standing”) based 

on the processing of the body-motion raw sensory data collected 
through a video camera. The body-motion raw sensory data 
consists of RGB and depth video. 

Trigger: Request for the recognition of the user activity based on a given 
video raw sensory data 

Pre-conditions: • Raw sensory data is extracted from compatible sensory
data (video sensory data)

Post-conditions: • A label corresponding to the recognized activity is
generated

Normal Flow: 1. Video raw sensory data is received for analysis
2. The raw sensory data is preprocessed (e.g., filtered)
3. The preprocessed raw sensory data is segmented (e.g.,

partitioned into windows)
4. Features (e.g., SIFT, HOG) are extracted from each

segment of raw sensory data
5. The extracted features are classified
6. A label identifying the corresponding user activity is

generated
Alternative Flows: NA 
Exceptions: NA 
Includes: NA 
Frequency of Use: Frequent: at every reception of video raw sensory data 
NFR ID: MM-NFR-05 
Assumptions: The raw sensory data is of the nature required by the video 

activity recognizer 
Notes and Issues: NA 
Sequence Diagram: 

44



Use Case ID: ICL-UC-07 
Use Case Name: Recognize user location based on geo-positioning raw sensory 

data 
Created By: Oresti Banos Last Updated By: Oresti Banos 
Date Created: 17 July 2015 Last Revision Date: 02 July 2018 
Actors: ICL-UC-04 
Description: Identification of the user location (e.g., “restaurant”) based on 

the processing of the geo-positioning raw sensory data collected 
from a portable GPS sensor. The body-motion raw sensory data 
consists of latitude, longitude and speed data. 

Trigger: Request for the recognition of the user location based on a given 
geo-positioning raw sensory data 

Pre-conditions: • Raw sensory data is extracted from compatible sensory
data (geo-positioning sensory data)

Post-conditions: • A label corresponding to the recognized location is
generated

Normal Flow: 1. Geo-positioning raw sensory data is received for analysis
2. The geo-positioning raw sensory data is compared with

the predefined map coordinates
3. A label identifying the corresponding user location is

generated
Alternative Flows: NA 
Exceptions: NA 
Includes: NA 
Frequency of Use: Frequent: at every reception of geo-positioning raw sensory data 
NFR ID: MM-NFR-05 
Assumptions: The raw sensory data is of the nature required by the geo-

positioning location recognizer 

 sd Interaction

Video Activity Recognizer Signal Preprocessor Signal Segmenter Feature Extractor Classifier

recognizeLowLevelContext(rawSensoryData)

preprocess(rawSensoryData)

:preprocessedSensoryData

segment(preprocessedSensoryData)

:segmentedSensoryData

extractFeatures(segmentedSensoryData)

:extractedFeatures

classify(extractedFeatures)

:activityLabel

45



Notes and Issues: NA 
Sequence Diagram: 

Use Case ID: ICL-UC-08 
Use Case Name: Recognize user emotion based on audio raw sensory data 
Created By: Oresti Banos Last Updated By: Jaehun Bang 
Date Created: 17 July 2015 Last Revision Date: 02 July 2018 
Actors: ICL-UC-04 
Description: Identification of the user emotional state (e.g., “happy”) based 

on the processing of the audio raw sensory data collected from a 
microphone sensor. The audio raw sensory data consists of the 
user voice data. 

Trigger: Request for the recognition of the user emotion based on a given 
audio raw sensory data 

Pre-conditions: • Raw sensory data is extracted from compatible sensory
data (audio sensory data)

Post-conditions: • A label corresponding to the recognized emotion is
generated

Normal Flow: 1. Audio raw sensory data is received for analysis
2. The raw sensory data is preprocessed (e.g., filtered)
3. The preprocessed raw sensory data is segmented (e.g.,

partitioned into windows)
4. Features (e.g., LPC, MFCC) are extracted from each

segment of raw sensory data
5. The extracted features are classified
6. A label identifying the corresponding user emotion is

generated
Alternative Flows: NA 
Exceptions: NA 

sd Interaction

Geopositioning
Location Recognizer

Location
Mapper

recognizeLowLevelContext(rawSensoryData)

identifyUserLocation(rawSensoryData)

:locationLabel

46



Includes: NA 
Frequency of Use: Frequent: at every reception of inertial raw sensory data 
Assumptions: The raw sensory data is of the nature required by the audio 

emotion recognizer 
Notes and Issues: NA 
Sequence Diagram: 

Use Case ID: ICL-UC-09 
Use Case Name: Recognize user emotion based on video raw sensory data 
Created By: Jaehun Bang Last Updated By: Jaehun Bang 
Date Created: 9 March 2017 Last Revision Date: 02 July 2018 
Actors: ICL-UC-04 
Description: Identification of the user emotional state (e.g., “happy”) based 

on the processing of the video raw sensory data collected from a 
camera sensor. The video raw sensory data consists of the user 
facial data. 

Trigger: Request for the recognition of the user emotion based on a given 
video raw sensory data 

Pre-conditions: • Raw sensory data is extracted from compatible sensory
data (video sensory data)

Post-conditions: • A label corresponding to the recognized emotion is
generated

Normal Flow: 1. Video raw sensory data is received for analysis
2. The raw sensory data is preprocessed (e.g., filtered and

face detection)
3. The preprocessed raw sensory data is segmented (e.g.,

partitioned into face area)
4. Features (e.g., face factor statistical features) are

extracted from each segment of raw sensory data

 sd Interaction

Audio Emotion Recognizer Signal Preprocessor Signal Segmenter Feature Extractor Classifier

recognizeLowLevelContext(rawSensoryData)

preprocess(rawSensoryData)

:preprocessedSensoryData

segment(preprocessedSensoryData)

:segmentedSensoryData

extractFeatures(segmentedSensoryData)

:extractedFeatures

classify(extractedFeatures)

:activityLabel

47



5. The extracted features are classified
6. A label identifying the corresponding user emotion is

generated
Alternative Flows: NA 
Exceptions: NA 
Includes: NA 
Frequency of Use: Frequent: at every reception of inertial raw sensory data 
NFR ID: MM-NFR-05 
Assumptions: The raw sensory data is of the nature required by the video 

emotion recognizer 
Notes and Issues: NA 
Sequence Diagram: 

Use Case ID: ICL-UC-10 
Use Case Name: Recognize food based on tag data 
Created By: Taeho Hur Last Updated By: Taeho Hur 
Date Created: 9 March 2017 Last Revision Date: 02 July 2018 
Actors: ICL-UC-04 
Description: User selects the category of the intaken food (e.g., “grain”) from 

the food DB list from the app. The related nutrition information 
(e.g, “protein”) shall be sent to the HLCA. 

Trigger: User selects the food category tag 
Pre-conditions: • User is going to have a meal/snack
Post-conditions: • Nutrition information is retrieved based on the selected food
Normal Flow: 1. User selects the food to intake from the app

2. The selected food item is parsed and conclude the food
category

3. The category is mapped to the food DB
4. According nutrition information is retrieved

48



Alternative Flows: NA 
Exceptions: NA 
Includes: NA 
Frequency of Use: Episodic: Only when the user has a meal 
NFR ID: MM-NFR-05 
Assumptions: User is having a meal 
Notes and Issues: NA 
Sequence Diagram: 

Use Case ID: ICL-UC-11 
Use Case Name: Unify low-level contexts 
FR ID: MM-FR-11 
Created By: Oresti Banos Last Updated By: Oresti Banos 
Date Created: 20 July 2015 Last Revision Date: 02 July 2018 
Actors: Low-Level Context Recognizer, Low-Level Context Notifier 
Description: Aggregation of multiple low-level context instances of the same 

context type (e.g., activity) corresponding to a similar period of 
time 

Trigger: Receive low-level context instance 
Pre-conditions: • Low-level context instances are received from different

recognizers of the same context type

 sd Interaction

Tag based Food
Recognizer

Tag Parser DB Mapper

recognizeFood(selectedItem)

parseTag(selectedfoodItem)

foodCategory()

retrieveNutrition(foodCategory)

nutritionInformation()

49



Post-conditions: • A single low-level context instance is served for
notification

Normal Flow: 1. A low-level context instance is received
2. Search for other low-level context instances of the same

type valid at the same time
3. Fuse the identified low-level context instances into a

unified low-level context instance
4. Serve the unified low-level context instance for

notification
Alternative Flows: NA 
Exceptions: NA 
Includes: NA 
Frequency of Use: Frequent: at every reception of a low-level context label 
NFR ID: MM-NFR-05 
Assumptions: Identical labels are used to describe the same low-level context 

for each recognizer of the same context type (e.g., inertial 
activity recognizer, video activity recognizer) 

Notes and Issues: NA 
Sequence Diagram: 

Use Case ID: ICL-UC-12 
Use Case Name: Notify new low-level context 
Created By: Oresti Banos Last Updated By: Oresti Banos 
Date Created: 14 July 2015 Last Revision Date: 02 July 2018 
Actors: Low-Level Context Unifier, High-Level Context Builder, DCL 

sd Interaction

Low-Level Context
Recognizer

Low-Level Context
Unifier

Low-Level Context
Notifier

receive(lowLevelContextInstance)

searchLowLevelContexts() :
lowLevelContextInstances

fuseLowLevelContexts(lowLevelContextInstances) :
unifiedLowLevelContextInstance

receive(unifiedLowLevelContextInstance)

50



Description: Serve the newly recognized low-level context for the 
identification of high-level context and also communicate it to 
DCL for persistence. 

Trigger: New low-level context is identified 
Pre-conditions: • A unified low-level context instance is received
Post-conditions: • The unified low-level context instance is served for the

identification of the high-level context(s)
• The unified low-level context instance is sent to DCL 3

Normal Flow: 1. A low-level context instance is received from the low
level context unifier

2. The received instance is compared with the last low-
level context instance

3. The new low-level context instance is served for the
identification of the high-level context

4. The new low-level context instance is sent to DCL 3
Alternative Flows: 3a. If the received instance contains the same low-level 

context type as the previous one 
1. Finalize

Exceptions: NA 
Includes: NA 
Frequency of Use: Frequent: at every reception of a low-level context instance 
NFR ID: NA 
Assumptions: NA 
Notes and Issues: NA 
Sequence Diagram: 

Use Case ID: ICL-UC-13 
Use Case Name: Create unclassified high-level context instance 
Created By: Claudia Villalonga Last Updated By: Claudia 

Villalonga 

 sd Interaction

Low-Level
Context Unifier

Low-Level
Context Notifier

High-Level
Context Builder

DCL 2

alt 

[if boolean is true]

receive(unifiedLowLevelContextInstance)

compareWithLastInstance(unifiedLowLevelContextInstance)
:boolean

receive(unifiedLowLevelContextInstance)

receive(unifiedLowLevelContextInstance)

51



Date Created: 14 July 2015 Last Revision Date: 02 July 2018 
Actors: Low-Level Context Notifier, Context Ontology Manager, High-

Level Context Reasoner 
Description: Build a high-level context instance based on the identified low-

level contexts 
Trigger: Receive low-level context instance (label plus metadata) 
Pre-conditions: • A new low-level context instance is served to the high-

level context builder
Post-conditions: • The unclassified high-level context instance is created
Normal Flow: 1. Map low-level context instance into ontological format

2. Store low-level context instance (ICL4-SUC-17)
3. Search for other low-level context instances of different

type valid at the same time
3.1. Create a request for other low-level context
instances of different type that are valid at the same
time
3.2. Retrieve matching context instances (ICL4-SUC-18)

4. Create new unclassified high-level context instance
which links to the available low-level context instance(s)

5. Assert on the unclassified high-level context instance
that the missing low-level context instances do not exist

6. Serve the unclassified high-level context instance for
classification

Alternative Flows: NA 
Exceptions: NA 
Includes: NA 
Frequency of Use: Less Frequent: whenever a new low-level context is recognized 
NFR ID: NA 
Assumptions: Low-level contexts are interpretable 
Notes and Issues: NA 
Sequence Diagram: 

52



Use Case ID: ICL-UC-14 
Use Case Name: Classify high-level context instance 
FR ID: MM-FR-12 
Created By: Claudia Villalonga Last Updated By: Claudia 

Villalonga 
Date Created: 14 July 2015 Last Revision Date: 01 July 2018 
Actors: High-Level Context Builder, High-Level Context Notifier 
Description: Classify the unclassified high-level context instance into one of 

the high-level context categories 
Trigger: Creation of unclassified high-level context instance 
Pre-conditions: • The unclassified high-level context instance is created
Post-conditions: • The classified high-level context instance is served for

notification
Normal Flow: 1. Verify the consistency of unclassified high-level context

instance
2. Reason on the unclassified high-level context instance to

identify the context type to which it belongs
3. Serve the classified high-level context for notification

Alternative Flows: 1a. If the unclassified high-level context instance is not valid 
1. Communicate unidentified context

Exceptions: NA 
Includes: NA 
Frequency of Use: Less Frequent: whenever an unclassified high-level context 

instance is created 
Assumptions: Low-level contexts and high-level contexts are interpretable 

sd ICL2-SUC-11

Low-Level Context
Notifier

High-Level Context
Builder

High-Level Context
Reasoner

Context Ontology
Manager

receive(unifiedLowLevelContextInstance)

mapIntoOntologicalFormat(unifiedlLowLevelContextInstance) :
ontologicalLowLevelContextInstance

storeContextInstance(ontologicalLowLevelContextInstance)
:ok

searchConcurrentLowLevelContexts(ontologicalLowLevelContextInstance) :
concurrentOntologicalLowLevelContextInstances

createRequestForConcurrentLowLevelContexts(ontologicalLowLevelContextInstance)
:requestForConcurrentLowLevelContexts

retrieveContextInstance(requestForConcurrentLowLevelContexts)

:concurrentOntologicalLowLevelContextInstances

createUnclassifiedHighLevelContext(ontologicalLowLevelContextInstance,
concurrentOntologicalLowLevelContextInstances) :
unclassifiedHighLevelContextInstance

assertMissingLowLevelContext(unclassifiedHighLevelContextInstance) :
unclassifiedHighLevelContextInstance

receive(unclassifiedHighLevelContextInstance)

53



Notes and Issues: NA 
Sequence Diagram: 

Use Case ID: ICL-UC-15 
Use Case Name: Notify new high-level context 
FR ID: MM-FR-14 
Created By: Oresti Banos Last Updated By: Claudia 

Villalonga 
Date Created: 14 July 2015 Last Revision Date: 01 July 2018 
Actors: High-Level Context Reasoner, DCL 
Description: Communicate the newly recognized high-level context to DCL for 

persistence. 
Trigger: High-level context is identified 
Pre-conditions: • A high-level context instance is received
Post-conditions: • The new high-level context instance is sent to DCL
Normal Flow: 1. A high-level context instance is received from the high-

level context classifier
2. Search for the last high-level context instance

2.1. Create a request for the last high-level context
instance
2.2. Retrieve the matching context instance (ICL4-SUC-
18)

3. Store high-level context instance (ICL4-SUC-17)
4. Compare the high-level context instance with the last

high-level context instance
5. The new high-level context instance is sent to DCL 3

Alternative Flows: 5a. If the received instance contains the same high-level 
context type as the previous one 

sd ICL2-SUC-12

High-Level Context
Builder

High-Level
Context Reasoner

High-Level Context
Notifier

alt 

[if boolean is true]

[else]

receive(unclassifiedHighLevelContextInstance)

verifyConsistency(unclassifiedHighLevelContextInstance) :
boolean

classify(unclassifiedHighLevelContextInstance) :
classifiedHighLevelContextInstance

receive(classifiedHighLevelContextInstance)

receive(unidentifiedHighLevelContextInstance)

54



1. Finalize
Exceptions: NA 
Includes: NA 
Frequency of Use: Less frequent: at every reception of a high-level context instance 
NFR ID: NA 
Assumptions: NA 
Notes and Issues: NA 
Sequence Diagram: 

Use Case ID: ICL-UC-16 
Use Case Name: Load context ontology model 
Created By: Claudia Villalonga Last Updated By: Claudia 

Villalonga 
Date Created: 31 August 2015 Last Revision Date: 01 July 2018 
Actors: Ontology Engineer 
Description: Load and store a context ontology model that describes high-

level context and its relations to low-level context into the 
system in order to enable the recognition of high-level context 

Trigger: The ontology engineer who has created a context ontology 
model loads it through the interface 

Pre-conditions: • A context ontology model that describes high-level
context and its relations to low-level context has been
created

Post-conditions: • The context ontology model is stored and available for
the recognition of high-level context

sd ICL2-SUC-13

High-Level Context
Reasoner

High-Level Context
Notifier

DCL 2Context Ontology
Manager

alt 

[if boolean is true]

receive(classifiedHighLevelContextInstance)

searchLastHighLevelContext(classifiedHighLevelContextInstance) :
lastHighLevelContextInstance

createRequestForLastHighLevelContext(classifiedHighLevelContextInstance) :
requestForLastHighLevelContext

retrieveContextInstance(requestForLastHighLevelContext)

:lastHighLevelContextInstance

storeContextInstance(classifiedHighLevelContextInstance)
:ok

compareInstances(classifiedHighLevelContextInstance,
lastHighLevelContextInstance) :boolean

receive(classifiedHighLevelContextInstance)

55



Normal Flow: 1. A context ontology model is received
2. The context ontology model is analyzed for its

consistency and validity
3. The context ontology is stored in order to provide

persistence
4. Success is notified

Alternative Flows: 2a. If the context ontology model is not valid or inconsistent 
1. Error is notified

3a. If there is an error during storage 
1. Repeat step 3

Exceptions: NA 
Includes: NA 
Frequency of Use: Infrequent 
NFR ID: NA 
Assumptions: NA 
Notes and Issues: NA 
Sequence Diagram: 

Use Case ID: ICL-UC-17 
Use Case Name: Store context instance 
Created By: Claudia Villalonga Last Updated By: Claudia 

Villalonga 
Date Created: 31 August 2015 Last Revision Date: 01 July 2018 
Actors: High-Level Context Builder and High-Level Context Notifier 

sd ICL2-SUC-14

Ontology Engineer

Context Ontology
Manager

alt 

[if boolean is true]

[else]

receive(contextOntologyModel)

analyzeConsistencyAndValidate(contextOntologyModel) :
boolean

storeContextModel(contextOntologyModel)

:ok

:error

56



Description: Persist a context instance (high-level context instance or low-
level context instance) into the system 

Trigger: A new context instance has been created or identified 
Pre-conditions: • A new context instance is received
Post-conditions: • The context instance is stored
Normal Flow: 1. Receive context instance

2. Validate the context instance
3. Store the context instance
4. Notify success

Alternative Flows: 2a. If the context instance is not valid 
1. Error is notified

3a. If there is an error during storage 
1. Repeat step 3

Exceptions: NA 
Includes: NA 
Frequency of Use: Less Frequent: whenever a new low-level context instance is 

created, a new high-level context instance is created, or a high-
level context instance is classified 

NFR ID: NA 
Assumptions: NA 
Notes and Issues: NA 
Sequence Diagram: 

sd ICL2-SUC-15

Context Ontology
Manager

High-Level Context
Builder or High-Level

Context Notifier

alt 

[if boolean is true]

[else]

storeContextInstance(contextInstance)

validateInstance(contextInstance) :boolean

storeContextInstance(contextInstance)

:ok

:error

57



Use Case ID: ICL-UC-18 
Use Case Name: Retrieve context instance 
Created By: Claudia Villalonga Last Updated By: Claudia 

Villalonga 
Date Created: 31 August 2015 Last Revision Date: 01 July 2018 
Actors: High-Level Context Builder and High-Level Context Notifier 
Description: Provide context instances (high-level context instances or low-

level context instances) that match a given request 
Trigger: A requester retrieves context instances 
Pre-conditions: • A request for context instances is received
Post-conditions: • Matching context instances are provided to the

requester
Normal Flow: 1. Receive a request for a specific context

2. Validate the request
3. Generate the query associated to the request
4. Match the query to the stored context instances
5. Return the matching context instances

Alternative Flows: 2a. If the request for context is not valid 
1. Return error message

Exceptions: NA 
Includes: NA 
Frequency of Use: Less frequent: whenever context instances are required in order 

to generate a new high-level context instance or to verify the 
high-level context 

NFR ID: NA 
Assumptions: NA 
Notes and Issues: NA 
Sequence Diagram: 

58



Use Case ID: ICL-UC-19 
Use Case Name: Evolve Ontology 
Created By: Wajahat Ali Khan Last Updated By: Muhammad Asif 

Razzaq 
Date Created: 18 Mar 2016 Last Revision Date: 01 July 2018 
Actors: Ontology Engineer 
Description: Evolving the already created context ontology based on the 

clinical service. The low level and high level clinical related 
contexts are modelled in the context ontology that only included 
physical activities and nutrition related low level and high-level 
entities. 

Trigger: The ontology engineer who has created a context ontology 
model loads it through the interface 

Pre-conditions: • A context ontology model that describes high-level
context and its relations to low-level context has been
created with physical activities, nutrition and clinical
information related resources

Post-conditions: • The modified or evolved context ontology model is
stored and available for the recognition of high-level
context

sd ICL2-SUC-16

Context Ontology
Manager

High-Level Context
Builder or High-Level

Context Notifier

alt 

[if boolean is true]

[else]

retriveContextInstance(contextRequest)

validateRequest(contextRequest) :
boolean

generateQuery(contextRequest) :query

getMatchingContextInstance(query) :contextInstance

:contextInstance

:error

59



Normal Flow: 1. Ontology engineer defines the low level clinical concepts
in addition to the low level physical activities, and
nutrition concepts

2. Ontology engineer defines the high level clinical
concepts in addition to the high level physical activities
and nutrition concepts

3. The constraints are defined on the new concepts added
to the ontology

4. Consistency of the ontology is checked with reasoner
5. The modified context ontology is stored for persistence
6. Success is notified

Alternative Flows: 4a. If the context ontology model is not valid or inconsistent 
a. Error is notified
b. Check step 1,2,3

Exceptions: NA 
Includes: NA 
Frequency of Use: Infrequent 
NFR ID: NA 
Assumptions: Context Ontology based on physical activities and nutrition 

service already exists 
Notes and Issues: NA 
Sequence Diagram: 

 sd ICL2.5-SUC-19

Ontology Engineer

Context Ontology
Storage

Ontology
Engineering GUI

Ontology GUI
Reasoner

openEnvironmentGUI()

loadMMContextOntology()

loadedMMContextOntology(MMContextOntology2.5)

addFoodConcepts(LLC)

addNutrientConcepts(HLC)

addFoodContraints(LLC)

addNutrientConstraints()

checkConsistency(LLC)

checkConsistency(HLC)

executeReasoner(consistencyCheck)

update(MMContextOntology2.5)

60



Use Case ID: ICL-UC-20 
Use Case Name: High level physical activity context 
Created By: Wajahat Ali Khan Last Updated By: Wajahat Ali 

Khan 
Date Created: 18 March 2016 Last Revision Date: 18 June 

2018 
Actors: High-Level Context Reasoner 
Description: A classified high level physical activity context is recognized by 

the reasoner from the unclassified high level context. 
Trigger: High-level context is identified 
Pre-conditions: • An unclassified high-level physical activity context

instance is received
Post-conditions: • The new high-level physical activity context instance is

forwarded to Notify DCL
Normal Flow: 1. A high-level physical activity context instance is

processed by high-level context classifier
2. Reasoning is performed by the reasoner to find out

classified high level physical activity context
3. The classified high level physical activity context is

provided to Notify DCL
Alternative Flows: NA 
Exceptions: NA 
Includes: NA 
Frequency of Use: Less frequent: at every reception of a unclassified high-level 

physical activity context instance 
NFR ID: NA 
Assumptions: NA 
Notes and Issues: NA 
Sequence Diagram: 

 sd ICL2.5-SUC-20

High-Level Context
Builder

High-Level Reasoner Context Ontology
Storage

alt 

[if boolean is true]

[else]

receive(uniclassifiedPAHighLevelContextInstance)

verifyConsistency(unclassifiedPAHighLevelContextInstance) :
boolean

classify(unclassifiedPAHighLevelContextInstance) :
classifiedPAHighLevelContextInstance

receive(classifiedPAHighLevelContextInstance)

recieve(unidentifiedPAHighLevelContextInstance)

61



Use Case ID: ICL4-SUC-21 
Use Case Name: High level nutrition context 
Created By: Wajahat Ali Khan Last Updated By: Wajahat Ali 

Khan 
Date Created: 18 March 2016 Last Revision Date: 18 June 

2018 
Actors: High-Level Context Reasoner 
Description: A classified high-level nutrition context is recognized by the 

reasoner from the unclassified high-level context. 
Trigger: High-level context is identified 
Pre-conditions: • An unclassified high-level nutrition context instance is

received
Post-conditions: • The new high-level nutrition context instance is

forwarded to Notify DCL
Normal Flow: 1. A high-level nutrition context instance is processed by

high-level context classifier
2. Reasoning is performed by the reasoner to find out

classified high level nutrition context
3. The classified high-level nutrition context is provided to

Notify DCL
Alternative Flows: NA 
Exceptions: NA 
Includes: NA 
Frequency of Use: Less frequent: at every reception of an unclassified high-level 

nutrition context instance 
NFR ID: NA 
Assumptions: NA 
Notes and Issues: NA 
Sequence Diagram: 

 sd ICL2.5-SUC-21

High-Level Context
Builder

High-Level
Reasoner

High-Level
Context Notifier

alt 

[if boolean is true]

[else]

recieve(unclassifiedNutritionHighLevelContextInstance)

verifyConsistency(unclassifiedNutritionHighLevelContextInstance) :
boolean

classify(unclassifiedNutritionHighLevelContextInstance) :
classifiedNutritionHighLevelContextInstance

receive(classifiedNutritionHighLevelContextInstance)

recieve(unidentifiedNutritionHighLevelContextInstance)

62



Use Case ID: ICL-UC-22 
Use Case Name: High level clinical context 
Created By: Muhammad Asif 

Razzaq 
Last Updated By: Muhammad 

Asif Razzaq 
Date Created: 10 March 2017 Last Revision Date: 10 March 2017 
Actors: High-Level Context Reasoner 
Description: A classified high level clinical context is recognized by the 

reasoner from the unclassified high-level context. 
Trigger: High-level context is identified 
Pre-conditions: • An unclassified high-level clinical context instance is

received
Post-conditions: • The new high-level clinical context instance is forwarded

to Notify DCL
Normal Flow: 1. A high-level clinical context instance is processed by

high-level context classifier
2. Reasoning is performed by the reasoner to find out

classified high level clinical context
3. The classified high level clinical context is provided to

Notify DCL
Alternative Flows: NA 
Exceptions: NA 
Includes: NA 
Frequency of Use: Less frequent: at every reception of a unclassified high-level 

clinical context instance 
NFR ID: NA 
Assumptions: NA 
Notes and Issues: NA 
Sequence Diagram: 

 sd ICL2.5-SUC-22

High-Level Context
Builder

High-Level
Reasoner

High-Level
Context Notifier

alt 

[if boolean is true]

[else]

recieve(unclassifiedClinicalHighLevelContextInstance)

verifyConsistency(unclassifiedClinicalHighLevelContextInstance) :
boolean

classify(unclassifiedClinicalHighLevelContextInstance) :
classifiedClinicalHighLevelContextInstance

receive(classifiedClinicalHighLevelContextInstance)

recieve(unidentifiedClinicalHighLevelContextInstance)

63



3. Knowledge Curation Layer

3.1 Function Requirements

Requirements #ID Description 
KCL-FR-01 The data-driven knowledge acquisition shall know schema detail of lifelog and 

user profile data in order to load the data and extract feature model. 
KCL-FR-02 The data-driven knowledge acquisition shall load all related data specified as 

feature model from Data Curation Layer (DCL). The loaded lifelog and user profile 
data will be used for classification model creation. 

KCL-FR-03 The expert-driven knowledge acquisition shall share the production rules with 
Service Curation Layer (SCL) for final reasoning.  

KCL-FR-04 The expert-driven environment shall create “Situations” and share its 
configuration with SCL and DCL. Furthermore, all associated rules with 
“Situation” shall be provided to SCL. 

3.2 Non-Function Requirements 

Requirements #ID Description 
KCL-NFR-01 The layer shall persist only verified and validated rules into knowledge base. 
KCL-NFR-02 The layer shall ensure consistency of distributed copies of knowledge base. 

3.3 Terms and Definitions 

Terms Description 
KCL Knowledge Curation Layer 
DCL Data Curation Layer  
SCL Service Curation Layer  

Situation An abnormal status of a subject caused by unhealthy behaviors. 
Production Rule Production rule is ultimate and shareable rule which is used in reasoning 

to produce recommendation. 
Domain Expert Domain expert is an actor who will interact with system to create 

knowledge base. 
Verification and Validation Verification ensures that rule created is consistent with requirements 

and validation ensures that the rule created is correctly working on real 
data. 

Schema Schema represents the structure and associated semantics of user 
profile and life log data. 

3.4 Use Case 

3.4.1 List 

Requirements #ID Description 
KCL-UC-01 Select valid combinations of features from lifelog and user profile schema to 

build feature model for yielding correct classification model. 
KCL-UC-02 Apply preprocessing methods on retrieved lifelog and user profile data to 

prepare the data for classification model learning. 

64



KCL-UC-03 Expert generate guidelines to utilize their practices to create rules in the 
knowledge bases. 

KCL-UC-04 System validate the guidelines in tree structure to maintain the rules. 
KCL-UC-05 User profile and lifelog schema is needed to be known before feature modeling 

and creation of classification model. 
KCL-UC-06 Retrieve user profile and lifelog data for creation of classification model. 
KCL-UC-07 Extract meta-features of classification datasets. 
KCL-UC-08 Evaluate performance of decision tree algorithms (i.e, f-measure) 
KCL-UC-09 Create automatic algorithm recommendation model (AARM) from offline 

datasets. AARM will be used as recommendation model for algorithm selection. 
KCL-UC-10 Create rules to enhance the knowledge base of the system to generate 

recommendations in easy manner. 
KCL-UC-11 Rule validation avoid the duplication of rules in the knowledge base and enhance 

the maintainability of knowledge base. 
KCL-UC-12 It integrates AARM dataset in Mining Minds Data Driven knowledge acquisition 

approach for recommendation of automatic algorithm on given dataset. 
KCL-UC-13 It generates classification model from user profile lifelog data that can be 

explored by model learning mechanism with the help of learning method as well 
as processed data. 

KCL-UC-14 The integrated AARM shall automatically recommend appropriate 
classification algorithm. Or domain expert can select any algorithm from 
available set of decision tree algorithms.  

KCL-UC-15 Domain model is used in creation of rule. It manages the domain model for 
creating rule. 

KCL-UC-16 It transforms the rules or guidelines into executable knowledge representation. 
KCL-UC-17 It creates situation event and index the rule based on situation event. 
KCL-UC-18 Compute features priorities to help the domain expert for selecting appropriate 

features from available schema. 

65



3.4.2 Diagram 

3.4.3 Description 

Use Case ID: KCL-UC-01 

Use Case Name: Build feature model 

Created By: Maqbool Ali Last Updated By: Maqbool Ali 

Date Created: 11-07-2015 Last Revision Date: 03-07-2018 

Actors: Domain Expert 

Description: A feature model defines the valid combinations of features in a 
domain that enables capturing feature variability and 
interdependencies. For building feature model and its reusability, 

66



domain expert uses selected domain schema (i.e. lifelog and user 
profile schema) and selects the related features for final feature 
model.  

Trigger: Prior to classification model creation needed for required domain 

Preconditions: • System has retrieved the schema from DCL.
• Domain expert has selected domain under consideration (e.g.

nutrition).

Postconditions: System will build the feature model 

Normal Flow: 1. Domain expert retrieves the schema from schema storage.
2. System loads and plots the schema 
3. Domain expert builds the feature models as follows:

a. Select the required features for corresponding domain 
b. Verify the consistency of the selected features (such as concept

hierarchy)
c. Save the feature model

4. System creates the feature model based on selected features and visualizes 
it in hierarchical form

5. Domain expert reviews the feature model and confirms it for saving into
repository

6. System persists the feature model into repository.

Alternative Flows: N/A 

Exceptions: 

Includes: N/A 

Frequency of Use: When new service is required and mining mind have sufficient 
data for classification model creation 

Special 
Requirements: 

N/A 

Assumptions: Initially we assume that feature model is valid 

Notes and Issues: One possible candidate representation for feature model is XML. 

Sequence Diagram: 

67



Use Case ID: KCL-UC-02 

Use Case Name: Prepare lifelog and user profile data 

Created By: Maqbool Ali Last Updated By: Maqbool Ali 

Date Created: 10-07-2015 Last Revision Date: 03-07-2018 

Actors: Domain Expert 

Description: It is important to pre-process the data (i.e. lifelog and user profile 
data) to generate models with high accuracy. ‘Prepare lifelog and 
user profile data’ use case apply various pre-processing 
techniques such as missing value handling, outlier detection, 
transformation, and features selections to convert unprocessed 
data into processed data. 

sd Build feature model

:Domain Expert

SchemaStorageFeatureModelManager FeatureModelStorage

UserProfileLifeLogSchema

FeatureModel

loop 

[ForEach Feature f IN schema]

DataDrivenGUI

loadSchema(domain)

loadSchema(domain)
loadSchema(domain) :
UserProfileLifeLogSchema

«create»

returnSchema() :schema
returnSchema() :schema

plotSchema()

createFeatureModel()

*selectFeatures() :SchemaFeatures

createFM(schemaFeatures:sf)

createFM(sf)

«create»
saveFeatureModel(featureModel:fm)

visualizeFeatureModel(featureModel:fm)

reviewsFeatureModel()

confirmFeatureModel(featureModel:fm) :
boolean

saveFeatureModel()

saveFeatureModel(fm)

saveFeatureModel(featureModel:fm)

68



Trigger: Prior to classification model creation needed for high accuracy of 
model learning 

Preconditions: • System has retrieved the data from DCL, which is unprocessed
data.

Postconditions: System will prepare and store the data 

Normal Flow: 1. Domain expert loads the unprocessed data
2. System displays the retrieved data
3. For each attribute: 

a. Domain expert identifies the missing values and select
appropriate method from following options for missing value
replacement.

§ Default value
§ Mean
§ Mode

b. System replaces the missing values using selected method.
4. For each attribute: 

a. Domain expert apply outlier detection method such as 
interquartile range and scatterplot.

b. System display the outliers 
c. Domain expert select appropriate method from following

options for outlier replacement.
§ Mean
§ Mode

d. System replace the outlier using selected method.
5. For each attribute:

a. Domain expert identifies, normalizes the non-
transformed values, and updates the dataset.

b. System modifies the values set and update the
dataset

6. Domain expert applies the attributes filtration techniques
(i.e ranking)

7. System computes the ranks for all attributes and displays to
expert

8. Domain expert select the highly ranked attributes (i.e. rank
value >= 0.8)

9. System filters the attributes based on selected attributes
and displays to domain expert

10. Domain expert saves the processed data into repository
11. System persists the processed data into repository

Alternative Flows: N/A 

Exceptions: N/A 

Includes: N/A 

69



Frequency of Use: When new service is required, and mining mind have sufficient 
data for classification model creation 

Special 
Requirements: 

N/A 

Assumptions: N/A 

Notes and Issues: • An outlier is any value that is numerically distant from most of the
other data points in a set of data. It can be detected by histograms,
scatterplots, or interquartile range techniques.

• Data transformation is the process to convert and normalize the
data from one format to another. It can be done by Log, square root, or
arcsine transformation techniques.

Sequence Diagram: 

70



 Use Case ID: KCL-UC-03 

Use Case Name: Generate Guideline 

sd Prepare lifelog and user profile data

:Domain Expert

MissingValueHandler OutlierHandler AttributeSelectorTransformer DataStorage

UnprocessedData

ProcessedData

PreProcessingHandler

loop 

[ForEach Attribute att IN uPD]

loop 

[ForEach Attribute att IN pd]

loop 

[ForEach Attribute att IN pd]

DataDrivenGUI

loadData()

loadData(featuremodel:fm)

loadData(fm)

«create»
returnData() :
UnprocessedDatareturnUnprocessedData()

replaceMissingValue()

replaceMissingValue()

pd:create()

«create»

replaceMissingValue(unprocessedData:uPD,
pd, method)

identifyMissingValues(att)

replaceMissingValue(attribute:att, method m)

processedData() :pd
returnProcessedData()

replaceOutlier()

replaceOutlier()

replaceOutlier(pd,method)

detectOutlier(att, outlierMethod)

replaceOutlier(attribute:att, method:m)

processedData() :pd
returnProcessedData()

transformData()
transformData()

transformData(pd, method)

*transformData(attribute:att,
method:m)

processedData() :pd
returnProcessedData()

fi lterAttribute()

fi lterAttribute()

fi lterAttribute(pd)

computeRanks(pd)

fi lterAttributes(pd)
processedData() :pd

returnProcessedData()

saveProcessedData()

saveProcessedData()
saveProcessedData(pd)

71



Created By: Taqdir Ali and Maqbool 
Hussain 

Last Updated By: Taqdir Ali, 
Maqbool Hussain 

Date Created: 11-07-2015 Last Revision Date: 15-07-2015 

Actors: Domain Expert 

Description: Guidelines are the combination of one or multiple rules in form of 
decision tree. The tree format guidelines are understandable to 
the domain experts and it can easily interpret and execute by 
computer. 

Trigger: Whenever domain expert wants to generate new guideline or 
update the existing one. 

Preconditions: 1. The domain expert shall be authenticated with full access on the guideline 
management. 

2. Domain expert shall have existing guidelines as reference for generating
guideline tree. 

Postconditions: • The expert shall generate guidelines to acquire their knowledge into
the system.

Normal Flow: 1. Domain expert opens the guidelines editor.
2. System displays new guideline tree form and load the wellness model.
3. Domain expert selects/drags tree node into editor form.
4. System display the node and open the corresponding properties 

window, which includes; 
a. Loads wellness model tree.
b. Displays operators, relationships and node type (conditional,

conclusion or both) artifacts.
5. Domain expert selects concepts for the node using any of the following

methods and confirm to save the node.
a. Using wellness model, dragging concepts and facts into node

conditional or conclusion part.
b. Using auto pop-up Intelli-sense window to select concepts

and facts into conditional or conclusion part.
6. System saves the tree node and displays as part of the guideline tree.
7. Domain expert add other nodes to guideline tree by using step

repeating step 3 on ward. After completion, (s)he saves the guideline
tree.

8. System validates the guideline tree using “KCL-UC-04” and save into
guideline repository.

Alternative Flows: 2a. System loads existing guideline tree for modification 
(modifying existing or adding new node). 

a. Domain expert selects existing node in guideline tree or drag new node
to appropriate place in guideline tree. 

b. To modify node, step 3 onward will be invoked in Normal Flow.

Exceptions: N/A 

72



Includes: Validate Guideline 

Frequency of Use: Whenever domain expert wants to create new guideline tree or 
update existing guideline tree. 

Special 
Requirements: 

N/A 

Assumptions: N/A 

Notes and Issues: • Guidelines tree created will base on existing guidelines of
corresponding domain and domain expert shall interpret textual
guidelines into tree format.

• Appropriate modelling of guideline is challenging task.

Sequence Diagram: 

73



Use Case ID: KCL-UC-04 

Use Case Name: Validate Guideline 

Created By: Taqdir Ali and 
Maqbool 
Hussain 

Last Updated By: Taqdir Ali, 
Maqbool Hussain 

sd Interaction

:Domain Expert

GuidelineEditor GuidelineRepository

GuidelineTreeForm

WellnessModelHandler

WellnessModel

GuidelineTree

Guideline
Validator

assert 

[Both steps applies only for nodetype: Conditional/Conclusion]

loop 

[ForEach Node n]

openGuidelineEditor()

loadForm() :GTF

«create»

loadWellnessModel(domain:d) :
WellnessModel:wModel

load()

«create»
creatGuidelineTree()

creatGuidelineTree() :
GT

«create»

*createNode(wModel)

setConceptsIntoNode(wmConcept)

setConceptConditions()

setConclusion()

SaveGuidelineTree()

validateGuideline(GT) :boolean

SaveGuidelineTree(GT)

acknowlegement()

74



Date Created: 11-07-2015 Last Revision Date: 15-07-2015 

Actors: Domain Expert 

Description: Guidelines have different facts and conclusions in form of nodes 
related with different relationships. The guidelines tree shall be 
validated for the possible duplication. 

Trigger: Whenever domain expert wants to generate new guideline or 
update the existing one. 

Preconditions: 1. System shall be running
2. The domain expert shall be authenticated with full access on the guideline

management. 

Postconditions: • Validated guideline tree

Normal Flow: 1. Domain Expert save the new guideline or update the existing
guideline.

2. The system validate guideline for inconsistency and duplication as
follows.

a. Fetch the existing guidelines and process each node and
relationship

b. Guideline Tree is approved for having no inconsistency and
duplication of new nodes and relationships of the facts and
conclusion with the existing guidelines.

c. Guideline Tree is stored into guidelines repository.
d. Acknowledge the expert to save guideline successfully.

Alternative Flows: 2b. Guideline Tree is found having inconsistency or duplication with 
existing guideline tree 

a. The system produces alert the inconsistency or duplication in 
guideline tree 

b. Domain expert review the alert message and correct the
guideline tree. 

c. Step 1 and Step 2 of normal flow is executed.

Exceptions: N/A 

Includes: N/A 

Frequency of Use: Whenever domain expert wants to create new guideline or 
update existing guideline. 

Special 
Requirements: 

N/A 

Assumptions: N/A 

75



Notes and Issues: Appropriate modelling of guideline and validation is challenging 
task. 

Sequence Diagram: 

Use Case ID: KCL-UC-05 

Use Case Name: Retrieve user profile and lifelog schema 

Created By: Maqbool Ali Last Updated By: Maqbool Ali 

Date Created: 10-07-2015 Last Revision Date: 03-07-2018 

Actors: Domain Expert, DCL 

Description: User profile and lifelog schema retrieval help domain expert to 
view all available features for building feature model. 

Trigger: Prior to classification model creation needed for required domain 

Preconditions: • System has access through service interface to retrieve user
profile and lifelog schema from DCL

• System and DCL has agreement on common schema
representation format

sd Interaction

:Domain Expert

Guidelline Editor Guideline
Validator

Guideline Storage

«create»
GuidelineTree

alt 

[if duplication and inconsistancy does not exist then save]

[ else alert to expert]

saveGuideline(guidelineTree)

validateGuideline(guidelineTree)

searchNodesAndRelationships(guidelineTree)

«create»returnSearchResult() :
GuidelineTree

checkConsistancyDuplication() :
boolean

storeGuideline(guidelineTree)

Acknowledge()

alertExpertForDuplicationInconsistancy()

alert()

76



• DCL has capability to share user profile and lifelog schema in
secure environment.

Postconditions: System will receive user profile and lifelog schema conform to its 
representation scheme. 

Normal Flow: 1. Domain expert selects the domain and sends requests to DCL for user
profile and lifelog schema. 

2. DCL shares the user profile and lifelog schema
3. System receives the user profile and lifelog schema 
4. Domain expert uses the system and performs the following tasks;

a. Verifies the conformance of received schema
b. Plots the verified schema
c. Saves the verified schema 

5. System saves the verified schema 

Alternative Flows: N/A 

Exceptions: 1a. System unable to connect to DCL 
a. System connection is failed during retrieving user profile and 

lifelog schema 
b. System hold and will retry after some time to connect to DCL

and retrieve the user profile and lifelog schema 
4a. System unable to verify lifelog schema conformance 

a. System fail to conform the schema representation 
from DCL 

b. System will send message to DCL about incompatible 
schema format 

Includes: N/A 

Frequency of Use: When new service is required, and mining mind have sufficient 
data for classification model creation 

Special 
Requirements: 

N/A 

Assumptions: N/A 

Notes and Issues: If DCL is unable to send user profile and lifelog schema in required 
format, then alternate strategy has to be considered. 

Sequence Diagram: 

77



Use Case ID: KCL-UC-06 

Use Case Name: Retrieve user profile and lifelog data 

Created By: Maqbool Ali Last Updated By: Maqbool Ali 

Date Created: 10-07-2015 Last Revision Date: 03-07-2018 

Actors: Domain Expert, DCL 

Description: User profile and lifelog data has hidden knowledge that can be 
explored after loading from data storage 

Trigger: Prior to classification model creation needed for required data 

Preconditions: • System has access through service interface to retrieve user
profile and lifelog data from DCL

• DCL has capability to share user profile and lifelog data in secure
environment.

• System has already loaded the previously imported user profile
and lifelog schema

Postconditions: System will receive user profile and lifelog data based on selected 
schema 

Normal Flow: 1. Domain expert loads the feature model for selected domain
2. System loads the corresponding feature model

sd Retriev e lifelog and user profile schema

:Domain Expert

FeatureModelManager DataCurationLayer (DCL 4.0) SchemaStorageDataDrivenGUI

UserProfileLifeLogSchema

loadSchema(domain)
loadSchema(domain) requestSchema(domain) :

UserProfileLifeLogSchema

create(UserProfileLifeLogSchema) :
UPLLSchema

«create»

verifySchemaConformance(UPLLSchema) :
boolean

:UPLLSchema

plotSchema(UPLLSchema)

saveSchema()

saveSchema(UPLLSchema)

saveSchema(UPLLSchema)

78



3. Domain expert sends request to DCL for user profile and lifelog data
based on loaded feature model

4. DCL shares the user profile and lifelog data
5. System receives the user profile and lifelog data 
6. Domain expert uses the system and performs the following tasks;

o Verifies the user profile and lifelog data
o Saves the data after verification.

7. System saves the verified data

Alternative Flows: 

Exceptions: 3a. System unable to connect to DCL 
a. System connection is failed during retrieving user profile and

lifelog data 
b. System hold and will retry after some time to connect to DCL

and retrieve the user profile and lifelog data 
6a. System receives irrelevant data 

a. System detects the irrelevant data sent by DCL.
b. System request again DCL to make sure that data received is 

according to feature selected.

Includes: 

Frequency of Use: When new service is required and mining mind have sufficient data 
for classification model creation 

Special 
Requirements: 

N/A 

Assumptions: N/A 

Notes and Issues: If DCL is unable to send data based on dynamic feature selection 
from schema, then alternate strategy has to be considered. 

Sequence Diagram: 

79



Use Case ID: KCL-UC-07 

Use Case Name: Extract meta-features of classification datasets 

Created By: Rahman Ali Last Updated By: Maqbool Hussain 

Date Created: 16-07-2015 Last Revision Date: 20-07-2015 

Actors: Knowledge Engineer/Domain Expert, UCI archive 

Description: Datasets have simple, statistical, information theory and 
landmarking meta-features that can best describe nature of a 
dataset. These features can best used for building an algorithm 
selection model. 

Trigger: In the offline process, when the algorithm selection model is build, 
and in the online process, when an appropriate algorithm is needed 
to be identified for a new query dataset  

Preconditions: UCI archive datasets are available and are in refined format 

Postconditions: The meta-features are ready for being used in building algorithm 
selection model. 

Normal Flow: 1. Knowledge Engineer selects one dataset from UCI archive. 
2. System retrieves selected dataset.

sd Retriev e user profile and lifelog data

:Domain Expert

DataCurationLayer
(DCL 4.0)

DataLoader DataStorageDataDrivenGUI FeatureModelStorage

loadData()
loadData(domain)

loadFeatureModel(domain)

returnFeatureModel(domain)
:FeatureModel

requestData(featuremodel:fm)

returnData(fm) :
UserProfileLifeLogData

verifyData(fm) :
booleanreturnData(fm) :

UserProfileLifeLogData

saveData()
saveData(fm)

saveData(fm)

80



3. Knowledge Engineer provides dataset to meta-feature extractor for
extracting meta-features.

4. System extracts following meta-features set for selected dataset.
a. basic meta-features
b. statistical meta-features
c. information theory meta-features
d. extract landmark features

5. Knowledge Engineer reviews the extracted meta-features and saves it
into meta-features base (MFB).

6. System saves meta-features into a MFB.
7. Knowledge Engineer repeats step 1-6 for each intended dataset.

Alternative Flows: 1a. Meta-feature extraction for online dataset 
a. Domain Expert provides new dataset used for classification model

creation. 
b. Step 3-4 of Normal Flow is executed for Domain expert

interactions with system. 

Exceptions: N/A 

Includes: N/A 

Frequency of Use: Frequently, whenever a new dataset arrives as a query dataset. 

Special 
Requirements: 

Minimum availability of classification datasets > 60 for a reasonable 
accuracy 

Assumptions: • The archived datasets are available and are in refined .raff format
• The meta-feature space is defined in advance

Notes and Issues: Meta-feature extraction is time consuming task for offline process 
as we have to take into account more than 60 datasets. 

Sequence Diagram: 

81



Use Case ID: KCL-UC-08 

Use Case Name: Evaluate performance of decision tree algorithm 

Created By: Rahman Ali Last Updated By: Maqbool Hussain 

Date Created: 16-07-2015 Last Revision Date: 20-07-2015 

sd Extract meta-features of classification datasets-2

:Domain Expert :Knowledge Engineer :UCI archeive

MetaFeatureBaseMetaFeatureExtractor

MetaFeature

MetaFeatureManager

loop 

[ForAllSupportedMetaFeatureType]

par 

[processMode: offl ine]

[processMode:online]

par 

[processMode: offl ine]

[processMode: online]

loop MetaFeatureExtraction

[ForEach datasetId]

selectDataSets()

loadDatasets(datasetPath)

extractMetaFeatures(listDatasets, processMode)

extractMetaFeatures(onlineDataset, processMode) :
List<MetaFeature>

extractMetaFeatures(listDatasets, processMode) :List<MetaFeature>

createMetaFeatureList()

«create»

extractMetaFeaturs(metaFeatureType) :
MetaFeature

addMetaFeatureToList(metafeature)

reviewMetaFeaturesList() :metaFeatureList

saveMetaFeatures()

saveMetaFeatures(metaFeatureList, datasetId)

MetaFeatureSaved(datasetId)

metaFeatureSaved(datasetId)

returnMetaFeatureList() :metaFeatureList

82



Actors: Knowledge Engineer, UCI archive 

Description: Different algorithms have different performance score for the same 
dataset. To build an algorithm selection model, performance score 
of each algorithm needs to evaluate for choosing an appropriate 
one.  

Trigger: In the offline process, when the algorithm selection model is to 
build the first time. 

Preconditions: • UCI archive datasets are available and are in .arff format
• The algorithm to be considered is specified in advanced (Decision Tree

algorithms implemented in Weka)
• The evaluation metric is specified (F-measure)

Postconditions: All datasets records in Meta-Feature Base (MFB) will be assigned 
with optimal decision tree algorithm class label. 

Normal Flow: 1. Knowledge Engineer selects UCI archive dataset, mentioned in MFB, 
for finding optimal decision tree algorithm. 

2. System (Weka) loads selected datasets.
3. Knowledge Engineer setups experiment;

a. Enlists all the decision tree algorithms available in system
(Weka)

b. Configure significance test (alpha=0.5)
c. Configure algorithms comparison metric (f-measure)

4. System runs experiment and produces detailed f-score for all selected
algorithms.

5. Knowledge Engineer performs following tasks;
a. Records evaluation matrix.
b. Chooses algorithm with the highest f-score.
c. Assigns chosen algorithm as class label in MFB.
d. Step 1-5 are repeated for other non-labeled datasets in MFB.
e. After finishing labeling all records in MFB, saves the updated

MFB as training dataset for algorithm selection (TDAS).
6. System saves the updated records in MFB as final TDAS.

Alternative Flows: N/A 

Exceptions: N/A 

Includes: N/A 

Frequency of Use: • Rarely, once enough new datasets are added to the system

Special 
Requirements: 

N/A 

Assumptions: • The decision tree-based algorithms are implemented in Weka.

83



Notes and Issues: Evaluating performance of decision tree algorithms over a large 
number (min 60) classification dataset is a computationally complex 
task. For minimum 60 datasets and at least 5 decision tree 
algorithms, a minimum of 300 experiments are required. Moreover, 
60 additional significance test experiments are needed. On average, 
each experiment takes times in minutes ranging from 2 minutes to 
30 minutes, depending on the complexity of the dataset. 

Sequence Diagram: 
 sd Ev aluate Performanance of Decision Tree Algorithm SD

Knowledge Engineer

(from Actors)

UCI archeive

(from Actors)

PerformanceEvaluator
(Weka)

MetaFeatureBase

TrainingDatasetAlgorithmSelection

loop 

[ForEach Dataset: dataset]
selectDataset(MFBId)

:dataset

evaluateAlgorithm(dataset)

enlistDecisiontreeAlgorithms()

configureSignificanceTest()

configureAlgorithmsEvaluationMetric()

runExperiement()

ChooseAppropriateAlgorithm(evaluationMetric)

:algorithm

assignClassLable(algorithm, MFBId)

:labeled MFBId

saveLabeledMFB()

createTDAS(labeledMFB)

:TDAS

84



Use Case ID: KCL-UC-09 

Use Case Name: Create automatic algorithm recommendation model 

Created By: Rahman Ali Last Updated By: Maqbool Hussain 

Date Created: 10-07-2015 Last Revision Date: 22-07-2015 

Actors: Knowledge Engineer/Domain Expert 

Description: An automatic algorithm selection model enables knowledge 
engineer to automatically select appropriate algorithm for building 
classification model for his new dataset  

Trigger: When the training dataset comprising datasets meta-features and 
algorithms performance evaluation are made available. 

Preconditions: The datasets meta-features and algorithms performance training 
datasets is made available. 

Postconditions: The automatic algorithm recommendation model (AARM) is ready 
to integrate in Mining Minds for real time algorithm selection. 

Normal Flow: 1. Knowledge Engineer selects TDAS.
2. System (Weka) loads TDAS.
3. Knowledge Engineer performs preprocessing of the TDAS (i.e., discretization, 

and features selection).
4. System refines the datasets with appropriate features. 
5. Knowledge Engineer select an algorithm from decision tree (DT) or Rules 

learner (RL) for building AARM.
6. System executes selected algorithm on TDAS and produces evaluation matrix.
7. Knowledge Engineer records performs following tasks;

a. Records evaluation matrix and repeats step 5-6 till all algorithms
finished.

b. Knowledge Engineer selects the appropriate algorithm.
8. System builds AARM model using the selected algorithm.
9. Knowledge Engineer saves AARM.
10. System saves the AARM into AARM storage.

Alternative Flows: N/A 

Exceptions: N/A 

Includes: N/A 

Frequency of Use: Rarely, when TDAS is updated with new datasets or algorithms 

Special 
Requirements: 

Availability of records > 60 for minimum acceptable accuracy 

Assumptions: N/A 

85



Notes and Issues: N/A 

Sequence Diagram: sd Create Algorithm Recommendation Model SD

TrainingDatasetAlgorithmSelectionAlogirthmModelBuilder
(Weka)

AutoAlgorithmRecommendationModel

Knowledge Engineer

(from Actors)

AlgorithmEvaluationMetric

loop AlgorithmEv aluation

[ForEach Algorithm:algorithm]

AARMStorage

selectsTrainingData(pathTDAS)

loadTDAS() :TDAS

discretize(TDAS, method)

extractFeatures(TDAS, method)

:TDAS with selected features

selectAlgorithm(List<Algorithm>)

createListAEM()

getEvaluationMetric(algorithm) :
AlgorithmEvaluationMetric

addAEMtoList(AEM)

buildModel() :AARM

selectAppropriateAlgorithm(AEM) :Algorithm

create() :AARM

executeAlgorithm(Algorithm,
AARM)

:AARM

save(AARM)

86



Use Case ID: KCL-UC-10 

Use Case Name: Create Rule 

Created By: Taqdir Ali Last Updated By: Maqbool Hussain 

Date Created: 11-07-2015 Last Revision Date: 29-07-2015 

Actors: Domain Expert 

Description: Knowledge bases need to enhance with up-to-date knowledge for 
correct recommendation. The expert shall create rules in the 
knowledge base to transform their practices into executable 
knowledge in form of rules. 

Trigger: Domain experts trigger it for rule creation/updating when needed. 

Preconditions: • The domain expert shall be authenticated with full access of rule
management in the knowledge base.

Postconditions: The correct rule shall be saved into the knowledge base. 

Normal Flow: 1. Domain expert opens the rule editor.
2. System loads wellness domain model in form of concepts tree.
3. Domain expert selects concepts for the rule conditions and conclusion

using any of the following methods; 
o Using wellness model, dragging concepts and facts into

conditional or conclusion part of the rule editor.
o Using auto pop-up Intelli-sense window to select concepts and

facts into conditional or conclusion part of the rule editor.
4. System checks the existing rules to add/update the rule

o Add new facts of the rule in condition.
o Add new conclusion according to rule facts.

5. Step 3-4 will be repeated for each new/updated concept added to rule,
and domain expert finally saves the rule.

6. System save rule as follows;
o The system validates the rule using “KCL-UC-11”.
o The system stores the validated rule into the knowledge base

Alternative Flows: 6a. System founds the rule is already exists in rule repository 
o Domain expert review the existing facts and conclusion.
o Step 5-6 will be followed to change the rule.

Exceptions: N/A 

Includes: Validate Rule 

Frequency of Use: Whenever domain expert wants to add rule or edit the existing rule. 

Special 
Requirements: 

N/A 

87



Assumptions: N/A 

Notes and Issues: • If knowledge base does not exist in system, the administrator shall build
the knowledge base first and configure with system.

• After investigation, we may use unify representation for rules and
guidelines.

Sequence Diagram: sd Interaction

:Domain Expert

RuleEditor WellnessModelHandler Knowledgebase

«create»
WellnessModel

RuleValidator

Rule

alt 

[If rule does not already exists then add]

[else update]

loop RuleCreation

openRuleEditor()

loadWellnessModel(Domain:d) :
WellnessModel:wModel

Load()

CreateRule()

:rule
«create»

selectDesiredConcept()

addFactsInCondition()

addFactsInConclusion()

updateFactsInCondition()

updateFactsInConclusion()

saveRule()

validateRule(rule) :Boolean

saveRule(rule)

acknowledgement()

88



Use Case ID: KCL-UC-11 

Use Case Name: Validate Rule 

Created By: Taqdir Ali Last Updated By: Maqbool Hussain 

Date Created: 11-07-2015 Last Revision Date: 29-07-2015 

Actors: Domain Expert 

Description: In new rules creation and editing existing rules, duplication and 
inconsistency may occur. The validation is needed to validate and 
find the duplication and inconsistency among the rules. 

Trigger: • When new rule is going to create.
• When existing rule is going to update

Preconditions: The rule creation and editing process completed by physician 
successfully. 

Postconditions: The validated rule shall be saved into knowledge base. 

Normal Flow: 1. Domain expert saves the created rule.
2. System validate rule for inconsistency and duplication as follows

a. Fetch the facts and conclusion of existing rules.
b. The new or updated rule approved for having no inconsistency

and duplication.
c. Created rule stores into the rules repository.
d. Acknowledge the expert to save the rule successfully.

Alternative Flows: 2b. The created rule is found having inconsistency or duplication with 
existing rules in the rules repository 

a. The system produces alert the inconsistency or duplication of
the rule with existing rules in repository. 

b. Domain expert review the alert message and correct the
created rule. 

c. Step 1 and Step 2 of normal flow is executed.

Exceptions: N/A 

Includes: N/A 

Frequency of Use: Whenever domain expert want to save the rule 

Special 
Requirements: 

N/A 

Assumptions: N/A 

Notes and Issues: Finding duplication using facts of condition and conclusion in 
existing rules is challenging task. 

89



Sequence Diagram: sd Interaction

:Domain Expert

RuleEditor RuleValidator Knowledgebase

alt 

[If duplication and incosistancy does not exist then save]

[Else alert to the expert]

saveRule(rule)

validateRule(rule) :Boolean

searchFactsConclusion(rule)

returnSearchResult() :
rule

checkDuplicationConsistancy() :boolean

storeRuleInKnowlegeBase()

Acknowledge()

alertForInconsistancyDuplication()

alert()

90



Use Case ID: KCL-UC-12 

Use Case Name: Integrate automatic algorithm recommendation model 

Created By: Rahman Ali Last Updated By: Maqbool Hussain 

Date Created: 10-07-2015 Last Revision Date: 28-07-2015 

Actors: Knowledge Engineer 

Description: For real time recommendation of classification algorithm for a new 
dataset, AARM need to be integrated in Mining Minds Data Driven 
knowledge acquisition approach. 

Trigger: When AARM is built. 

Preconditions: • AARM is available 
• Data driven approach has a unified interface to support AARM as plugin
• Data driven has unified interface for accessing Meta-Feature Extractor.

Postconditions: AARM is plugged into data driven environment and readily available 
for real time recommendation of appropriate classification algorithm. 

Normal Flow: 1. Knowledge engineer selects AARM and performs the following tasks;
• Analyses number of rules in the AARM
• Analyses condition attributes used in each rule of AARM
• Transforms rules into executable classes (using any IDE of Java).

2. Knowledge engineer integrates the executable AARM into data driven as 
follows;

a. Write integration code (following unified interface) into data driven
source code

b. Update possible configuration for newly added AARM plugin.
c. Update possible configuration for accessing Meta-Feature Extractor.

3. Knowledge Engineer compile the AARM as integral part with data driven code.
4. Knowledge engineer tests AARM with sample dataset.

Alternative Flows: N/A 

Exceptions: N/A 

Includes: N/A 

Frequency of Use: Rarely, once the AARM is updated 

Special 
Requirements: 

AARM has acceptable accuracy (60%) 

Assumptions: AARM is created 

91



Notes and Issues: N/A 

Sequence Diagram: 

Use Case ID: KCL-UC-13 

Use Case Name: Learn classification model 

Created By: Maqbool Ali Last Updated By: Maqbool Ali 

Date Created: 10-07-2015 Last Revision Date: 03-07-2018 

Actors: Domain Expert 

Description: An expert wants to see hidden knowledge from user profile lifelog 
data that can be explored by model learning mechanism with the 
help of learning method as well as processed data. 

Trigger: Learn model required to explore hidden knowledge 

sd conutRulesInModel

AutoAlgorithmRecommendationModel
(AARM)

IDE (Java)

Knowledge Engineer

(from Actors)

AARMStorageModelLoader
(Weka)

AARMReasoner

loadAARM()

load(AARMPath)

:AARM

analyseModel()

analyzeRules()

analyzeConditions()

planForEquivalentCode()

writeCodeForAARM()

compileAARMasAPI() :AARM.jar

openDataDrivenProject()

IntegrateAARM()

IntegrateAARM(config, AARM)

IntegrateMFE()

IntegrateMFE()

compileDatadrivenWithAARM()

testAARM(dataset)

92



Preconditions: • System has loaded the prepared user profile lifelog data

Postconditions: System will build the classification model (decision tree) 

Normal Flow: 1. Domain expert loads the user profile lifelog processed data for selected
domain

2. System loads the corresponding processed data
3. Domain expert invokes the “Recommend appropriate classification

algorithm” use case by providing processed data to load the appropriate
learning algorithm

4. System loads the appropriate decision tree learning algorithm
5. Domain expert select the algorithm tuning parameters of selected

algorithm for further improving the results 
6. System applies the tuning parameters on selected algorithm and computes 

the learning accuracy after learning the user profile lifelog processed data
7. Repeat the step 5-6 until required learning accuracy is achieved.
8. Domain expert finalizes the classification model with acceptable accuracy

and saves the model.
9. System saves the decision tree learning model.

Alternative Flows: N/A 

Exceptions: N/A 

Includes: KCL-UC-14 (Recommend appropriate classification algorithm) 

Frequency of Use: When new service is required, and mining mind have sufficient data 
for classification model creation 

Special 
Requirements: 

N/A 

Assumptions: N/A 

Notes and Issues: Acceptable Accuracy: Depends on criticality of the domain. For 
example, classification model for clinical domain needs high 
accuracy, while for the case of nutrition domain, high accuracy is not 
critical. 

Sequence Diagram: 

93



Use Case ID: KCL-UC-14 

Use Case Name: Recommend appropriate classification algorithm 

Created By: Rahman Ali Last Updated By: Rahman Ali 

Date Created: 16-07-2015 Last Revision Date: 27-07-2015 

Actors: Domain expert 

Description: For building classification model for the user new dataset, AARM 
shall automatically recommend appropriate classification algorithm. 

Trigger: When domain expert wants to build a classification model. 

Preconditions: • AARM is plugged into the data driven environment 
• Meta-features extractor is plugged into the data driven environment
• New dataset is stored in local machine, structured in .arff file format

Postconditions: The recommended appropriate classification algorithm can be used 
for building classification model 

sd Learn classification model

ModelLearner DataStorage ClassificationModelCreator

:Domain Expert

ClassificationAlgorithmRecommender

DecisionTreeModel

DataDrivenGUI

loop ClassficationModelWithAcceptableAccuracy: DTM

[ForEach TuningParameter tp]

ClassificationModelStorage

consider RecommendAppropriateClassificationAlgorithm

loadData(domain, processed)

loadData(domain, processed) :UserProfileLifeLogData

:upLLData

loadAlgorithm()

loadAlgorithm(upLLData) :RecommendedAlgorithm

:RAlgo

learnModel()

*selectAlgorithmConfiguration(RAlgo,tp)

*learnModel(RAlgo, upLLData) :DecisionTree

*learnModel(RAlgo, upLLData) :DecisionTreeModel

executeAlgorithm(RAlgo, upLLData) :
DecisionTree

create(decisionTree)

«create»
:decistionTreeModel

saveModel()

saveModel(DTM)

saveModel(DTM)

94



Normal Flow: 1. Domain expert loads new dataset (.arff file) from the data driven datasets 
storage using data driven environment. 

2. System extracts meta-features of the new dataset by including KCL-UC-07
(alternate flow) 

3. Domain experts provides meta-features to system for recommending 
appropriate classification algorithm 

4. System performs meta-reasoning over integrated AARM using the following
steps; 

a. Starts matching each meta-feature value of the new dataset with
condition attributes of each rule

b. If matched, fires the rule, recommend right hand side of the rule as
the appropriate algorithm

c. Else, display a message “could not recommend”

Alternative Flows: 1a. 4c(a) If AARM not available or have no acceptable 
recommendation accuracy, use Weka experimenter. 

Exceptions: N/A 

Includes: KCL-UC-07 (alternate flow) 

Frequency of Use: Frequently, when domain expert needs to select appropriate 
algorithm for his/her dataset 

Special 
Requirements: 

N/A 

Assumptions: N/A 

Notes and Issues: N/A 

Sequence Diagram: 

95



Use Case ID: KCL-UC-15 

Use Case Name: Manage concepts of domain model 

Created By: Taqdir Ali Last Updated By: Taqdir Ali, Maqbool 
Hussain 

Date Created: 27-07-2015 Last Revision Date: 27-07-2015 

Actors: Domain Expert 

Description: The concepts of wellness domain shall be used in creation of rules and 
generation of guidelines in tree format. The domain expert shall easily 
select the required concepts from wellness domain model. 

Trigger: Domain Model will be loaded during rule creation or guideline 
creation. 

Preconditions: The expert be authenticated with full access of concepts management in 
domain model 

Postconditions: The right concept shall be added or edited at the right location in 
wellness model 

sd Recommend appropriate classification algorithm SD

Domain Expert

(from Actors)

DataStorageDataDrivenGUI MetaFeatureExtractor AutoAlgorithmRecommendationModel
(AARM)

alt 

[If Rule Fired]

[Else]

AARMReasoner

loop 

AlgorithmSelector

alt 

[selectionMethod = default]

[selectionMethod = automatic]

selectAlgorithm()

selectAlgorithm(selectionMethod)

:List<Alogorithm>

specifyAlogrithm() :Algorithm

loadDataset(datasetSource)

:dataset

ExtractMetaFeatures(dataset)

:MetaFeatures

RecommendAppropriateAlgorithm(MetaFeatures)

loadAARM()

MatchAARMRules(MetaFeatures)

MatchAARMRules(MetaFeatures)

:RecommendedAlgorithm

:Algorithm

:NoRecommendation

:No appropriate algorithm is found

96



Normal Flow: 1. Domain expert creates rule (using KCL-UC-10) or creates guideline (using 
KCL-UC-03). 

2. System loads domain model for corresponding domain.
3. Domain expert selects concepts from loaded domain model.
4. System associate domain concept to part of rule or guideline tree.
5. Domain expert assigns value to selected concept.
6. System assigns corresponding value to selected concept and show it in

rule or guideline tree.
7. Step 4-6 are repeated till rule or guideline is finished.

Alternative Flows: N/A 

Exceptions: N/A 

Includes: N/A 

Frequency of Use: Whenever domain expert wants to add or edit the concepts in 
wellness model 

Special 
Requirements: 

N/A 

Assumptions: Wellness model repository in the system is exist. 

Notes and Issues: If wellness model storage does not exist in system, the administrator 
shall build the wellness model storage first and configure with system. 

Sequence Diagram: 

97



Use Case ID: KCL-UC-16 

Use Case Name: Transform Knowledge Rule 

Created By: Taqdir Ali and Maqbool 
Hussain 

Last Updated By: Maqbool Hussain 

Date Created: 27-07-2015 Last Revision Date: 27-07-2015 

Actors: Domain Expert 

Description: The new created rules are needed to transform to some computer 
interpretable, executable format for execution as well as to shareable, 
standard format for maintenance and sharing with other 
organizations. 

Trigger: Whenever domain expert wants to store the created or updated rule. 

Preconditions: The expert created rule successfully and the system validated the rule. 

Postconditions: System shall transform the created and validated rule into appropriate 
representation. 

Normal Flow: 1. Domain expert save the new created rule or update the existing rule.
2. The system identifies the appropriate representation model
3. Fetch the artifacts of the identified representation model

sd Interaction

Domain Expert

Rule Editor Guideline Editor Wellness Model
Handler

«create»
Wellness Model

par 

loop 

createRule()

createGuideline()

loadWellnessModel(Domain)

load(Domain)
«create»:WellnessModel

displayModel(WellnessModel)

selectConcept()

selectDesiredConcept() :Concept

setValue()

assignValue()

98



4. Transforms the rule into the artifacts and syntax of the identified
representation model.

5. The rule in the representation model is stored into the repository.

Alternative Flows: N/A 

Exceptions: N/A 

Includes: N/A 

Frequency of Use: Whenever domain expert wants to save rule 

Special 
Requirements: 

N/A 

Assumptions: N/A 

Notes and Issues: Appropriate representation configuration is challenging task. 

Sequence Diagram: 

Use Case ID: KCL-UC-17 

Use Case Name: Create Situation Event 

Created By: Maqbool Hussain Last Updated By: Maqbool Hussain 

Date Created: 29-07-2015 Last Revision Date: 29-07-2015 

Actors: Domain Expert 

sd Interaction

:Domain Expert

Rule Editor Model
Transformation

Manager

Representation
Model Storage

saveRule()

transformRule(rule)

identifyAppropriateRepresentationModel()

fetchArticatsSyntax()

transformRuleIntoArtifactsSyntax()

storeIntoRepresentationStorage()

acknowledgement()

99



Description: Situation Event is important features of mining mind which includes 
set of associated recommendation rules. Situation event is created, 
and the rule is indexed in knowledgebase based on situation event. 

Trigger: Whenever domain expert wants to store the created or updated 
rule. 

Preconditions: The rule has salient features based on which the rule can be indexed. 

Postconditions: • Rule is saved into knowledgebase 
• Rule is indexed based on the created situation event

Normal Flow: 1. Domain expert start creating rule;
a. Performs steps 1-5 in KCL-UC-10.
b. Selects salient features (indicating as event) from

conditions of the rule.
2. The system performs following actions;

a. Create situation event with salient features.
b. Saves the situation event and assign index (generate if

situation event is not existing in knowledgebase index).
c. Index the created rule with situation event.

3. Domain expert saves the rule by performing steps 5-6 in KCL-UC-
10.

4. System saves the rule and index of the rule.

Alternative Flows: N/A 

Exceptions: N/A 

Extends: Create Rule (KCL-UC-10) 

Frequency of Use: Whenever domain expert wants to save rule 

Special 
Requirements: 

N/A 

Assumptions: N/A 

Notes and Issues: 

Sequence Diagram: 

100



Use Case ID: KCL-UC-18 

Use Case Name: Compute features priorities 

Created By: Maqbool Ali Last Updated By: Maqbool Ali 

Date Created: 01-07-2018 Last Revision Date: 03-07-2018 

Actors: Domain Expert, DCL 

Description: Features priorities computation help domain expert for selecting 
appropriate features from available schema 

Trigger: Prior to data preprocessing needed for required data 

Preconditions: • KCL has access through service interface to retrieve user profile lifelog data
from DCL

• KCL and DCL has agreement on common data representation format

Postconditions: KCL will display the features priorities list 

Normal Flow: 1. KCL connects to DCL via unified service interface and sends request for user 
profile lifelog data based on selected features of schema and features 
conditions.  

sd Interaction

:Domain Expert

RuleEditor SituationEventHandler

SituationEvent

KnowledgebaseIndex Knowledgebase

consider  Create Rule

assert (openRuleEditor, CreateRule, loop RuleCreation)

consider Create Rule

assert (Sav eRule)

createRule()

:rule
creatSituation(Set<Facts>salientFeatures)

creatSituationEvent(salientFeatures, rule)

create(salientFeatures)
:situation

«create»

saveSituation(situation)

assignIndex()

:situationIndex

createSituationIndexforRule(situationIndex, rule)

saveRule()

saveRule(rule)

101



2. DCL sends the required data to KCL.
3. KCL receives user profile lifelog data 
4. KCL computes the features priorities 
5. KCL displays the features priorities list 

Alternative Flows: N/A 

Exceptions: 2a. KCL unable to connect to DCL 
a. KCL connection is failed during retrieving user profile lifelog data
b. KCL hold and will retry after some time to connect to DCL and

retrieve the user profile lifelog data 
3a. KCL unable to verify lifelog data conformance 

a. KCL fail to conform the data representation from DCL
b. KCL will send message to DCL about incompatible data format

Includes: N/A 

Frequency of Use: When new service is required, and mining mind have sufficient data 
for classification model creation 

Special 
Requirements: 

N/A 

Assumptions: N/A 

Notes and Issues: If DCL is unable to send data, then alternate strategy has to be 
considered. 

Sequence 
Diagram: 

sd Compute features priorities

:Domain Expert

SchemaStorageFeatureModelManager

UserProfileLifeLogSchema

loop 

[ForEach Feature f IN schema]

DataDrivenGUI DataCurationLayer
(DCL 4.0)

loadSchema(domain)

loadSchema(domain)
loadSchema(domain) :
UserProfileLifeLogSchema

«create»

returnSchema() :schema
returnSchema() :schema

computeFeatureRank()

*selectFeatures() :SchemaFeatures

requestData(schemaFeatures:sf)
requestData(schemaFeatures:sf)

returnData(sf) :
UserProfileLifeLogData

computeFeaturesPriorities(sf) :
FeaturesPrioritiesList : fpl

returnFeaturesList( fpl )

viewsFeaturesPriorities()

102



3.4.4 Rule Validator: Use case diagram 

Use Case ID: KCL-UC-19 

Use Case Name: Validate Rule 

Created By: Taqdir Ali Last Updated By: Taqdir Ali 

Date Created: 04-03-2017 Last Revision Date: 05-03-2017 

Actors: Domain Expert 

Description: In new rules creation and editing existing rules, duplication and 
inconsistency may occur. The validation is needed to validate and find 
the duplication and inconsistency among the rules. 

Trigger: • When new rule is going to create.
• When existing rule is going to update

103



Preconditions: The rule creation and editing process completed by physician 
successfully. 

Postconditions: The validated rule shall be saved into knowledge base. 

Normal Flow: 3. Domain expert saves the created rule.
4. System validate rule for inconsistency and duplication as follows

a. Fetch the facts and conclusion of existing rules.
b. The new or updated rule approved for having no inconsistency and

duplication.
c. Created rule stores into the rules repository.
d. Acknowledge the expert to save the rule successfully.

Alternative Flows: 3b. The created rule is found having inconsistency or duplication with existing 
rules in the rules repository 

a. The system produces alert the inconsistency or duplication of the
rule with existing rules in repository. 

b. Domain expert review the alert message and correct the created 
rule. 

c. Step 1 and Step 2 of normal flow is executed.

Exceptions: N/A 

Includes: 1. Extract conditions 
2. Test cases generation

Frequency of Use: Whenever domain expert wants to save the rule 

Special 
Requirements: 

N/A 

Assumptions: N/A 

Notes and Issues: Finding duplication using facts of condition and conclusion in existing 
rules is challenging task. 

Sequence Diagram: 

104



Use Case ID: KCL-UC-20 

Use Case Name: Extract conditions 

Created By: Taqdir Ali Last Updated By: Taqdir Ali 

Date Created: 04-03-2017 Last Revision Date: 05-03-2017 

Actors: Domain Expert 

Description: Whenever the rule is validated, the test cases are generated, the test 
cases depends on conditions of the rule. Therefore, all the facts and 
conditions are needed to extract from rules. 

Trigger: • When new rule is going to validate.
• When existing rule is going to validate.

Preconditions: The rule creation and editing process completed by physician 
successfully. 

Postconditions: Multiple pairs of facts and conditions are extracted. 

sd Interaction

:Domain Expert

RuleEditor RuleValidator Knowledgebase

alt 

[If duplication and incosistancy does not exist then save]

[Else alert to the expert]

saveRule(rule)

validateRule(rule) :Boolean

searchFactsConclusion(rule)

returnSearchResult() :
rule

checkDuplicationConsistancy() :boolean

storeRuleInKnowlegeBase()

Acknowledge()

alertForInconsistancyDuplication()

alert()

105



Normal Flow: 1. System fetch the rule, which is being to be added or updated
2. System shall identify the logical operators in the rule.
3. System splits the rule based on the identified logical operators
4. In splat conditions, find the type of keys and their values.

a. If type is discrete then execute non-interval test case generation.

Alternative Flows: 4b. If type is interval, then 
a. Execute interval case generator

Exceptions: N/A 

Includes: N/A

Frequency of Use: Whenever domain expert wants to validate the rule 

Special 
Requirements: 

N/A 

Assumptions: N/A 

Notes and Issues: Finding duplication using facts of condition and conclusion in existing 
rules is challenging task. 

Sequence Diagram: 

Use Case ID: KCL-UC-21 

Use Case Name: Test cases generation 

Created By: Taqdir Ali Last Updated By: Taqdir Ali 

106



Date Created: 04-03-2017 Last Revision Date: 05-03-2017 

Actors: Domain Expert 

Description: Whenever the rule is validated, the test cases are generated, the new 
created rule or existing modified rule is checking for duplications and 
conflict using the generated test cases. 

Trigger: • When new rule is going to validate.
• When existing rule is going to validate.

Preconditions: The rule conditions and facts are identified and extracted successfully. 

Postconditions: Multiple test cases shall generate after successful process. 

Normal Flow: 1. If type of extracted condition or fact is discrete
a. System shall fetch the possible values from wellness model
b. Generate matched test cases with respect to the extracted

condition.
c. Generate unmatched conditions with respect to the extracted

condition.
d. Store the generated test cases with corresponding conditions in

test case base.

Alternative Flows: 1. (b) If type of extracted condition or fact is interval
a. System finds the type of interval
b. If interval is single side infinite interval or exact value interval,

then generate following 3 test cases.
i. Generate case for X-1

ii. Generate case for X
iii. Generate Case for X+1

c. If interval is double sided finite interval, then generate following
6 test cases.

i. Generate case for X-1
ii. Generate case for X

iii. Generate Case for X+1
iv. Generate case for Y-1
v. Generate case for Y

vi. Generate Case for Y+1

Exceptions: N/A 

Includes: N/A

Frequency of Use: Whenever domain expert wants to validate the rule 

Special 
Requirements: 

N/A 

Assumptions: N/A 

107



Notes and Issues: Finding duplication using facts of condition and conclusion in existing 
rules is challenging task. 

Sequence Diagram: 

Use Case ID: KCL-UC-22 

Use Case Name: Evaluate rule 

Created By: Taqdir Ali Last Updated By: Taqdir Ali 

Date Created: 04-03-2017 Last Revision Date: 05-03-2017 

Actors: Domain Expert 

Description: Whenever the rule is to be validated, the new created or existing 
modified rule is needed to test with respect to generated test cases, 
then evaluate the rule with those test cases 

108



Trigger: • When new rule is going to validate.
• When existing rule is going to validate.

Preconditions: The test cases are successfully generated and executed for rule which 
is going to evaluate. 

Postconditions: Find the duplicate and conflicted rules based on executed test cases. 

Normal Flow: 1. Domain experts views all the auto generated test cases on viewer.
2. Domain expert selects the test cases to execute and test on the created rule
3. Domain experts executes the selected test cases 
4. The system gives results of executed test cases based on the included use

case “check and resolve anomalies”.

Alternative Flows: N/A

Exceptions: N/A 

Includes: N/A

Frequency of Use: Whenever domain expert want to validate the rule 

Special 
Requirements: 

N/A 

Assumptions: N/A 

Notes and Issues: Finding duplication using facts of condition and conclusion in existing 
rules is challenging task. 

Sequence Diagram: 

109



Use Case ID: KCL-UC-23 

Use Case Name: Check and resolve anomalies 

Created By: Taqdir Ali Last Updated By: Taqdir Ali 

Date Created: 04-03-2017 Last Revision Date: 05-03-2017 

Actors: Domain Expert 

Description: Whenever the rule is to be validated, the executed test cases checks 
and identifies the anomalies in form of duplicate and conflict. The 
domain experts identified and resolve those anomalies. 

Trigger: • When new rule is going to validate.
• When existing rule is going to validate.

Preconditions: The test cases are successfully generated and executed for rule which 
is going to evaluate. 

Postconditions: Find and resolve the duplicate and conflicted rules based on executed 
test cases. 

110



Normal Flow: 1. System shows the results of execution of test cases on the creation rule or
modification rule.

2. Domain experts views the result messages on result viewer for finding
duplication and conflict

3. If duplicate rules exist
a. Discard the new created rule.

4. If conflict exists in the created rule
a. Find the conflicting attributes and facts in the rule.
b. Resolve the conflict and gives the priority to rules

5. Store the rules into the knowledge base.

Alternative Flows:   3 (a) If there is no duplicate 
a. Check the rule for conflict.

  4 (a) If there is no conflict 
a. Store the rule into the knowledge base

Exceptions: N/A 

Includes: N/A 

Frequency of Use: Whenever domain expert wants to validate the rule 

Special 
Requirements: 

N/A 

Assumptions: N/A 

Notes and Issues: Finding duplication using facts of condition and conclusion in existing 
rules is challenging task. 

Sequence Diagram: 

111



112



4. Service Curation Layer

4.1 Functional Requirement

Requirements #ID Description 

SCL-FR-01 The layer shall receive the service request from user application, third 
party application, or mining mind platform generated events 

SCL -FR-02 The layer shall retrieve data from intermediate database (user profile, 
lifelog, and environmental variables) 

SCL -FR-03 The layer shall retrieve production knowledge from knowledge base 

SCL -FR-04 The layer shall identify the unresolved user requests and notify the 
corresponding layer for missing knowledge 

SCL -FR-05 The layer shall deliver the results to the service requester and to 
corresponding layer of mining mind for persistence 

SCL -FR-06 The layer shall generate goal-based recommendation 

SCL -FR-07 The layer shall personalize the recommendation based on location and 
weather information. 

SCL -FR-08 The layer shall provide take care of user preference-based 
recommendation through continuous feedback from the user. 

4.2 Non-Function Requirements 

Requirements #ID Description 

SCL -NFR-01 The service request shall include the user identification required to 
prepare the data request 

SCL -NFR-02 The user application and host layer of the services shall connect to the 
internet  

4.3 Terms and Definitions 

Terms Description 

SCL Service Curation Layer  

DCL  Data Curation Layer  

KCL Knowledge Curation Layer 

113



SL Supporting Layer 

Reasoning The process of producing recommendations 

RBR Rule Base Reasoning 

Case A case is collection of data/information that represent a complete state 
of a subject in a particular time 

CBR Case Base Reasoning 

Hybrid Reasoning A combined reasoning of RBR and CBR 

Unresolved Case A new case for which the existing knowledge is insufficient to solve 

Production Knowledge The knowledge is in production environment and is ready for execution 

Recommendation An actionable statement provided to the subject for healthy habit 
induction 

Fact An informative statement provided to the subject for education 

Goal A target that a subject is intending to achieve  

Achievement The measurement of the subject status so far towards achieving the 
goal 

Interpreted 
Recommendation 

The recommendation passed through the process of interpretations 

Environmental 
Variables 

Environment variables represent the factors related to environment 
rather than user such as weather, time, season etc. 

Service An outcome of the system in which a subject is interested such as 
recommendation, facts, alerts, notifications. 

4.4 Use Cases 

4.4.1 List 

Use Case #ID Description 

SCL-UC-01 Load data for building recommendation 

SCL-UC-02 Prepare data for building recommendation 

SCL-UC-03 Load Rules 

SCL-UC-04 Build Recommendation 

114



SCL-UC-05 Receive Production Knowledge 

SCL-UC-06 Report Unresolved Case 

SCL-UC-07 Load data for interpreting recommendation 

SCL-UC-08 Prepare data for interpreting recommendation 

SCL-UC-09 Interpret Context 

SCL-UC-10 Interpret Content 

SCL-UC-11 Explain recommendations 

SCL-UC-12 Prepare Results 

SCL-UC-13 Receive service request 

SCL-UC-14 Handle Data 

SCL-UC-15 Deliver service results 

SCL-UC-16 Goal-based recommendation Generation 

SLC-UC-17 Provide Educational Support for user awareness 

SCL-UC-18 Location- and weather-based Personalized recommendation 

SCL-UC-19 User Preference-based refined recommendations 

SCL-UC-20 Provide Alternative Recommendation 

SCL-UC-21 Retrieve risk factors 

SCL-UC-22 Retrieve risk assessment 

SCL-UC-23 Adaptive education 

SCL-UC-24 Adaptive physical and nutrition recommendation 

SCL-UC-25 Question/Answer recommendation 

115



4.4.2  Use Case Diagram 

116



4.4.3  Description 

Use Case ID: SCL-UC-01 

Use Case Name: Load data for building recommendation 

Created By: Rahman Ali Last Updated By: Rahman Ali 

Date Created: July 14, 2015 Last Revision Date: July 28, 2015 

Actors: SCL-UC-02 (Prepare Data) 

Description: Retrieving user profile and lifelog data is required for reasoning 
to generate recommendation. This data is retrieved using Data 
Handler of the Service Orchestrator. 

Trigger: Triggered when a new service request is received from the user 
application or DCL. 

Preconditions: User profile and lifelog data is available in user lifelog. 

Postconditions: User profile and lifelog data is successfully retrieved and 
prepared for reasoner to process. 

Normal Flow: 1. Data Preparator sends request for loading data
2. Data Loader receives the request and performs the

following tasks;
a. Analyses the request and user for the appropriate

data loading
b. Prepare separate requests for user lifelog data

3. Data Loader sends analyses request to Data Handler
4. Data Handler provides the data to Data Loader

Alternative Flows: N/A 

Exceptions: N/A 

Includes: N/A 

Frequency of Use: Very frequent; repeated for every service request 

Special Requirements: N/A 

117



Assumptions: Service Orchestrator knows the required data for each 
registered service. 

Notes and Issues: N/A 

Sequence Diagram 

Use Case ID: SCL-UC-02 

Use Case Name: Prepare data for building recommendation 

Created By: Rahman Ali Last Updated By: Rahman Ali 

Date Created: July 14, 2015 Last Revision Date: July 28, 2015 

Actors: SCL-UC-04 (Build Recommendation) 

Description: Knowledge based reasoning requires prepared data to 
execute the rules during the reasoning process. 

sd Interaction

DataLoaderDataPreprator DataHandler

LoadData(uid, sid)

AnalyseDataRequest(uid, sid)

PrepareDataRequest(uid, sid)

LoadData(uid, sid)

:data

:ack

118



Trigger: Triggered when new service request is made for generating 
recommendations 

Preconditions: User profile and lifelog data is loaded into RB 2 

Postconditions: User prepared data is readily available for reasoner to 
process. 

Normal Flow: 1. Recommendation Builder sends data preparation
request to Data Preparator along with the loaded data

2. Data Preparator prepares profile data
3. Data Preparator prepares lifelog data
4. Data Preparator returns prepared data to

Recommendation Builder

Alternative Flows: N/A 

Exceptions: N/A 

Includes: SCL-UC-01 

Frequency of Use: Very frequent; for every service request 

Special Requirements: N/A 

Assumptions: N/A 

Notes and Issues: N/A 

Sequence Diagram 

119



Use Case ID: SCL-UC-03 

Use Case Name: Load Rules 

Created By: Rahman Ali Last Updated By: Rahman Ali 

Date Created: July 28, 2015 Last Revision Date: July 28, 2015 

Actors: SCL-UC-04 (Build Recommendation) 

Description: Rule-based reasoned needs knowledge rules to perform 
reasoning using the prepared data to generate 
recommendations for the service request. 

Trigger: At the time when new service request arrives for 
recommendation. 

Preconditions: • Updated knowledge is available in Production
Knowledge Base.

• KCL and RB 2 agree on common format of production
rules.

Postconditions: The reasoned is ready to execute the rules and generate 
recommendations. 

sd Prepare Data SD

Recommendation
Builder

Data Preparator

prepare data(data)

prepare profile data()

prepare lifelog data()

:prepared data

120



Normal Flow: 1. Recommendation Builders send knowledge load request to
Rule Loader

2. Rule Loader sends request to Production Knowledge Base
3. System performs the following tasks;

a. Analyses the request knowledge
b. Search production knowledge base for the

requested rules
c. Loads the rules
d. Provides the rules back to Recommendation Builder

Alternative Flows: N/A 

Exceptions: N/A 

Includes: N/A 

Frequency of Use: Frequent: when reasoner is invoked for new service generation. 

Special Requirements: N/A 

Assumptions: N/A 

Notes and Issues: N/A 

Sequence Diagram 

121



Use Case ID: SCL-UC-04 

Use Case Name: Build recommendations 

Created By: Rahman Ali Last Updated By: Rahman Ali 

Date Created: July 15, 2015 Last Revision Date: July 15, 2015 

Actors: SCL-UC-13 (Request Handler), SCL-UC-04, SCL-UC-02, SCL-UC-01, 
SCL-UC-03, SCL-UC-09 (Interpret Context) 

Description: RBR performs rule-based reasoning to generate 
recommendations using the production rules and prepared data. 

Trigger: At the time when new service request arrives for 
recommendation. 

Preconditions: Knowledge is available in Production Knowledge Base. 

sd Load Rules SD

Recommendation
Builder

Production
Knowledge Base

Rule Loader

LoadRules(sid)

LoadRules(sid)

AnalyseKnowledgeRequest(sid)

SerchProductionRules(sid)

LoadRules(sid)

:rules

122



Postconditions: The recommendation is reported to RI 2, if reasoning is successful, 
otherwise the new case is provided to Unified Knowledge 
Interface along with the missing rule message. 

Normal Flow: 1. Request Handler invokes recommendation builder for
recommendation

2. Recommendation Builder load prepared data
3. Recommendation Builder retrieves loaded rules
4. Recommendation Builder performs rule-based reasoning on

the prepared data and loaded rules
5. Recommendation Builder generates recommendation and

perform the following tasks;
a. Prepare recommendation
b. Provides recommendations to Context Interpreter for

interpretation

Alternative Flows: 5a. The system could not find rule to execute 

a. Recommendation Builder sends message along with
Unresolved Case to Case Notifier

Exceptions: N/A 

Includes: SCL-UC-02, SCL-UC-03 

Frequency of Use: Frequent: when recommendation builder is invoked for 
generating recommendation. 

Special Requirements: N/A 

Assumptions: KCL and RB 2 agree on common format of production rules. 

Notes and Issues: N/A 

Sequence Diagram 

123



Use Case ID: SCL-UC-05 

Use Case Name: Receive Production Knowledge 

Created By: Muhammad Afzal Last Updated By: Rahman Ali, 
Muhammad Afzal 

Date Created: July 5, 2015 Last Revision Date: July 28, 2015 

Actors: KCL 

Description: The knowledge is originated by KCL and is transfer to SCL 2 to 
keep a local copy of the production knowledge. 

sd Build Recommendation

Recommendation
Builder

Request Handler ContextInterpreter

loop RBR

[i f rule matched, break]

Case NotifierData Preparator Data Loader Rule Loader

alt 

[i f recommendation is generated based on the available rules]

[else]

BuildRecommendation(uid, sid)

PrepareData(uid, sid)

LoadData(uid, sid)

:data

:prepared data

LoadRules(sid)

:rules

ExecuteRule(data, rules)

PrepareRecommendation()

InterpretRecommendations(Recommendations)

send unresolved case(unresolved case)

124



Trigger: At knowledge creation/update time 

Preconditions: SCL 2 and KCL has a common representation agreement 

Postconditions: The SCL 2 copy of knowledge is updated and is synchronized with 
KCL 

Normal Flow: 1. KCL interrupt Knowledge Handler for new knowledge
2. Knowledge Handler verifies the knowledge
3. Knowledge Handler make a local of the received knowledge in

the Production Knowledge Base
4. Knowledge is persisted in Production Knowledge Base
5. KCL is acknowledged of the knowledge receipt

Alternative Flows: N/A 

Exceptions: N/A 

Includes: N/A 

Frequency of Use: Less frequent: at knowledge creation/update time 

Special Requirements: N/A 

Assumptions: N/A 

Notes and Issues: N/A 

Sequence Diagram 

125



Use Case ID: SCL-UC-06 

Use Case Name: Report unresolved case 

Created By: Muhammad Afzal Last Updated By: Rahman Ali, 
Muhammad Afzal 

Date Created: July 5, 2015 Last Revision Date: July 28, 2015 

Actors: SCL-UC-04 (Build Recommendation), KCL 

Description: Notifying KCL that reasoner is incapable to generate 
recommendation for the service request. KCL may be able to 
acquire new knowledge for such service request to handle in 
future. 

Trigger: At the time when reasoner is not capable to generate 
recommendation because of insufficient knowledge in the KB. 

sd Receiv e Production Knowledge SD

KCL 2 KnowledgeHandler ProductionKnowledgeBase

UpdateKnowledgeBase(Rules)

ReceiceInterrupt(Rules)

VerifyRules(Rules)

UpdateKnowledgeBase(Rules)

PersistKnowledge(Rules)

:ack

126



Preconditions: Reasoner has completed the reasoning process 

Postconditions: The message with reason is successfully reported to KCL 

Normal Flow: 1. Recommendation Builder notify unresolved case as new case
prepare the report

2. Case Notifier analyses the new case
3. Case Notifier prepare the new case report
4. Case Notifier sends new case report to KCL
5. KCL acknowledges the new case receipt

Alternative Flows: N/A 

Exceptions: N/A 

Includes: N/A 

Frequency of Use: Less frequent: when reasoner detects new case not handled with 
existing knowledge. 

Special Requirements: N/A 

Assumptions: N/A 

Notes and Issues: N/A 

Sequence Diagram 

127



Use Case ID: SCL-UC-07 

Use Case Name: Load data for interpreting recommendations 

Created By: Muhammad Afzal Last Updated By: Rahman Ali, 
Muhammad Afzal 

Date Created: July 15, 2015 Last Revision Date: July 28, 2015 

Actors: Data Preparer 

Description: The data is loaded from DCL through Service Orchestrator in order 
to interpret the recommendations 

Trigger: After recommendation is built 

Preconditions: • Recommendation are built
• User profile is stored in lifelog
• Context is recognized

Postconditions: The user profile, lifelog, and environmental variable data is 
available for preparation. 

sd Report Unresolv ed Case SD

KCL 2RecommendationBuilder CaseNotifier

NotifyNewCase(sid)

AnalyseNewCase(sid)

PrepareNewCaseReport(NewCase)

SendReport(NewCase)

:ack

128



Normal Flow: 1. Data Loader receives interrupt from Data Preparer
2. Data loader prepare data request
3. Data loader send request to Data Handler
4. Data loader receives data from Data Handler

Alternative Flows: N/A 

Exceptions: N/A 

Includes: N/A 

Frequency of Use: Very frequent; at every service request 

Special Requirements: N/A 

Assumptions: N/A 

Notes and Issues: N/A 

Sequence Diagram sd prepare data request

Data Preparer Data Loader Data Handler

load data(user id)

prepare data request()

load data(user id)

:data

:data

129



Use Case ID: SCL-UC-08 

Use Case Name: Prepare data for interpreting recommendations 

Created By: Muhammad Afzal Last Updated By: Rahman Ali, 
Muhammad Afzal 

Date Created: July 15, 2015 Last Revision Date: July 28, 2015 

Actors: Context Interpreter 

Description: The loaded data is prepared for interpretations according to 
different functions such as lifelog for contextual interpretations, 
user profile for content interpretations, and environmental 
variables for explanations. 

Trigger: After loading data for interpretations 

Preconditions: • Recommendation are built
• Data is loaded

Postconditions: The user profile, lifelog, and environmental variable data is 
prepared and is available for interpretations 

Normal Flow: 1. Context Interpreter sends data to Data Preparer for
preparations

2. Data Preparer prepares lifelog data
3. Content Interpreter sends request to Data Preparer for

preparing profile data
4. Data Preparer prepares profile data
5. Data Preparer prepares environmental variable data for the

Explanation Generator

Alternative Flows: N/A 

Exceptions: N/A 

Includes: SCL-UC-07 

Frequency of Use: Very frequent: at every service request 

Special Requirements: N/A 

130



Assumptions: N/A 

Sequence Diagram 

Use Case ID: SCL-UC-09 

Use Case Name: Interpret context 

Created By: Muhammad Afzal Last Updated By: Rahman Ali, 
Muhammad Afzal 

Date Created: July 15, 2015 Last Revision Date: July 28, 2015 

Actors: Build Recommendation 

Description: The loaded data is prepared for interpretations according to 
different functions such as lifelog for contextual interpretations, 
user profile for content interpretations, and environmental 
variables for explanations. 

sd prepare user profile data

Content
Interpreter

Data PreparerContext
Interpreter

Explanation
Generator

alt Prepare Data()

prepare lifelog data()

:prepared data

prepare data(data)

prepare user profile data()

:prepared data

Prepare Data()

prepare environmental variable data()

:prepared data

131



Trigger: After loading data for interpretations 

Preconditions: Recommendation are built, and data is loaded 

Postconditions: The user profile, lifelog, and environmental variable data is 
prepared and is available for interpretations 

Normal Flow: 1. Context Interpreter receives request for from
Recommendation Interpreter for context interpretation

2. Context Interpreter load and prepare data lifelog data
(contextual data) for interpretations.

3. Context interpreter select a context
4. Context interpreter interprets the context
5. Repeat 2-4 until all applicable contexts interpreted
6. Context Interpreter receives the interpreted context
7. Context Interpreter sends the recommendations to content

interpreter for interpreting the contents

Alternative Flows: 7a. if user is not available then the process is halt and message is 
sent to Recommendation Builder. 

Exceptions: N/A 

Includes: SCL-UC-08 

Frequency of Use: Very frequent; at every service request 

Special Requirements: N/A 

Assumptions: N/A 

Notes and Issues: N/A 

Sequence Diagram 

132



Use Case ID: SCL-UC-10 

Use Case Name: Interpret contents 

Created By: Muhammad Afzal Last Updated By: Rahman Ali 

Date Created: July 15, 2015 Last Revision Date: July 28, 2015 

Actors: Interpret Context 

Description: The recommended contents of recommendations are difficult for 
user to understand. These contents need to be interpreted with 
support of multimedia contents. 

Trigger: After interpretation of the context 

Preconditions: Recommendations are generated, and context is interpreted 

Postconditions: Recommendations are ready for explanation 

sd Interaction

Recommendation
Builder

Context
Interpreter

Data Preparer Content
Interpreter

loop 

alt User Av ailable?

[i f (available)]

[else]

Data Loader

interpret context(user id)

select context()

prepare data (selected context)

Load Data()

::Data

:prepared data

interprete context()

send interpretations()

:user is not avialable

133



Normal Flow: 1. Context Interpreter sends the contextually interpreted
recommendations to the content filterer.

2. Content interpreter perform the following tasks;
a. Select appropriate filter
b. Applies the filter

3. Step 2 is repeated for all filters
4. Content interpreter selects the appropriate format
5. Content interpreter adds the relevant url
6. Content interpreter forwards the format and filtered contents

to explanation generator

Alternative Flows: N/A 

Exceptions: N/A 

Includes: SCL-UC-08 

Frequency of Use: Very frequent: when recommendation are generated 

Special Requirements: The format should be defined in advanced based on the user 
special conditions 

Assumptions: N/A 

Notes and Issues: N/A 

Sequence Diagram 

134



sd apply format

Context
Interpreter

Content
Interpreter

loop 

Data Preparer Data Loader Explanation
Generator

interprete content(interpreted context, recommendation)

select fi lter()

Prepare Data(selected fi lter)

Load Data()

:data

:prepared data

apply fi lter()

Prepare Data(user id)

load data (user id)

:data

Prepare Data()

:prepared data

select format()

pick content url()

Explain Recommendation(interpreted rec)

135



Use Case ID: SCL-UC-11 

Use Case Name: Explain Recommendations 

Created By: Muhammad Afzal Last Updated By: Rahman Ali 

Date Created: July 15, 2015 Last Revision Date: July 20, 2015 

Actors: Interpret content 

Description: Usually user don’t understand the contents of recommendations. 
To make them understandable the interpreted recommendations 
needs to be explained based on the user understandability. 

Trigger: When contents are interpreted 

Preconditions: Recommendations are interpreted 

Postconditions: Recommendations are ready to deliver to the user 

Normal Flow: 1. Explanation generator receives the interpreted
recommendations from content interpreter.

2. Explanation generator performs the following tasks;
a. Select environment variable
b. Generate explanation

3. Explanation Generator sends explained recommendation to
educational support handler

4. Educational support handler performs the following tasks
a. generate query
b. locate resource
c. link resource
d. send resource link to interpreter

5. System sends explanation and educational resource links to
result preparer.

Alternative Flows: N/A 

Exceptions: N/A 

Includes: SCL-UC-08 

Frequency of Use: Very frequent: when recommendations are interpreted 

136



Special Requirements: N/A 

Assumptions: N/A 

Notes and Issues: N/A 

Sequence Diagram 

Use Case ID: SCL-UC-12 

Use Case Name: Prepare Results 

Created By: Muhammad Afzal Last Updated By: Rahman Ali, 
Muhammad Afzal 

Date Created: July 5, 2015 Last Revision Date: July 20, 2015 

sd prepare results

Content
Interpreter

Explanation
Generator

Education
Supporter

Data HandlerData Preparer Data Loader Result Preparer

explain recommendation(interpreted rec)

Prepare Data()

Load Data()

:data

:prepared data

generate explanation()

send explanation()

add education support()

generate query()

locate resource()

link resource()

Send (resource' l ink(s))

prepare results()

137



Actors: Explain Recommendation (SCL-UC-11), Interpret Contents (SCL-
UC-10) 

Description: This use case prepares the results accumulated from explanation 
generator and content interpreter and forwards to results 
handler of service orchestrator. 

Trigger: When recommendation is interpreted and explained 

Preconditions: The recommendation is interpreted and explained 

Postconditions: The results are forwarded to service orchestrator. 

Normal Flow: 1. Result Preparer receives outputs from content interpreter
and/or explanation generator as well as education support.

2. Result Preparer combines the received results
3. Result Preparer sends the results to result handler of service

orchestrator

Alternative Flows: N/A 

Exceptions: N/A 

Includes: N/A 

Frequency of Use: Frequent 

Special Requirements: N/A 

Assumptions: N/A 

Notes and Issues: N/A 

Sequence Diagram 

138



Use Case ID: SCL-UC-13 

Use Case Name: Receive service request 

Created By: Muhammad Afzal Last Updated By: Rahman Ali, 
Muhammad Afzal 

Date Created: July 5, 2015 Last Revision Date: July 20, 2015 

Actors: User Application / SL 

Description: Service orchestrator receives request from user application, or 
DCL for recommendation. Orchestrator parses the request and 
invokes required service of Mining Mind for responding. 

Trigger: At the time of a request from the user application, or from mining 
mind generated events. 

Preconditions: • User is registered with Mining Minds
• Service is registered as mining Minds valid service
• Service-data binding is specified in advance

Postconditions: The request is received, and recommendations are generated 

 sd Interaction

Content
Interpreter

Explanation
Generator

Education
Support

Prepare Results SO: Result
Handler

send(interpreted recommendations)

send(explanation)

send(links to educational resources)

prepare results()

send(interprted and explained recommenations)

:ack

139



Normal Flow: 1. Service orchestrator receives the service request from user
application

2. System parses the request
a. Search for the registered service
b. Identifies the service type
c. Identifies data requirements of the service
d. Identifies the appropriate handling module

3. Service Orchestrator passes the request to recommendation
builder of SCL 2 to build the recommendation

Alternative Flows: 1.a Event handler of service orchestrator receives the request as
an interrupt from DCL, whenever a situation occurs 

4.a  Step 2-4 of the normal flow are executed.

Exceptions: N/A 

Includes: N/A 

Frequency of Use: Very frequent: at every service request 

Special Requirements: N/A 

Assumptions: Service orchestrator and DCL agreed on service contract. 

Notes and Issues: 

Sequence Diagram 

140



Use Case ID: SCL-UC-14 

Use Case Name: Handle Data 

Created By: Muhammad Afzal Last Updated By: Muhammad Afzal 

Date Created: July 28, 2015 Last Revision Date: July 28, 2015 

Actors: DCL 

Description: This use case receives data request from recommendation builder 
and recommendation interpreter. It makes request from DCL to get 
the data for requester. 

Trigger: At data request time 

Preconditions: Service Request has been received to service orchestrator 

Postconditions: Data has been provided to requester 

Normal Flow: 1. Data Handler in Service Orchestrator received data loading
request from recommendation builder

2. Prepare data request

sd SCL2-UC-01

Service
Orchestrator

Recommendation
Builder

DCL 2

alt 

User Application

service request(user id, service id)

service request()

search register service(service id)

identifies service type()

identifies data requirements()

identifies service handler component()

activate service provider componet()

141



3. Retrieve data from DCL
4. Send data to RB: Data Loader

Alternative Flows: 1a. Data Handler in Service Orchestrator received data loading 
request from recommendation interpreter 

Step 2-3 of normal flow 

4a. Send data to RI: Data Loader 

Exceptions: N/A 

Includes: N/A 

Frequency of Use: Very Frequent: At every service request 

Special Requirements: N/A 

Assumptions: N/A 

Notes and Issues: N/A 

Sequence Diagram sd Interaction

RB: Data Loader RI: Data Loader Data Handler DCL 2

alt 

alt 

Load Data(user id)

Load Data(user id)

prepare data request()

retrieve data(user id, datatime)

:data

:data

:data

142



Use Case ID: SCL-UC-15 

Use Case Name: Deliver service results 

Created By: Muhammad Afzal Last Updated By: Rahman Ali, 
Muhammad Afzal 

Date Created: July 5, 2015 Last Revision Date: July 20, 2015 

Actors: Application / SL 

Description: It is required to send request response to the service requester in 
the form of recommendation. Service orchestrator delivers the 
interpreted recommendation to user. 

Trigger: At the time of completion of interpretations 

Preconditions: Recommendations are generated and interpreted 

Postconditions: Service results are successfully delivered to the requester and DCL 
for persistence 

Normal Flow: 1. Service orchestrator receives results from recommendation
interpreter

2. System perform the following tasks;
a. Prepares the response message
b. Associate recommendations with service meta-data

3. Service Orchestrator sends recommendations to DCL for
persistence

4. Service Orchestrator receives acknowledgement of storage
5. Service Orchestrator sends interpreted recommendations to

SL
6. Service Orchestrator receives acknowledgement of receipt

Alternative Flows: N/A 

Exceptions: N/A 

Includes: N/A 

Frequency of Use: Very frequent: at every service request completion 

143



Special Requirements: N/A 

Assumptions: Service orchestrator agreed on service contract with DCL and user 
application. 

Notes and Issues: N/A 

Sequence Diagram 

Use Case ID: SCL-UC-16 

Use Case Name: Goal-based recommendation Generation 

Created By: Muhammad Sadiq Last Updated By: Muhammad Sadiq 

Date Created: March 16, 2017 Last Revision Date: March 16, 2017 

Actors: DCL, Service Orchestrator, Recommendation Interpreter 

Description: Goal Based recommender generates goal-based recommendation 
based on the user values 

Trigger: DCL/User invokes goal-based recommender through service 
orchestrator for goal based personalized recommendation 
generation 

Preconditions: Prepares request 

sd Interaction

Service
Orchestrator

DCL 2 SL 2Recommendation
Interpreter

sends service results(results)

prepare the service response()

associate meta data ()

sends service response()

ack()

sends service response()

ack()

144



Postconditions: Goal based recommendation is ready to be sent 

Normal Flow: 1. User characteristic information e.g. height, weight etc. is
received

2. Goal Based Reasoner computes user BMI
3. Computed BMI is compared with Standard BMI
4. The difference of computed and standard BMI is

generated
5. Categorize user based on the computed BMI difference
6. Generate recommendation based on respective BMI

status
7. Return recommended goal and associated information to

service orchestrator
8. Service orchestrator sends the recommendation to RI for

personalization of the recommendation
9. RI personalizes the generated recommendation and sends

it back to service orchestrator
10. Service orchestrator return the generated personalized

goal-based recommendation to DCL

Alternative Flows: N/A 

Exceptions: N/A 

Includes: 

Frequency of Use: Depending on situation. 

Special Requirements: N/A 

Assumptions: KCL 3.0 and RB 2 agree on common format of production rules. 

Notes and Issues: N/A 

Sequence Diagram 

145



Use Case ID: SCL-UC-17 

Use Case Name: Provide Educational Support for user awareness 

Created By: Imran Ali Last Updated By: Imran Ali 

Date Created: March 16, 2017 Last Revision Date: March 16, 2017 

Actors: Build Recommendation (SCL-UC-4) 

Description: Provide educational support to the user for first 4 weeks of the 
subscription period. Educational support consists of audio/visual 
aids and informative web resources 

Trigger: After loading data for interpretations 

Preconditions: Recommendation are built and data is loaded 

Postconditions: The user profile, lifelog, and environmental variable data is 
prepared and is available for interpretations 

146



Normal Flow: 5. Recommendation Interpreter receives request from
Recommendation Builder

6. Recommendation Interpreter extracts users information from
lifelog

7. Recommendation Interpreter evaluates the matching
educational contents for the target user audience

8. Recommendation Interpreter prepares the required
educational contents

9. Recommendation Interpreter sends the required educational
content unit to result preparer

Alternative Flows: N/A 

Exceptions: N/A 

Includes: SCL-UC-08 

Frequency of Use: Thrice a day: Time-based 

Special Requirements: N/A 

Assumptions: Service Orchestrator knows the required data for each registered 
service. 

Notes and Issues: N/A 

Sequence Diagram 

147



Use Case ID: SCL-UC-18 

Use Case Name: Location- and weather-based Personalized recommendation 

Created By: Imran Ali Last Updated By: Imran Ali 

Date Created: March 16, 2017 Last Revision Date: March 16, 2017 

Actors: Build Recommendation (SCL-UC-4) 

Description: Interpret recommendations for environmental contexts and 
provide the required information in an structured form to SL 

Trigger: After loading data for interpretations 

sd prepare results

Content
Interpreter

Explanation
Generator

Education
Supporter

Data HandlerData Preparer Data Loader Result Preparer

explain recommendation(interpreted rec)

Prepare Data()

Load Data()

:data

:prepared data

generate explanation()

send explanation()

add education support()

generate query()

locate resource()

link resource()

Send (resource' l ink(s))

prepare results()

148



Preconditions: Recommendation are built, and data is loaded 

Postconditions: The user profile, lifelog, and environmental variable data is 
prepared and is available for interpretations 

Normal Flow: 1. Recommendation Interpreter receives physical activity-based
recommendation

2. Recommendation Interpreter assess the user interpretability
3. In case of availability Recommendation Interpreter evaluates

the contextual viability of the recommendation
4. Recommendation Interpreter sends the recommendation for

education support
5. Recommendation Interpreter prepares educational unit for

the target user is prepared
6. Final recommendation package is sent to Result Preparer

Alternative Flows: N/A 

Exceptions: N/A 

Includes: SCL-UC-08 

Frequency of Use: Very frequent; at every service request 

Special Requirements: N/A 

Assumptions: Service Orchestrator knows the required data for each registered 
service. 

Notes and Issues: N/A 

Sequence Diagram 

149



Use Case ID: SCL-UC-19 

Use Case Name: User Preference-based refined recommendations 

Created By: Imran Ali Last Updated By: Imran Ali 

Date Created: March 16, 2017 Last Revision Date: March 16, 2017 

Actors: Build Recommendation (SCL-UC-4) 

sd apply format

Context
Interpreter

Content
Interpreter

loop 

Data Preparer Data Loader Explanation
Generator

interprete content(interpreted context, recommendation)

select fi lter()

Prepare Data(selected fi lter)

Load Data()

:data

:prepared data

apply fi lter()

Prepare Data(user id)

load data (user id)

:data

Prepare Data()

:prepared data

select format()

pick content url()

Explain Recommendation(interpreted rec)

150



Description: Interpret Recommendations based on User’s Preferences for 
Food-based Recommendation 

Trigger: After loading data for interpretations 

Preconditions: Recommendation are built, and data is loaded 

Postconditions: The user profile and lifelog data is prepared and is available for 
interpretations 

Normal Flow: 1. Recommendation Interpreter receives food-based
recommendation

2. Recommendation Interpreter evaluates the targeted user
group

3. Recommendation Interpreter retrieves preferences of the
user

4. Recommendation Interpreter matches user preferences with
the targeted food-categorizes (menu-sets)

5. Recommendation Interpreter finalizes the menu-set selection
6. Final recommendation package is sent to Result Preparer

Alternative Flows: N/A 

Exceptions: N/A 

Includes: SCL-UC-08 

Frequency of Use: Very frequent; at every service request 

Special Requirements: N/A 

Assumptions: Service Orchestrator knows the required data for each registered 
service. 

Notes and Issues: N/A 

Sequence Diagram 

151



Use Case ID: SCL-UC-20 

Use Case Name: Provide Alternative Recommendation 

Created By: Imran Ali Last Updated By: Imran Ali 

Date Created: March 16, 2017 Last Revision Date: March 16, 2017 

Actors: Build Recommendation (SCL-UC-4) 

Description: Interpret Recommendation for special condition. An alternative 
recommendation is generated when the provided 
recommendation is not deemed viable for the user 

Trigger: After loading data for interpretations 

Preconditions: Recommendation are built, and data is loaded 

Postconditions: The user profile, lifelog, and environmental variable data is 
prepared and is available for interpretations 

152



Normal Flow: 1. Recommendation Interpreter receives physical activity-
based recommendation

2. Recommendation Interpreter evaluates the availability of
the user

3. Recommendation Interpreter evaluates the special user
conditions

4. Recommendation Interpreter decides of the need for
alternative recommendation

5. Educational contents are prepared for the final
recommendation

6. Final recommendation package is sent to Result Preparer

Alternative Flows: 1.1 Stall recommendation is user is not available 

Exceptions: N/A 

Includes: SCL-UC-08 

Frequency of Use: Very frequent; at every service request 

Special Requirements: N/A 

Assumptions: Service Orchestrator knows the required data for each 
registered service. 

Notes and Issues: N/A 

Sequence Diagram 

153



sd Interaction

Recommendation
Builder

Context
Interpreter

Data Preparer Content
Interpreter

loop 

alt User Av ailable?

[i f (available)]

[else]

Data Loader

interpret context(user id)

select context()

prepare data (selected context)

Load Data()

::Data

:prepared data

interprete context()

send interpretations()

:user is not avialable

154



5. Supporting Layer

5.1 Functional Requirements

Requirements #ID Description 

SL-FR-01 The platform shall retrieve the user profile information, context 
of use and device information for adaptation of the user interface 

SL -FR-02 The platform shall collect the user data such as user feedback and 
user observational data for the enhancement of user interface 

SL -FR-03 The platform shall utilize the user profile data, life-log and raw 
sensory data for analytics 

5.2 Non-functional Requirements 

Requirements #ID Description 

SL-NFR-01 The platform shall provide user interface that is easy to use and 
intuitive  

5.3 Terms and Definitions 

Terms Description 
DCL Data Curation Layer  

SCL Service Curation Layer 

ICL Information Curation Layer 

KCL Knowledge Curation Layer 

SL Supporting Layer 

Self-report  A method which involves asking a participant about their feelings, 
attitudes, beliefs and so on 

User Capabilities  User cognitive, perceptual and physical characteristics 

Context of use Environmental variables and low-level context (location) 

Device Characteristics Screen size, resolution, memory, and battery 

UI Adaptation The changes in user interface 

Observational Data User interaction data with the user interface 

155



User Experience User perception, satisfaction about the user interfaces 

User Profile User related data that do not change frequently 

5.4 Use Cases 

5.4.1 List 

Requirements #ID Description 
SL-UC-01 User registration 

SL-UC-02 Retrieve capabilities for user interface adaptation 

SL-UC-03 Mapping the user capability information into model 

SL-UC-04 Adapt user interface based on user profile, context and device 

SL-UC-05 User capabilities collection 

SL-UC-06 Self-reporting user experience measurement 

SL-UC-07 Collect and analyze observational data 

SL-UC-08 Acquire Recommendations for displaying to end user 

SL-UC-09 Feedback Collection 

SL-UC-10 Retrieve capabilities for context-based services 

SL-UC-11 Map Request to Query 

SL-UC-12 Transform Data 

SL-UC-13 Classify Data 

SL-UC-14 Analyze Data 

SL-UC-15 Display Analytics 

SL-UC-16 Take Expert Input 

SL-UC-17 Display Adaptive Questions 

156



5.4.2 Diagram 
uc Use Case Model for v ersion 2.5

MM Supporting Layer

Acquire 
recommendations

retriev e Capabilities 

Get user profile

End User

Display 
Recommendations «actor»

Serv ice Curation 
Layer (SCL)

«actor»
SL 

Get sensory data 

Prov ide analyticsExpert

«actor»
Data Curation Layer 

(DCL)

Get life-log 
information

Prov ide SNS Trends

Feedback

Take Input

Display Adaptiv e 
Questionaires

User Authentication

User Encryption

«include»

«include»

«include»

«include»

157



5.4.3 Description 

Use Case ID: SL-UC-01 

Use Case Name: User registration 

Created By: Jamil Hussain Last Updated By: Anees Ul Hassan 

Date Created: 14 July 2015 Last Revision Date: 01 July 2018 

Actors: Primary: End-user 
Secondary: DCL 

Description: This use case is for the user registration. A user must register with 
the MM app before they are able to use it. Registration primarily 
consists of entering an email address for verification and creating a 
password. All basic demographics, account, activity level, user 
interest information, and personalized map information shall be 
collect from user and persist in DCL.  

Trigger: End user  

Preconditions: The non-register user asked the application to register to it. 

Postconditions: The user successfully registered to the application and can access its 
functionality 

Normal Flow: 1. The user starts registration of the new account by pressing the “Si
g up” button on the application first screen. 

2. Then Terms & Conditions page displayed
3. The application will display the multi-step registration form with e

mpty fields for the account and user profile.
4. The user annotates the map for personalization by selecting differ

ent locations of his interest.
5. Validate User Input

• The application will automatically validate all the user inp
ut for all the required fields

• The user cannot proceed until providing the correct data.
6. The user can press “Submit” button and the new account data wil

l be persisted to the DCL.

Alternative Flows: 2a. In step 2. If the user Agree with Terms & Conditions 
• User is allowed to the next step by click on agreed term & con

dition checkbox. 
2b. In step 2. If user not agree with terms & conditions, then 

• User is redirect to the first screen.

158



3a. in step 3. Display Validation Error  
• If the validation failed, then the validation icon will be display

ed nearby the wrong field and there will be validation messag
e. 

Exceptions: N/A 

Includes: N/A 

Frequency of Use: When user first time use the system [low] 

Special Requirements: N/A 

Assumptions: N/A 

Notes and Issues: N/A 

Sequence Diagram 

159



Use Case ID: SL-UC-02 

Use Case Name: Retrieve capabilities for user interface adaptation 

Created By: Jamil Hussain Last Updated By: Anees Ul Hassan 

Date Created: 14 July 2015 Last Revision Date: 01 July 2018 

Actors: DCL 

Description: This use case focuses on the retrieval of the capabilities for user 
interface adaptation. The capabilities include user profile information, 
context information and device information. It is utilized for 
adaptation based on changes or observational data. 

Trigger: 

Preconditions: The DCL provide the access to required information 

Postconditions: All required capabilities are successfully collected. 

Normal Flow: 1. SL generates request for user, device, and context information
collection from DCL

2. This information is utilized for the adaptation of the user interf
aces

3. The adaptation is based on changes in user profile, context info
rmation or collected observational data

Alternative Flows:  N/A 

Exceptions: If there is not capabilities information, then the default user 
interfaces will be displayed. 

Includes: N/A 

Frequency of Use: Always when the application is running [High] 

Special Requirements: N/A 

Assumptions: The capabilities information should be available with the DCL. 

Notes and Issues: N/A 

Sequence Diagram 

160



Use Case ID: SL-UC-03 

Use Case Name: Mapping the user capability information into model 

Created By: Jamil Hussain Last Updated By: Anees Ul Hassan 

Date Created: 14 July 2015 Last Revision Date: 01 July 2018 

Actors: DCL 

Description: The collected capabilities information from DCL.0 shall be mapped 
against the hierarchical structure of the model 

 Trigger: SL initiate communication with DCL. 

Pre-conditions: • User is a registered client of MM platform
• Updated user profile must be available

Post-conditions: 1. User profile and environmental variables are received by UI/U
X

2. All collected variables are successfully mapped and validated

161



Normal Flow: 1. UI/UX send request to DCL.0 for environmental variables (e.g.
, temperature, weather, time, noise, light level etc.) and user
profile variables (e.g. uid, name, age, perceptual information)

2. DCL sent back the requested variables.
3. The semantic modeler maps the data to model
4. The mapped information is persisted in model.

Alternative Flows: N/A 

Exceptions: 

Includes: SL-UCS-01 

Frequency of Use: Always when the application is running [High] 

Assumptions: N/A 

Notes and Issues: N/A 

Sequence Diagram 

162



Use Case ID: SL-UC-04 

Use Case Name: Adapt user interface based on user profile, context and device 

Created By: Jamil Hussain Last Updated By: Anees Ul Hassan 

Date Created: 14 July 2015 Last Revision Date: 01 July 2018 

Actors: DCL, end user 

Description: The collected information of user profile, context of use and device 
characteristics from DCL results in adaption of the user interface 

Trigger: End user start interacting with user interface 

Pre-conditions: • The user profile and context of use and device data has been
collected by UI/UX Authoring tool

Post-conditions: • Adaptive UI rendered/generated based on collected informa
tion

Normal Flow: 1. User request for personalize user interface to UI/UX.
2. UI/UX send request to adaptation engine for generating the

personalized user interface based on user, context and devic
e information.

3. Adaptation engine perform reasoning based on pre-defined
adaption and navigations rules.

4. Reasoner recommend the user interface components and its
styles to generate the UI.

5. Then personalized generated UI is displayed to end user.

Alternative Flows: N/A 

Exceptions: N/A 

Includes: N/A 

Frequency of Use: When user interact with the system 

Assumptions: N/A 

Notes and Issues: N/A 

Sequence Diagram 

163



Use Case ID: SL-UC-05 

Use Case Name: User capabilities collection 

Created By: Jamil Hussain Last Updated By: Anees Ul Hassan 

Date Created: 14 July 2015 Last Revision Date: 01 July 2018 

Actors: End user, DCL 

Description: The UI/UX collects the user capabilities information’s by analyzing 
the user perception such as user visual and color perception 

Trigger: User uses the tools for collection 

Pre-conditions: • Perception collection tools are installed

Post-conditions: • User perceptual information successfully collected and upda
te information in user profile DCL

164



Normal Flow: 1. User select the tools for color and visual perception and inte
ract with it accordingly.

2. Tools acquire its interaction data in order to find the user pe
rceptions

3. User experience calculate its final value.
4. Final values are stored in user profile DCL.

Alternative Flows: 

Exceptions: N/A 

Includes: N/A 

Frequency of Use: When user interact with the system 

Special Requirements: 

Assumptions: Service contract between SL and DCL is defined 

Notes and Issues: N/A 

Sequence Diagram 

Use Case ID: SL-UC-06 

Use Case Name: Self-reporting user experience measurement 

Created By: Jamil Hussain Last Updated By: Anees Ul Hassan 

165



Date Created: 14 July 2015 Last Revision Date: 01 July 2018 

Actors: End user, DCL 

Description: The UI/UX shall collect feedback about how users feel about the 
system during or after use by self-reporting method. 

Trigger: End user 

Pre-conditions: • Self-reporting questionnaire already exist

Post-conditions: • The feedback is successfully collected

Normal Flow: 1. The end user provide feedback using the questionnaire.
2. The feedback is sent to user experience in order to evaluate th

e user response.
3. user experience variables such as usability, pleasure, beauty a

re calculated based on filled questions
4. The UI/UX update the calculated variables values in user profil

e by sending request to DCL

Alternative Flows: N/A 

Exceptions: N/A 

Includes: N/A 

Frequency of Use: When user interact with the system 

Special Requirements: N/A 

Assumptions: N/A 

Notes and Issues: N/A 

Sequence Diagram 

166



Use Case ID: SL-UC-07 

Use Case Name: Collect and analyze observational data 

Created By: Jamil Hussain Last Updated By: Anees Ul Hassan 

Date Created: 14 July 2015 Last Revision Date: 01 July 2018 

Actors: End user, DCL 

Description: The UI/UX shall identify areas of improvement and maximize the 
user interaction by analyzing the user interaction with app. 

Trigger: Initiated by end user 

Pre-conditions: • Analytics tracker is already installed

Post-conditions: • Observational data are successful collected and analyzed for u
ser experience measurement

Normal Flow: 1. Analytics collector collect the user interaction data such as us
er ID, event, session, screen, crashes & exceptions, and user ti
mings

2. The collected data is stored locally before being dispatched

167



3. Data is dispatched for user experience measurement from the
app for every 30 minutes

4. the pragmatic quality such as usability-( e.g. performance, issu
es) are calculated in order to find the user experience (UX)

5. UX quality variables are sent to DCL2 for storage/updating in u
ser profile.

Alternative Flows: N/A 

Exceptions: N/A 

Includes: N/A 

Frequency of Use: Frequent, request by SL 

Special Requirements: N/A 

Assumptions: Service contract between DCL and SL is defined 

Notes and Issues: N/A 

Sequence Diagram 

168



Use Case ID: SL-UCS-08 

Use Case Name: Acquire Recommendations for displaying to end user 

Created By: Jamil Hussain Last Updated By: Anees Ul Hassan 

Date Created: 14 July 2015 Last Revision Date: 01 July 2018 

Actors: Primary: End-user 
Secondary: SCL, DCL 

Description: This use case collects the recommendations generated by SCL and 
displays it on the user interface for the end users. The provided 
recommendations are displayed according to user capabilities, 
context of use, and device characteristics. This information is 
obtained from the DCL. 

Trigger: SCL push the recommendations to the App or end-user send request 
for recommendations 

Preconditions: End-user subscribes to particular services 

Postconditions: All recommendations are successfully displayed according to user 
capabilities, context, and device characteristics. 

Normal Flow: 1. SCL generate the recommendations and provide it to user interfac
e 

2. The SCL recommendations are acquired by the SL
3. SL investigates the user capabilities, context of use, and device ch

aracteristics by obtaining from DCL
4. The recommendation is displayed in graphical user interface base

d on collected capabilities of user, context and device information
.

Alternative Flows: 2a. In step 2. The SCL recommendations are acquired by the SL 
1. user request for recommendations (pull method)

2b. In step 2. The SCL recommendations are acquired by the SL 
1. SL push recommendations to App based on situations

Exceptions: N/A 

Includes: N/A 

Frequency of Use: Whenever the recommendations are generated by SCL [Medium] 

Special Requirements: N/A 

169



Assumptions: The user profile data and context information should exist in the DCL 

Notes and Issues: N/A  

Sequence Diagram 

Use Case ID: SL-UCS-09 

Use Case Name: Feedback Collection 

Created By: Jamil Hussain Last Updated By: Anees Ul Hassan 

Date Created: March 09 2017 Last Revision Date: 01 July 2018 

Actors: Primary: End-user 
Secondary: DCL 3 

Description: The UI/UX shall collect feedback about how users feel about
recommendations and additional questionnaires in a predefined time period 

170



Trigger: End user 

Preconditions: Self-reporting questionnaire already exist 

Postconditions: The feedback is successfully collected 

Normal Flow: 1. The end user provide feedback using the questionnaires and
feedback about recommendation.

2. The DCL stores the feedback in the lifelog for user preferences in
the case of feedback.

3. The questionnaires are stored in the lifelog for further analysis from
the expert

Alternative Flows: 
NA 

Exceptions: N/A 

Includes: N/A 

Frequency of Use: Every 3 weeks 

Special Requirements: N/A 

Assumptions: The feedback data is saved in DCL 

Notes and Issues: N/A  

Sequence Diagram 

171



Use Case ID: SL-UC-10 

Use Case Name: Retrieve capabilities for context-based services 

Created By: Jamil Hussain Last Updated By: Anees Ul Hassan 

Date Created: March 09 2017 Last Revision Date: 01 July 2018 

Actors: DCL, SCL 

Description: The UI/UX shall collect feedback about how users feel about
recommendations and additional questionnaires in a predefined time period 

Trigger: End user

Preconditions: Self-reporting questionnaire already exist 

Postconditions: The feedback is successfully collected 

Normal Flow: 1. The end user provide feedback using the questionnaires and
feedback about recommendation.

2. The DCL stores the feedback in the lifelog for user preferences in
the case of feedback.

3. The questionnaires are stored in the lifelog for further analysis from
the expert

Alternative Flows: 
NA 

Exceptions: N/A 

Includes: N/A 

Frequency of Use: Every 3 weeks 

Special Requirements: N/A 

Assumptions: The feedback data is saved in DCL 

Notes and Issues: N/A  

Sequence Diagram 

172



Use Case ID: SL-UC-11 

Use Case Name: Map Request to Query 

Created By: Shujaat Hussain Last Updated By: Shujaat Hussain 

Date Created: 14 July 2015 Last Revision Date: 01 July 2018 

Actors: Primary: Expert 

Description: This use case focuses on mapping the expert request to the query 
library for data store interface. 

Trigger: The request from the expert panel for analytics 

Preconditions: A predefined query library for retrieving the big data 

Postconditions: The query is sent to the data store interface and the data is fetched. 

Normal Flow: 
1. The expert requests the analytics for a specific context.
2. The parameters of the request is extracted and sent to query ma

nager.
3. The query manager matches the parameters with the predefined

queries in the query library.
4. The Query is selected and tuned according to the duration of the

data to be extracted.

173



Alternative Flows: 4a. In step 4 of the normal flow, if there is a more tuning done 
than the query  

1. The query is saved in the library for future calls.

Exceptions:  N/A 

Includes: N/A 

Frequency of Use: This use case can be used by the domain expert about 5-10 times 
based on the volume of data. [Low] 

Special Requirements: N/A 

Assumptions: For this use case the assumption is a query library. 

Notes and Issues: 1. How many queries are there in the query library? 

Sequence Diagram 

174



Use Case ID: SL-UC-12 

Use Case Name: Transform Data 

Created By: Shujaat Hussain Last Updated By: Shujaat Hussain 

Date Created: 14 July 2015 Last Revision Date: 01 July 2018 

Actors: Primary: Expert 

Description: The mapping query is transformed to specific model structure for 
trend analysis. 

Trigger: The data store interface initiates the data transformation process 

Preconditions: The data is sent from the data store interface. 

Postconditions: The transformed data is sent to trend analyzer. 

175



Normal Flow: 1. The unstructured data from the big data repository is sent to the 
data integration component. 

2. The data is transformed in an object model or a table depending
on the requirements. 

3. The social network data is than additionally integrated which is r
etrieved through a web service. 

4. The transformed data is then checked for compliance with the m
odel template. 

Alternative Flows: 2a. In step 2 of the normal flow, if the data is retrieved from the life 
log then it is sent directly to the integration component. 

Exceptions: If the transformed data does not pass the compliance check, step 2 
is started again. 

Includes: N/A 

Frequency of Use: This use case is used when the data comes from the big data and 
requires social data integration. [Low] 

Special Requirements: N/A 

Assumptions: 

Notes and Issues: 1. How many models can the data be transformed in? 

Sequence Diagram 

176



Use Case ID: SL-UCS-13 

Use Case Name: Classify Data 

Created By: Shujaat Hussain Last Updated By: Shujaat Hussain 

Date Created: 14 July 2015 Last Revision Date: 01 July 2018 

Actors: Primary: Expert 

Description: The transformed data is further classified and clustered to identify and 
analyze trends. 

Trigger: The transformed data is sent for trend analysis. 

Preconditions: The data is structured into a particular model. 

Postconditions: The data is classified into temporal, numerical and textual categories 

Normal Flow: 1. The model is passed for the classification. 
2. Metadata is extracted from the model.
3. The data is categorized based on the extracted metadata.
4. The temporal, numerical and textual data is extracted from the tran

sformed data.

Alternative Flows: 

Exceptions: 1. There is no temporal data to be classified. 
2. There is no numerical data to be classified.
3. There is no textual data to be classified.

Includes: 

Frequency of Use: This use case is used when the transformed data comes from model 
transformation module. [Low] 

Special 
Requirements: 

NA 

Assumptions: NA 

Notes and Issues: NA 

Sequence Diagram NA 

177



Use Case ID: SL-UC-14 

Use Case Name: Analyze Data 

Created By: Shujaat Hussain Last Updated By: Shujaat Hussain 

Date Created: 14 July 2015 Last Revision Date: 01 July 2018 

Actors: Primary: Expert 

Description: The classified data is analyzed through association and clustering 
techniques for visualization and analytics. 

Trigger: The classified data is passed to association clustering for finding 
analytics and trends. 

Preconditions: The numerical, temporal and textual data is classified separately so 
that association could be applied. 

Postconditions: The association is done with the data for analytics and data to be 
plotted is sent for visualization. 

178



Normal Flow: 1. The data classifier passes the data for association clustering. 
2. The temporal and numerical data is analyzed for clustering.
3. The data is clustered into a group for graph plotting.
4. The textual data is associated with each other to create analytics b

ased on the textual attribute and their corresponding facts.

Alternative Flows: 

Exceptions: 1. Clustering could not be done due to multiple outliers. 

Includes: 

Frequency of Use: This use case is used when the classified data is sent for grouping and 
association. [Low] 

Special Requirements: NA 

Assumptions: NA 

Notes and Issues: NA 

Sequence Diagram NA 

179



Use Case ID: SL-UC-15 

Use Case Name: Display Analytics 

Created By: Shujaat Hussain Last Updated By: Shujaat Hussain 

Date Created: 14 July 2015 Last Revision Date: 01 July 2018 

Actors: Primary: Expert 

Description: The grouped data and relevant analytics is passed to visualization 
enabler so that the graphs are plotted and displayed. 

Trigger: The trend analyzer sends the data for graph visualization and 
plotting. 

Preconditions: The data is sent to visualization enabler distinguishable by their 
attributes and association. 

Postconditions: The analytics and relevant visualization is sent to the user interface. 

Normal Flow: 1. The data is categorized according to the graph templates for visua
lization. 

2. The scales are defined for the grouped data to be plotted on the c
oordinates. 

3. The association text and the relevant facts about the data is also a
ttached to the graph as analytics. 

Alternative Flows: NA 

Exceptions: NA 

Includes: NA 

Frequency of Use: This use case is used when the grouped data is sent for display in 
graph and analytics form. [Low] 

Special Requirements: NA 

Assumptions: NA 

Notes and Issues: NA 

Sequence Diagram 

180



Use Case ID: SL-UC-16 

Use Case Name: Take Expert Input 

Created By: Shujaat Hussain Last Updated By: Shujaat Hussain 

Date Created: 14 July 2015 Last Revision Date: 01 July 2018 

Actors: Primary: Expert 

Description: This use case focuses on taking expert input on activity and 
nutrition for the user’s analytics 

Trigger: The request from the expert panel for input 

Preconditions: The user meal and activity information is stored 

Postconditions: The query is sent to the data store interface and the data is 
stored. 

Normal Flow: 
1. The expert requests the input panel for a specific user.
2. The parameters of the request is extracted and sent to query

manager.
3. The query manager matches the parameters with the predefi

ned queries in the query library.

181



4. The interface is shown for expert to input activity and meal in
formation

5. It is stored in the life log

Alternative Flows: 4a. In step 4 of the normal flow, if there is a more tuning 
done than the query  

1. The query is saved in the library for future calls.

Exceptions: NA 

Includes: NA 

Frequency of Use: NA 

Special Requirements: NA 

Assumptions: NA 

Notes and Issues: NA 

Sequence Diagram sd take input

data store interface

Expert

SCLDCL

WriteReview()

storeReview(review,expertId)

senduserdata(food,act)

storeData()

182



Use Case ID: SL-UC-17 

Use Case Name: Display Adaptive Questionnaires 

Created By: Shujaat Hussain Last Updated By: Shujaat Hussain 

Date Created: 26 October 2017 Last Revision Date: 01 July 2018 

Actors: Primary: User 

Description: This use case focuses on displaying questions adaptively 
depending on the user situation. 

Trigger: The request from the user after a stage is completed for 
questions 

Preconditions: The situation is analyzed to identify the questions. 

Postconditions: The questions are displayed to the user 

Normal Flow: 
1. The user requests questions after completing the stage.
2. The parameters of the request is extracted and sent to quer

y manager according to the user situation.
3. The query manager matches the parameters with the prede

fined queries in the query library.
4. The questions are shown to the user with respect to the sta

ge and situation

Alternative Flows: 4a. In step 4 of the normal flow, if there is a more tuning 
done than the query  

2. The query is saved in the library for future calls.

Exceptions: NA 

Includes: NA 

Frequency of Use: NA 

Special Requirements: NA 

Assumptions: NA 

Notes and Issues: NA 

Sequence Diagram 

183



sd Adaptiv eQuestions

Visualization
Enabler

Query Creation Data Store

User

User Interface

IDBDataCall()

RenderQuestions(profile)

DisplayQuestions()

getfromQueryLibrary(profile)

TuneQuery()

QueryData()

HDFSDataCall()

displayquestions(ids)

184



6. Collaboration Diagram

Knowledge Curation 
Layer

Supporting Layer

Multimodal Data Source

Service Curation Layer

Information Curation 
Layer

Data Curation Layer

raw sensory data,
environmental

variables
se

ns
or

y 
da

ta

co
nt

ex
t

lif
e-

lo
g,

us
er

 p
ro

fil
e,

sc
he

m
a

au
th

or
iza

tio
n,

fe
ed

ba
ck

,
us

er
 p

ro
fil

e

lif
e-

lo
g,

 
ra

w
 s

en
so

ry
 d

at
a,

us
er

 p
ro

fil
e,

ca
pa

bi
lit

ie
s

si
tu

at
io

n,
lif

e-
lo

g,
us

er
 p

ro
fil

e,
en

vi
ro

nm
en

ta
l 

va
ria

bl
es

recommendations

si
tu

at
io

n.
pr

od
uc

tio
n 

ru
le

s

si
tu

at
io

n
recommendations

185




